molecules

Review

Sweet Cherries as Anti-Cancer Agents: From Bioactive
Compounds to Function

Lara R. S. Fonseca !

Ana P. Duarte 1'*

check for

updates
Citation: Fonseca, L.R.S.; Silva, G.R;;
Luis, A.; Cardoso, HJ.; Correia, S.;
Vaz, C.V.; Duarte, A.P,; Socorro, S.
Sweet Cherries as Anti-Cancer
Agents: From Bioactive Compounds
to Function. Molecules 2021, 26, 2941.
https:/ /doi.org/10.3390/
molecules26102941

Academic Editor: Roberto Fabiani

Received: 30 April 2021
Accepted: 12 May 2021
Published: 15 May 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Gongalo R. Silva 209, Angelo Luis !
and Silvia Socorro

, Henrique J. Cardoso 1 Sara Correia !, Catia V. Vaz 1,
1,%

CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique,
6200-501 Covilha, Portugal; lara.fonseca@ubi.pt (L.R.S.F.); afluis27@gmail.com (A.L.);
henriquelOmc@gmail.com (H.J.C.); scorreia@fcsaude.ubi.pt (S.C.); d793@fcsaude.ubi.pt (C.V.V.)

2 School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK; grosasdasilva0l@qub.ac.uk
*  Correspondence: apcd@ubi.pt (A.P.D.); ssocorro@fcsaude.ubi.pt (S.S.); Tel.: +351-275-329-023 (A.P.D);
+351-275-329-059 (S.S.)

Abstract: Sweet cherries (Prunus avium L.) are among the most appreciated fruits worldwide because
of their organoleptic properties and nutritional value. The accurate phytochemical composition and
nutritional value of sweet cherries depends on the climatic region, cultivar, and bioaccessibility and
bioavailability of specific compounds. Nevertheless, sweet cherry extracts are highly enriched in
several phenolic compounds with relevant bioactivity. Over the years, technological advances in
chemical analysis and fields as varied as proteomics, genomics and bioinformatics, have allowed the
detailed characterization of the sweet cherry bioactive phytonutrients and their biological function.
In this context, the effect of sweet cherries on suppressing important events in the carcinogenic
process, such as oxidative stress and inflammation, was widely documented. Interestingly, results
from our research group and others have widened the action of sweet cherries to many hallmarks
of cancer, namely metabolic reprogramming. The present review discusses the anticarcinogenic
potential of sweet cherries by addressing their phytochemical composition, the bioaccessibility and
bioavailability of specific bioactive compounds, and the existing knowledge concerning the effects
against oxidative stress, chronic inflammation, deregulated cell proliferation and apoptosis, invasion
and metastization, and metabolic alterations. Globally, this review highlights the prospective use of
sweet cherries as a dietary supplement or in cancer treatment.
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1. Introduction

Plant-based natural medicines are unquestionably humanity’s oldest and longest-
abiding source of health treatments, as well as some of the most versatile [1-3]. Despite
being faded out in favor of other medicinal processes as technology progressed, the use of
natural products in the pharmacological pipeline has remained important and even under-
gone a resurgence [2]. This includes the application of plant-based medicines in the field
of cancer research and treatment [4]. In the last few decades, preventive and generalized
chemotherapeutic cancer treatments have been achieved from plant and fruit extracts [5,6].
Moreover, the wealth of new technology made available in the last decades, in fields as
varied as proteomics, genomics and bioinformatics, has allowed the scientific community
to study natural products and their potential uses more easily and thoroughly [2,3,7].

Sweet cherry (Prunus avium L.), a member of the family Rosaceae, genus Prunus and
subgenus Cerasus [8], is one of the most appreciated fruits worldwide. Its biggest producer
is Turkey, followed by the United States of America, the Islamic Republic of Iran and
Italy [9]. Most of the sweet cherry production is for fresh consumption, with approximately
40% being processed as brined, canned, frozen, dried or juiced [8]. Sweet cherries are
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very nutritious fruits with their proposed health benefits mostly stemming from their
high levels of phytochemicals, moderate levels of carbohydrates, and low amounts of
calories [10]. Nevertheless, their precise nutritional composition is highly dependent on
external influences and processing [10].

The most well-documented biological effects of sweet cherry extract encompass its
antioxidant and anti-inflammatory properties [8,11,12]. The continuous increase of oxida-
tive stress (OS) and chronic inflammation are important driving forces in the carcinogenic
process, promoting cancer onset, progression and aggressiveness [13-16], which per se
justifies envisaging the anti-cancer role of sweet cherry. However, more recently, research
from our research group and others has started to unveil the remarkable effects of sweet
cherries against many of the established hallmarks of cancer.

The first part of the present review recalls the chemical composition of the sweet cherry,
its main nutrients and bioactive compounds, while also discussing their bioaccessibility
and bioavailability. The remaining topics summarize the current knowledge concerning
the protective effect of sweet cherries against OS, chronic inflammation, deregulated cell
proliferation and apoptosis, invasion and metastization. The role of sweet cherry extracts
in the suppression of metabolic reprogramming, a more recent cancer hallmark, is also
revised. Overall, this review discusses the anticarcinogenic potential of sweet cherries and
highlights their possible use in cancer treatment.

2. Nutrients, Phytochemical Composition and Bioactive Compounds

The chemical composition of sweet cherries depends on several factors, including
cultivar, ripening stage, agricultural practices and edaphoclimatic conditions [10]. Sweet
cherries are mainly composed of water, but they are also rich in several nutrients, such as
carbohydrates (sugars and fiber), fatty and organic acids, amino acids, vitamins, minerals
and phytochemicals such as melatonin, carotenoids, phenolic acids (hydroxycinnamic
derivatives) and flavonoids (anthocyanins, flavanols and flavan-3-ols) [10], as depicted
in Table 1.

2.1. Macronutrients

The three main classes of macronutrients present in sweet cherries are carbohydrates,
proteins and fat (Table 1). These macronutrients comprise the essential dietary build-
ing blocks and have major roles in human body function, namely in energy production,
growth and development, with frequent interplay in their metabolic and biochemical
pathways [17].

Sweet cherries are mostly composed of water (>80%), presenting a moderate amount of
carbohydrates (~=16%), especially sugars (sucrose, glucose, fructose, maltose and galactose)
and fiber (2.1%) [18]. They also present reduced levels of fat (0.2%), particularly saturated
fat, and are cholesterol-free and low in calories. Several amino acids have been additionally
detected in sweet cherries, with aspartic acid being the most abundant [19]).

2.2. Micronutrients

Although required in minute amounts compared with macronutrients, adequate mi-
cronutrient levels, specifically of vitamins and minerals, are critical for adequate metabolic
function [20].

Sweet cherry fruits are a nutrient-dense food with significant amounts of impor-
tant micronutrients and are considered a source of vitamins and minerals. They are
especially enriched in vitamin C and potassium, phosphorus, calcium and magnesium
(Table 1) [12,18].

2.3. Phytochemical Composition and Bioactive Compounds

Sweet cherries are known as a relevant source of phenolic compounds (558 mg/100 g,
Table 1) which include significant amounts of anthocyanins (1734 mg /100 g), other flavonoids
(396 mg/100 g) and phenolic acids (162 mg/100 g). Thus, the major phenolic compounds
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found in sweet cherries are anthocyanins (Table 1) which have been indicated as their
main bioactive compounds. The phenolic acids most abundant in sweet cherries are
mainly hydroxycinnamic acids. The chemical characterization of sweet cherries has shown
that neochlorogenic and p-coumaroylquinic acids are the predominant hydroxycinna-
mates (Table 1, [10,12,18,19]). Sweet cherries also contain interesting amounts of melatonin
(~1586 ng/100 g, Table 1) which is a neurohormone produced by the pineal gland, re-
sponsible for the regulation of several biological and physiologic processes in the human
body, namely the regulation of circadian rhythm and, consequently, the alleviation of sleep
disorders [21]. Overall, it is the phytochemical composition that mainly determines the
biological importance of sweet cherries.

Table 1. Main nutrients, phytochemicals and bioactive compounds found in sweet cherries.

Compounds Amount (per 100 g of Sweet Cherry) Reference
Water 8225¢g [22]
Protein 1.06 g [22]
Macronutrients Fat (total lipids) 020¢g [22]
Carbohydrates 16.01g [22]
Total saturated 0.04¢g [22]
Fatty acids Total monounsaturated 005¢ [22]
Total polyunsaturated 0.05g [22]
Fiber (total dietary) 210g [22]
Tryptophan 9.00 mg [22]
Threonine 22.00 mg [22]
Isoleucine 20.00 mg [22]
Leucine 30.00 mg [22]
Lysine 32.00 mg [22]
Methionine 10.00 mg [22]
Cystine 10.00 mg [22]
Phenylalanine 24.00 mg [22]
. . Tyrosine 14.00 m [22]
Amino acids Valine 24.00 mg [22]
Arginine 18.00 mg [22]
Histidine 15.00 mg [22]
Alanine 26.00 mg [22]
Aspartic acid 56.90 mg [22]
Glutamic acid 83.00 mg [22]
Glycine 23.00 mg [22]
Proline 39.00 mg [22]
Serine 30.00 mg [22]
Sugars (total) 1282 ¢ [22]
Sucrose 015¢g [22]
Sugars Glucose 6.59¢g [22]
Fructose 537¢g [22]
Maltose 012g [22]
Galactose 059¢g [22]
Calcium 13.00 mg [22]
Iron 0.36 mg [22]
Magnesium 11.00 mg [22]
Phosphorus 21.00 mg [22]
Micronutrients: Minerals Potassium 222.00 mg [22]
Zinc 0.07 mg [22]
Copper 0.06 mg [22]
Manganese 0.07 mg [22]

Fluoride 0.01 mg [22]




Molecules 2021, 26, 2941

4 0of 30

Table 1. Cont.

Compounds Amount (per 100 g of Sweet Cherry) Reference
Vitamin C 7.00 mg [22]
Thiamine (Vitamin B1) 0.03mg [22]
Riboflavin (Vitamin B2) 0.03 mg [22]
Niacin (Vitamin B3) 0.15mg [22]
Pantothenic acid (Vitamin B5) 0.20 mg [22]
Micronutrients: Vitamins Vitamin B6 0.05 mg [22]
Folate (Vitamin B9) 0.01 mg [22]
Choline (Vitamin B4) 6.10 mg [22]
Vitamin A 0.0l mg [22]
Vitamin E 0.07 mg [22]
Vitamin K 0.01 mg [22]
3-O-Caffeoylquinic acid 83.00 mg [18]
Catechin hexoside 168.00 mg [18]
Gallic acid 0.51 mg [19]
p-Coumaric acid 2.28mg [19]
Rutin 10.66 mg [19]
Chlorogenic acid 2.95mg [19]
Cyanidin-3-O-glycoside 22.03 mg [23]
Quercetin-3-4'-di-O-glycoside 24.61 mg [23]
Epicatechin 1.51 mg [19]
cis-p-Coumaroylquinic acid 56.00 mg [18]
trans-p-Coumaroylquinic acid 23.00 mg [18]
Phenolic Compounds Taxifolin-O-deoxyhexosylhexoside 66.00 mg [18]
Taxifolin-O-hexoside 13.00 mg [18]
Quercetin-O-rutinoside-O-
hexoside 42.00 mg [18]
Naringenin-O-hexoside 17.00 mg [18]
Dihydrowogonin
7-O-glucoside/sakuranetin 62.00 mg [18]
5-O-glucoside
Phenolic acids 162.00 mg [18]
Flavonoids (non-anthocyanins) 396.00 mg [18]
Total phenolic compounds 558.00 mg [18]
Cyanidin-3-O-glucoside 219.00 mg [18]
Cyanidin-3-O-rutinoside 1450.00 mg [18]
Peonidin-3-O-glucoside 64.00 mg [18]
Anthocyanins 1734.00 mg [18]
Other Bioactive [3-Carotene 38.00 pg [22]
Phytochemicals Lutein + zeaxanthin 85.00 ug [22]
(Carotenoids and Melatonin) Melatonin 1.60 pg [21]

3. Bioaccessibility and Bioavailability of Bioactive Compounds

Before interfering with biological activities in the human body, the bioactive com-
pounds contained in sweet cherries (Table 1, [18,23,24]) should become bioaccessible and
bioavailable. The concept of bioaccessibility is related to the quantity of a specific com-
pound released from a matrix, which will be available for absorption after undergoing
digestion [25]. Bioavailability corresponds to the amount of compound that can achieve
systemic circulation and exert an effect after tissue distribution [25]. The mechanisms asso-
ciated with the transport and metabolism of the distinct classes of bioactive compounds
are impossible to reproduce completely but in vitro models simulating the digestive pro-
cess and the use of cell lines morphologic and functionally similar to the lining of the
small intestine, as the human colon carcinoma derived Caco-2 cell line, have been widely
used [26,27]. These models are simple predictive instruments providing valuable informa-
tion about the bioaccessibility and bioavailability of bioactive compounds present in plant
and fruit extracts.
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Several studies with distinct methodological approaches have been performed to
access the bioaccessibility and bioavailability of sweet cherry compounds, demonstrat-
ing that they circulate in the human blood as intact or metabolized conjugates. Martini
et al. studied the bioaccessibility of phenolic bioactive compounds of two different cherry
cultivars, Celeste and Durone Nero I after in vitro gastrointestinal digestion with fluids
simulating salivary, gastric and intestinal digestion [24]. A remarkable decrease of total and
individual phenolic compounds was observed after the digestion process, with only 39.7%
and 29.9% of total phenolic compounds becoming bioaccessible. Moreover, the authors
identified the hydroxycinnamic acids (coumaroylquinic, feruloylquinic and caffeoylquinic
acid), and some flavanols, as the compounds most resistant to gastrointestinal conditions
and easily released from the cherry’s matrices and so with the highest bioaccessibility,
resulting in higher antioxidant and anti-proliferative activities. Interestingly, isomers of
caffeoylquinic and coumaroylquinic acids were also found after the digestion process.
In the Nero I cherries cultivar, anthocyanins also appear with elevated bioaccessibility,
with rutinoside derivatives, such as cyanidin-3-O-rutinoside, remaining more stable after
in vitro digestion than their glycosidic forms [24].

A study performed by Duarte AP’s research team evaluated the bioaccessibility of
the bioactive phenolic compounds present in the Saco cherries cultivar from the Fundao
region of Portugal [23]. A simulated digestive process using salivary, gastric, duodenal
and bile fluids was applied, and the compounds resultant from the cherries” digestion
were analyzed by high-performance liquid chromatography (HPLC). As expected, the
concentration of several bioactive phenolic compounds, such as gallic acid, p-coumaric
acid, rutin, chlorogenic acid, cyanidin-3-O-glycoside and quercetin-3-4'-di-O-glycoside was
diminished at the end of the digestion process relative to the original samples. Importantly,
the concentration of some of these phenolic compounds, namely quercetin, and gallic or
p-coumaric acids, increased during the digestion procedure, which seems to be related with
their conversion to other compounds, for example, the hydrolysis of their heterosidic forms.
This study also investigated the bioavailability of the bioactive compounds before and
after the digestion process by analyzing their absorption through the Caco-2 cell barrier.
The polyphenols identified after the digestive process were all able to be absorbed by
the cell barrier, although in decreased levels, becoming bioavailable. In contrast, in the
cherry extract not subjected to digestion, only quercetin-3,4’-di-O-glycoside could cross
the cell barrier and become bioavailable. Noteworthy, the extract’s antioxidant capacity
disappeared after absorption by the cellular monolayer, which is in line with the decrease
of total and individual phenolic compounds. Furthermore, cell monolayer integrity was
analyzed, and the extracts that underwent the digestive process did not affect cell integrity,
whereas the original extracts (not undergoing digestion) modified cellular integrity and
increased their permeability [23]. These results highlight the indispensable function of
digestion in determining the bioaccessibility and bioavailability of bioactive compounds
and minimizing the interference with the integrity and permeability of intestinal cells.

In a previous study published in 2008, Fazzari M. et al. mimicked the gastric digestion
of phenolic compounds from five frozen sweet cherry cultivars (Bing, Lapins, Skeena,
Staccato, and Sweetheart) using pancreatin digestion [28]. Samples were dialyzed using a
membrane to simulate the intestinal wall, and serum- and colon-accessible fractions of total
phenols and anthocyanins were assessed using spectrophotometric and HPLC analysis. At
the end of the process, Skeena, Lapins, and Sweetheart cultivars contained higher levels
of total phenolic compounds and anthocyanins in both fractions, which resembled the
higher content of these compounds in the original non-digested samples. Generally, the
percentage of total phenolic and anthocyanin compounds on the serum-available side
was lower than in the colon-available fraction. The ripening stages of these fruits also
contributed to the bioaccessibility of the bioactive compounds. The authors found that
immature cherries from Bing and Lapins cultivars contained a higher % of total phenolics,
in the serum-available fractions, than mature or overmature cherries. Moreover, the %
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recovery of neochlorogenic and p-coumaroylquinic acids in those fractions was also usually
higher for the immature cherries [28].

Bioavailability analysis of sweet cherry compounds has also been performed in fruit
derivatives, namely wine [29]. The digestion methods applied included gastric, pancreatic
and bile salts solutions followed by a dialysis process using a cellulose membrane. Total
phenolic contents of cherry wine decreased after post-gastric digestion, accompanied by a
decrease in the extract’s antioxidant capacity. The major phenolic compound observed in
all phases was gallic acid, whereas quercetin was not detected after the digestion process.
Caffeic acid and p-coumaric acid seemed to be more available in the serum fraction than in
the colon fraction, whereas the opposite was observed for rutin [29].

Despite the difficulty in making a reliable comparison between the different studies
due to variations in the approaches used for stimulating the in vitro digestion and the
distinct samples of sweet cherry and cultivars used, some commonalities could be observed.
In general, a decrease in the total bioactive phenolic compounds was observed after the
in vitro digestion process. This decrease may be correlated with pH changes in the diges-
tion medium and the activity of gastrointestinal digestive enzymes since they facilitate the
release of phenolic compounds from the matrix. In addition, the phenolic structure can
lose stability and suffer hydrolysis. Flavanols (e.g., quercetin acids) and hydroxycinnamic
acids (e.g., coumaric acids) seem to be the bioactive compounds with the highest bioac-
cessibility in the different cherry cultivars evaluated. Nevertheless, standardization of the
methods used by the different authors will be of paramount importance to establish the
bioaccessibility and bioavailability of the bioactive compounds present in sweet cherries.
Moreover, in vivo and in vitro approaches using co-cultures models that more realistically
mimic the intestinal epithelium should be developed.

4. Sweet Cherries and the Hallmarks of Cancer
4.1. Oxidative Stress

The production of reactive oxygen species (ROS), hydrogen peroxide (H,O;), hy-
droxyl radicals and reactive nitrogen species is essential for cell function and tissue
homeostasis [30,31]. However, the abnormal accumulation of these molecules causes
OS and subsequent cell damage. The continuous increase of OS, and moderate amounts
of ROS, have been associated with tumor onset, growth, progression and aggressive-
ness [13,14]. On the other hand, induction of programmed tumor cell death by extreme
increase of OS has been recently exploited as an anti-cancer therapy [32,33]. Nevertheless,
the antioxidant properties of natural bioactive compounds have been shown to be useful
in counteracting the moderate levels of OS and the downstream processes that promote
cancer development and progression.

In vitro antioxidant assays, such as 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic
acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing ability of plasma
(FRAP), oxygen radical absorbance capacity (ORAC) and nitric oxide (NO) assays, have
demonstrated that sweet cherries display a high capacity to capture free radicals [34—43].
Moreover, studies reported that sweet cherry extracts inhibit lipid peroxidation [44,45] and
the oxidation of human low-density lipoprotein (LDL) [40,46,47] and liposomes [47,48].
Considering that lipids are highly susceptible to oxidation and a major cause for the
increase of OS, these findings corroborate the antioxidant effect of sweet cherries.

The great antioxidant capacity of sweet cherries is influenced by the pattern of bioac-
tive compounds they contain (Table 1) which is slightly distinct for each variety and de-
pends on several factors, such as the cultivar location, climate and harvest
time [34-36,38,41,43,46,49]. In general, sweet cherries with higher total phenolic content
display higher antioxidant capacity [35-38,40,41,49]. Moreover, it was demonstrated that
among all phenolic compounds, anthocyanins, more precisely, cyanidin-3-O-rutinoside and
cyanidin-3-O-glucoside, are the important contributors to the high antioxidant capacity of
sweet cherries [38,40]. A study with cyanidin-3-O-glucoside showed that this anthocyanin
displays a protective effect on DNA cleavage, a concentration-dependent free radical scav-
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enging activity and a significant capacity to inhibit xanthine oxidase activity [50]. In an
OS rat model, cyanidin-3-O-glucoside significantly suppressed liver damage caused by
hepatic ischemia-reperfusion [51]. Besides anthocyanins, p-coumaroylquinic acid [40,41]
and other flavanols and flavonoids are also important antioxidant phenolic compounds
found in sweet cherries [41]. In addition, this interesting fruit contains vitamin A, C and E,
carotenoids and melatonin, which are also powerful antioxidant molecules [52-55].

The majority of existent studies employed biochemical assays to demonstrate the
antioxidant activity of sweet cherry extracts. However, in vitro studies with different cell
cancer models also showed the biological potential of sweet cherry extracts in suppressing
OS (Table 2, [38,40,42,45,49,52,56]). In human hepatocellular carcinoma HepG2 cells, sweet
cherry extract reduced OS, with a differential response depending on the fruit variety and
its amount of phenolic content [38]. Both sweet cherry extracts with low and high phenolic
content showed an antioxidant effect and were capable of reducing OS. However, for sweet
cherry extracts with lower phenolic content, the effects were only seen for low concen-
trations of the extracts. At higher extract concentrations, the increased concentrations of
glucose and fructose relative to phenolic compounds were linked with the increased levels
of ROS. Concerning sweet cherry extracts with higher quantities of phenolic compounds,
the increase in OS with the increase of extract concentration was not observable [38].

In Caco-2 cells, the antioxidant effect of sweet cherries was related to the anthocyanin
content [40,42,52]. Sweet cherry extracts with higher total phenolic content, particularly,
higher anthocyanin concentration, displayed a protective effect against oxidative damage
caused by OS inducers, such as tert-butyl hydroperoxide (t-BHP) and H,O; [42,52]. Fur-
thermore, the antioxidant protection was more effective in Caco-2 cells co-treated with the
OS inducer and sweet cherry extracts highly enriched in anthocyanins, compared with
cells treated with the extract alone. This difference may be explained by the fact that
anthocyanins are modestly absorbed by Caco-2 cells, despite having a powerful effect
as scavengers of extracellular free radicals [40,42,52]. In contrast, no differences were
found between the treatment with the fruit extract alone and the co-treatment with the OS
inducer for the sweet cherry extract with lower content of phenolic compounds [40]. The
phenolic compounds that are present in these sweet cherry extracts, namely chlorogenic
acid, catechin and rutin, are absorbed by Caco-2 cells, which justifies the different findings
obtained. Moreover, these findings indicate that the phenolic compounds absorbed by
Caco-2 cells mediate the intracellular antioxidant response.

The mechanisms behind the antioxidant activity of sweet cherry extract have also
started being discovered (Figure 1). In Caco-2 cells, sweet cherry extracts enriched in
polyphenols restored the reduced glutathione/oxidized glutathione (GSH/GSSG) ratio [42].
Similarly, in human neuroblastoma SH-SY5Y cells, the sweet cherry extracts with the
highest content of anthocyanins were the most effective in protecting against OS induced
by HyO,, by reducing intracellular ROS levels and increasing GSH [49]. In addition,
this study reported that the sweet cherry extracts with the highest antioxidant effect also
increased the levels of two important antioxidant enzymes, namely, glutathione reductase
(GR) and NAD(P)H quinone oxidoreductase (NQO1) [49]. However, further research is
needed to fully ascertain the capability of sweet cherry extract in modulating the activity of
enzymes of the antioxidant defense system. It was demonstrated in human neuroblastoma
SK-N-MC cells that a 2 h pre-incubation with a sweet cherry extract enriched in phenolic
compounds reduces the accumulation of intracellular ROS upon injury with HyO, [42].
These effects were not observed when the pre-incubation time was 24 h, which indicates
that the extract’s antioxidant action occurs through the direct scavenging of ROS, and
not implicating the modulation of other endogenous mechanisms [42]. Also, in human
prostate cancer LNCaP cells, sweet cherry extract had a protective effect against oxidative
damage and lipid peroxidation [45]. However, the extract failed to influence the activity
of superoxide dismutase (SOD) and glutathione peroxidase (GPx) [45]. Even considering
the limitations discussed in Section 3 related to the bioavailability and bioaccessibility
of bioactive compounds, in vivo evidence of the antioxidant capacity of sweet cherries
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remains compelling (Table 2). In Wistar rats fed a high fructose diet it was demonstrated
that freeze-dried sweet cherries increased the levels of GR and GPx, and inhibited lipid
peroxidation and the activity of catalase and SOD [57]. This diminished activity of catalase
and SOD may be explained by the fact that the intake of antioxidants through diet reduces
the need to activate endogenous antioxidant enzymes.

GSH, GR ' |
|
«® \ ¢ Inflammation

| TAnti-inﬂammatory markers

¥ Oxidative Stress |
| ros |

l Lipid peroxidation ‘ ‘ l Pro-inflammatory markers

. IL-2, IL4 oSOl
\ Qo1 g | .9 e
.. L ‘ IL-10 ‘ 2 lel
® | | ® ©o & &

S ———

Figure 1. Sweet cherry modulation of oxidative stress and inflammation. Sweet cherry extracts
reduce oxidative stress by decreasing the production of reactive oxygen species (ROS), namely
nitric oxide (NO) and lipid peroxidation. This was accompanied by the decreased activity of nitric
oxide (NO) synthase, up-regulation of glutathione (GSH), and altered expression of several enzymes
involved in the antioxidant defense, such as glutathione reductase (GR), glutathione peroxidase
(GPx), NAD(P)H quinone oxidoreductase (NQOL1), catalase, and superoxide dismutase (SOD). The
anti-inflammatory effect of sweet cherries is achieved by both inducing anti-inflammatory markers
whereas inhibiting the pro-inflammatory ones. Identified targets include the anti-inflammatory
(interleukin (IL)-2, -4 and -10) and pro-inflammatory (IL-6, -1 and -18) cytokines tumor necrosis
factor (TNF)-«, cyclooxygenase (COX) 1 and COX2, nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-kB), C-reactive protein (CRP), epidermal growth factor (EGF), endothelin-1
(ET-1), extracellular newly identified receptor for advanced glycation end-products binding protein
(EN-RAGE), ferritin and plasminogen activator inhibitor-1 (PAI-1). Green and red circle sections

mean activation and inhibition, respectively.

The beneficial effects of sweet cherry consumption have also been evaluated in hu-
mans. Prior et al. demonstrated that the daily consumption of 280 g of sweet cherries for
6 consecutive days increased plasma lipophilic and hydrophilic antioxidant capacity [58].
Another study showed that consuming 200 g of sweet cherries twice a day for 3 days
increased the urinary antioxidant capacity levels, presumably due to the antioxidant role
of tryptophan [59]. A similar study in 10 healthy women demonstrated that the daily
consumption of 280 g fruit for 6 days after overnight fast increased lipophilic ORAC and
decreased FRAP levels [60]. The decreased levels of FRAP are not surprising considering
that in this study, sweet cherry consumption decreased urate levels, the largest contributor
to plasma hydrophilic antioxidant capacity [61,62].

4.2. Inflammation

Inflammation is an essential and complex physiological response to tissue damage
caused by several acute causes such as physical injury, infection or exposure to toxins [63].
However, when inflammation becomes chronic, this biological response becomes harmful
and may lead to the development of chronic diseases [15,16,63]. Chronic inflammation has
been indicated as one of the major causes involved in cancer development and progres-
sion [15,16].
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Among a panoply of other benefits and cytoprotective effects, natural bioactive com-
pounds have also been shown to display anti-inflammatory properties, being useful tools
to counteract chronic inflammation [63]. A mark of the inflammatory response is the dra-
matic increase of prostaglandin levels due to the activation of cyclooxygenases (COX) [64].
In vitro biochemical studies showed that whole sweet cherry extracts, as well as extracted
anthocyanins, inhibited COX1 and COX2 activity (Figure 1), with a more noticeable effect
for COX2 [44,48,65]. This is an impactful outcome envisaging an anti-cancer role for sweet
cherries, as COX2 is the most important source of prostaglandins in cancer cases [66,67].

In biological models, the anti-inflammatory effect of sweet cherry extracts, antho-
cyanins and their metabolites (Table 2) were shown to be a consequence of the regulation of
other pro- and anti-inflammatory markers, such as interleukin (IL)-6 and IL-10, respectively
(Figure 1, [56,57,60,62,65,68-73]). An in vitro study using human acute monocytic leukemia
THP-1 cells treated with monosodium urate (MSU) crystals, the main causative agent for
the acute inflammatory response in gout, further detailed the anti-inflammatory effect of
sweet cherries. In the presence of sweet cherry extract, the levels of the pro-inflammatory
protein IL-13 were reduced, concomitantly with the inhibition of the crystals’ phagocytosis.
In acute pain episodes, IL-1 is released in response to MSU phagocytosis, which led the
authors to suggest that sweet cherry extract can reduce gout-associated inflammation [56].

The anti-inflammatory effects of sweet cherries were also demonstrated in vivo
(Table 2). The effect of a sweet cherry-based beverage was evaluated in Wistar rats and
ringdoves birds of different ages [70]. This study showed that the sweet cherry-based bev-
erage modulated IL-1f3, IL-4 and IL-2 levels, in both young and old animals, with species-
and age-dependent effects, and under the influence of the circadian rhythm. For example,
the downregulation of IL-13 was not observed in old rats in the afternoon, in old birds at
dawn, and in young birds at the acrophase (acrophase of the melatonin rhythm). Similarly,
differences were also found considering the upregulation of the anti-inflammatory IL-2. IL-
2 levels increased in young birds only during the acrophase and in old birds through dawn
and acrophase. In rats, the upregulation of IL-2 dissipated in the afternoon in old animals
and in the acrophase in both young and old. Moreover, the sweet cherry-based beverage
also downregulated the levels of tumor necrosis factor (TNF)-«, with effects observed at
dawn in old rats and young birds, and during the afternoon and at the acrophase in old
birds [70].

In Wistar rats fed with a high-fructose diet, the co-administration of freeze-dried
sweet cherry increased the levels of IL-10 and decreased C-reactive protein (CRP), another
well-known inflammatory marker [57].

The contribution of specific phenolic components to the sweet cherry’s anti-inflammatory
role was also analyzed [71,74]. In obese diabetic mice, diet supplementation with a non-
anthocyanin phenolic sweet cherry powder lowered IL-6 to levels similar to that of lean
mice [71]. Moreover, in diet-induced obese mice the administration of cyanidin—3—(2G—
glucosylrutinoside), cyanidin-3-rutinoside and pelargonidin-3-glucoside extracted from
sweet cherries decreased the levels of IL-6, TNF-«, inducible NO synthase, and nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-«B, Figure 1) [74].

The anti-inflammatory effect of the direct intake of sweet cherries has also been
reported in humans. Daily consumption of 280 g sweet cherry for 28 days decreased the
levels of CRP and NO in 20 healthy subjects [60]. However, 28 days postintervention CRP
and NO levels were partially reverted to their initial state.

Another study reported the effects of the daily consumption of 280 g of sweet cherry
for 28 days in 18 healthy patients [62]. CRP, epidermal growth factor (EGF), endothelin-1
(ET-1), extracellular newly identified receptor for advanced glycation end-products binding
protein (EN-RAGE), ferritin, IL-18 and plasminogen activator inhibitor-1 (PAI-1) levels de-
creased (Figure 1) whereas the expression of IL-1 receptor antagonist was increased. More-
over, patients were analyzed 28 days after treatment to understand if the anti-inflammatory
effects of sweet cherry consumption were maintained. In the postintervention period,
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ferritin levels continued to decrease, and the low levels of CRP were maintained. However,
the levels of the other biomarkers were completely or partially reversed [62].

Very interestingly, short time effects after sweet cherry consumption have been re-
ported. In 10 healthy women, the daily consumption of 280 g sweet cherries for 6 days
slightly decreased CRP, but 3 h after consumption were enough to observe a diminution of
NO levels [72].

4.3. Cell Death and Proliferation

The strict control of cell proliferation and apoptosis, and an accurate balance between
these biological processes are essential to maintain cell number and tissues’” homeosta-
sis [75]. Also, it is unquestionable that any disturbance in this equilibrium can alter
normal tissue architecture and function, likely contributing to cancer development. In fact,
sustained proliferative signaling and resistance to cell death are well-established cancer
hallmarks, involved in tumor onset, progression and aggressiveness. The pro-survival and
high proliferative features of cancer cells are driven by the hyper-activation of survival
signaling pathways whereas signal transduction pathways involved in the suppression of
cell proliferation and apoptosis induction are inhibited [75,76].

The last years have witnessed the confirmation that sweet cherry extract can have a
role in influencing the survival and apoptosis of cancer cells (Table 2). These properties are
uniquely determined by the extract’s chemical composition (Table 1) and its enrichment
in specific bioactive components, which, as discussed in Section 3, depends on several
factors, namely the cultivar place and harvest time [19,24,40]. In vitro and in vivo studies
demonstrated that polyphenols are the main responsible for the anti-proliferative and pro-
apoptotic effects among the sweet cherries’ bioactive compounds [18,19,24,40,45,77-81].
Sweet cherry extracts rich in polyphenols inhibited the viability of human prostate non-
neoplastic PNT1A cells, and human lung A549, cervix HeLa, brain SK-B-NE (2)-C, SH-5Y5Y
and prostate cancer LNCaP cells in a concentration-dependent manner [19,45]. Moreover, it
was shown that HeLa cells were the most sensitive to the effect of sweet cherry extract [19].
The inhibitory effect on cell viability was also reported in human castrate-resistant prostate
cancer PC3 and gastric carcinoma MKN45 cells, though independently on the concentration
of sweet cherry extract used [40,45].

The presence of sweet cherry extract showed to reduce the proliferative rate of several
types of human cancer cell lines (Table 2). In human colon carcinoma cell lines (HCT-15,
HT29 and SW480 cells) extract concentrations between ~0.074 and 13.8 mg/mL reduced
cell proliferation by 50% [18,24,40,77,78]. The antiproliferative effect observed in HT29
cells was time and concentration-dependent [77,78] and associated with cell cycle arrest in
G1/GO0 phase [77]. Furthermore, in vitro digestion of the sweet cherry extracts enriched
in phenolic compounds halved the extract concentration needed to decrease SW480 cells
proliferation by 50% [24], suggesting that other bioactive compounds beyond anthocyanins
may be responsible for the observed effect.

Interestingly, an important anti-proliferative effect of sweet cherry extracts was ob-
served in breast cancer cells, with no toxicity to the non-neoplastic MCF-10A breast cells [79].
Sweet cherry juice whole extract inhibited the growth of human breast MDA-MB-231 and
BT-474 cancer cell lines with the same potency, presenting higher capacity inhibiting the
growth of the triple-negative MDA-MB-453 cells [79]. Moreover, a sweet cherry juice
extract enriched in anthocyanins or proanthocyanins preferentially inhibited MDA-MB-453
cell proliferation [79]. These are very interesting findings considering the aggressiveness of
triple-negative breast cancer and the lack of approaches to efficiently manage this human
neoplasia. Also, they were accompanied by the disclosure of the putative underlying
mechanisms (Figure 2). They include the PI3K/AKT survival pathway that is overactivated
in cancer cases and associated with cell growth, proliferation and survival in several types
of cancer [82]. Experiments using three different types of extracts, whole sweet cherry
extract or extracts enriched in anthocyanins or proanthocyanins, showed that all decreased
AKT mRNA levels [79]. However, only anthocyanins-enriched extract decreased the levels
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of the active phosphorylated AKT (p-AKT, Figure 2) [80]. The downstream targets of
PI3K/AKT signaling were also modulated by the sweet cherry extract. Although the
mRNA levels of the mechanistic target of rapamycin (mTOR) were decreased, its protein
expression was increased in response to whole sweet cherry extract and anthocyanins- or
proanthocyanins-enriched extracts [79]. Moreover, the levels of phosphorylated mTOR
(p-mTOR) decreased (Figure 2), inducing a decrease in the p-mTOR/mTOR protein ratio
(Figure 2) and the inhibition of this signaling pathway [79]. Because of its overactivation
in cancer, the PI3K/AKT pathway has been considered a valuable therapeutic target [82].
Therefore, the inhibition of this signaling pathway by the sweet cherry extract reinforces
the importance of continuing to study this fruit as an anticarcinogenic and its potential use
in cancer treatment.
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Figure 2. Sweet cherries effects in modulating the intracellular signaling that governs cancer cell proliferation and apoptosis.
Regardless of anthocyanins or proanthocyanins enrichment, sweet cherry extracts reduced cell proliferation and induced
apoptosis with altered expression and/or activity of several molecular targets. However, extracts enriched in anthocyanins or
proanthocyanins can influence specific molecular targets (see text for details). Overall, mechanistically, the phosphoinositide
3-kinase (PI3K) pathway was inhibited with the mechanistic target of rapamycin (mTOR) and AKT as targets. Cytokine
receptors signaling could also be influenced by sweet cherry extract, namely by the modulation of signal transducer and
activator of transcription (STAT) 3 and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB or RelA /p50).
In the mitogen-activated protein kinase (MAPK) pathway, altered activity of p38-MAPK, extracellular signal-regulated
kinase (ERK) 1/2, and c-Jun N-terminal kinase (JNK) was reported. Concerning apoptosis, the sweet cherry extract enriched
in anthocyanins influenced both the extrinsic (caspase-8) and intrinsic (B-cell lymphoma 2-associated X protein (Bax),
apoptosis-inducing factor (AIF), cytochrome c release, caspase-9) pathways, culminating in the activation of caspase-3.
Whole sweet cherry extract or extract enriched in proanthocyanins activated only the intrinsic pathway (Bax, AIF, caspase-9
and -3, and cytochrome c release). Green and red arrows mean up- and down-regulation of expression and/or activity,
respectively. Legend: FADD, Fas-associated protein with death domain; FasL, Fas ligand; FasR, Fas receptor; IkBx, nuclear
factor of kappa light polypeptide gene enhancer in B-cells inhibitor, «; IKK, IkB kinase; JAK, Janus Kinase; RAP, Ras
proximate; RTK, Receptor tyrosine kinase; TFs, Transcription factors.

The activity of sweet cherry extract was also shown to influence the p38-mitogen-
activated protein kinase (p38-MAPK) signaling pathway (Figure 2). In MDA-MD-453
cells, sweet cherry extract increased the p-p-38-MAPK/p38-MAPK protein ratio and en-
hanced the expression levels of the extracellular signal-regulated kinase (ERK) 1/2, and
c-Jun N-terminal kinase (JNK) phosphorylated forms [80]. However, the p-ERK1/2/full
ERK1/2 ratio was not altered. Nevertheless, treatment with U0126, an inhibitor of the
ERK1/2 signaling pathway, abrogated the downregulation of p-AKT induced by the sweet
cherry extract enriched in anthocyanins [80]. This finding is quite interesting because it
demonstrates that the effect of sweet cherry extract negatively regulating the PI3K/AKT
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pathway can be modulated by the ERK1/2 pathway. The cross-talk between PI3K/AKT
and MAPK pathways, namely the relationship of ERK1/2 activity with p-AKT levels, also
was found in vascular endothelial cells treated with euscaphic and tormentic acid [83].
Indeed, the interconnection of these pathways has been described in different physiological
conditions [84,85]. Further research is needed to clarify how it can be a target of natural
bioactive compounds in cancer cells.

Studies concerning the effect of sweet cherry extracts in apoptosis are scarce, being
limited to human breast and prostate cells [45,79,80]. Sweet cherry extracts induced
apoptosis in the breast cancer MDA-MB-453 cell model by controlling the expression and
activity of cell survival regulators and signaling pathways [79,80]. Similarly to what was
described for cell proliferation, the effect of sweet cherry extracts on apoptosis targeted
the PI3K/AKT and MAPK/p38-MAPK/JNK pathways, with the activation of the intrinsic
and extrinsic pathways of apoptosis (Figure 2). However, differences were found related to
the extract’s composition. Sweet cherry extracts enriched in anthocyanins increased the
protein levels of cleaved caspase-8, apoptosis-inducing factor (AIF), cytochrome c, cleaved
caspase-9 and -3, and Bax/Bcl2 protein ratio (Figure 2), which suggests that apoptosis
occurs by the activation of both the intrinsic and extrinsic pathways [80]. The same study
reported that sweet cherry extracts enriched in proanthocyanins or whole extract enhanced
the levels of AIF, cytochrome c, cleaved caspase-9 and -3, and Bax/Bcl2 protein ratio
(Figure 2), with no effect observed on caspase-8, indicating that only the intrinsic pathway
was activated [80]. Independently of the specific composition of the extract under study,
increased levels of cleaved poly (ADP-ribose) polymerase (PARP)-1 and enhanced cleaved-
PARP-1/PARP-1 protein ratio were detected [79,80]. PARP cleavage by activated caspase-3
is a late event in the apoptotic cascade that confirms the activation of cell death by sweet
cherry extracts [86]. Moreover, treating MDA-MB-453 cells with U0126 and SB203580,
ERK1/2 and p-38 MAPK inhibitors, respectively, abrogated the effect of sweet cherry
extracts modulating Bax and PARP-1 expression levels and reverting the activation of the
intrinsic pathway [80]. Gathering all data, it is liable to assume that sweet cherry extracts
enriched in anthocyanins display higher pro-apoptotic potential than the sweet cherry
extracts enriched in proanthocyanins or whole extracts.

In the case of prostate cells, results from our research group demonstrated that sweet
cherry extract induced apoptosis of the androgen-sensitive LNCaP cells, while having no
effect on the non-neoplastic PNT1A epithelial cells [45]. However, the sweet cherry extract
suppressed apoptosis in castrate-resistant PC3 cells (Table 2), which could be explained
by the fact that these cells do not express p53, a crucial player mediating the apoptotic
response [45]. In LNCaP cells, the higher apoptotic rate in the presence of extract was
underpinned by the increased activity of caspase-3, enhanced expression of caspase-9 and
augmented Bax/Bcl-2 protein ratio [45]. Therefore, on the dependency of the activation of
the intrinsic pathway.

The anti-tumor activity of whole sweet cherry extract and anthocyanins- or
proanthocyanins-enriched extracts was evaluated in vivo in an MDA-MB-453 cell line
xenograft [81]. Oral gavage administration of all sweet cherry extracts reduced tumor
growth, not affecting other mouse organs [81]. Proteomic analysis of the developing tumors
showed that the sweet cherry extract enriched in anthocyanins modulated the expression
of a panoply of proteins associated with the regulation of cell survival and growth, namely
Ras-related proteins, ubiquitin-conjugating enzyme E2 and proliferating cell nuclear anti-
gen [81]. Moreover, the anthocyanins-enriched extract decreased the protein levels of
cell survival regulators AKT, p38-MAPK, JNK and NF-«B (Figure 2). Downregulated
expression of the proliferation marker Ki-67 and the signal transducer and activator of
transcription (STAT) 3, and induction of p-ERK1/2 levels were found in tumors of mice
treated with all the extracts tested [81].

The discussed findings demonstrate the enormous effect of sweet cherry extracts in
controlling cell survival and growth, which was also shown to have an impact on tumor
development in a mouse model.
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4.4. Invasion and Metastization

Cancer invasion and metastization arise from the convergence of several processes
such as increased OS, inflammation, hyper-activation of pro-survival pathways and metabolic
alterations [75,76,87], which determine the alteration of cancer cell behavior promoting their
aggressiveness. Overall, these processes cause the alteration of epithelial cell morphology
and cell-cell and cell-extracellular matrix adhesion [75]. Indeed, epithelial-mesenchymal
transition (EMT) and the degradation of the extracellular matrix are the fundamental events
leading to invasion, migration and metastization into distant organs [75,76].

In vitro studies in MDA-MB-453 cells showed that sweet cherry juice extract en-
riched in anthocyanins decreased invasion capacity (Table 2, [80]), which follows other
findings showing that anthocyanins play an important role inhibiting tumor growth, in-
vasion and metastization [88]. In fact, peonidin-3-O-glucoside, cyanidin-3-O-glucoside
and cyanidin-3-O-rutinoside, the most abundant anthocyanins in sweet cherries, display
anti-invasive capacities, significantly reducing the invasion of A549 cells [89,90]. Peonidin-
3-O-glucoside and cyanidin-3-O-glucoside also inhibited the invasion capacity of human
hepatocarcinoma SKHep-1 and Huh-7, cervical carcinoma HeLa and tongue squamous cell
carcinoma SCC-4 cells in a concentration-dependent manner [91]. Nevertheless, the anti-
invasive effects of sweet cherry extracts in decreasing cancer cell motility are maintained if
proanthocyanins-enriched or whole extracts are used (Table 2), which indicates that other
bioactive compounds in the extract contribute to that effect [80].

The mechanisms underlying the anti-invasive effect of sweet cherries are slowing
being disclosed [79,80]. In the MDA-MB-453 cell model, sweet cherry extracts enriched in
anthocyanins modulated the activity of PI3K/AKT/mTOR and ERK1/2/p38-MAPK/JNK
signaling pathways, and also regulated phospholipase-C gamma-1 (PLCy-1) signaling by
decreasing PLCy-1 phosphorylation [80]. This is quite relevant as PLCy-1 has been shown
to play an important role in the regulation of invasion and metastization by controlling
multiple mechanisms involved in cytoskeletal alterations and cell migration [92]. The
anthocyanin-enriched extract also diminished the mRNA levels of the vascular cell adhe-
sion molecule 1 (VCAM-1) [79], an important cell adhesion molecule deeply associated
with the EMT [93].

As mentioned above, the degradation of the extracellular matrix is a determinant event
concerning cancer invasion and metastization, which highly depends on proteolysis events
mediated by the intervention of matrix metalloproteinases (MMPs) [94]. The capacity of
sweet cherries to counteract alterations in the extracellular matrix needs further investi-
gation because discrepant findings have been described. Sweet cherry extract enriched
in anthocyanins had no effect on the expression of uridylyl phosphate adenosine (uPA)
and MMP-3, -9 and -10 [80]. However, isolated peonidin-3-O-glucoside and cyanidin-3-O-
glucoside were capable of decreasing uPA secretion in SKHep-1, Huh-7, HeLa and SCC-4
cells, and the release of MMP-2 in SCC-4 and SKHep-1 [91].

Angiogenesis, the process of forming new blood vessels from pre-existing ones, accom-
panies tumor growth and invasion, with the continuous growth of the vascular network
being crucial for the metastatic spread of cancer [95-97]. The vascular endothelial growth
factor (VEGF) is the key mediator of the angiogenic process in the tumor microenvironment,
also playing a role in remodeling the extracellular matrix [98-100]. Sweet cherry extracts
enriched in anthocyanins or proanthocyanins, or the whole extract, decreased VGEF levels
and/or that of the specificity protein 1, a major regulator of VEGF expression [80,101].

Information concerning the anti-metastatic effect of sweet cherry extracts in vivo is
almost non-existent. However, a study with proteomic analysis in the MDA-MB-453 cells
xenograft mouse model showed that a beverage of sweet cherry extract enriched in an-
thocyanins could modulate the expression of proteins associated with EMT cell adhesion,
invasion and metastization [81]. Moreover, in rat-induced esophageal tumors [102], an-
thocyanins from black raspberries decreased the levels of VEGF and hypoxia inducible
factor-1, the main transcription factor governing the expression of genes and proteins
implicated in the angiogenic process [103].
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Cell migration, invasion and metastization are critical cancer hallmarks representing
a major barrier to treatment and hampering clinical outcomes [75,76]. It is noteworthy
that more than 90% of cancer-related deaths are a consequence of metastasis [104]. The
identification that sweet cherries or some of their specific bioactive compounds could have
a role in suppressing cell motility and cancer invasiveness is a very interesting achievement.
Future research in preclinical models will complete our understanding of how this fruit
can modulate cancer cell invasion and metastization.

4.5. Metabolic Reprogramming

The establishment of metabolic reprogramming as a hallmark of cancer in 2011 [75]
renewed the interest in studying cancer metabolism. Moreover, in the last decade, navi-
gating the discovery of the metabolic peculiarities of cancer cells and their vulnerabilities
widened the potential of cancer treatment targeting metabolic inhibition [105,106].

The metabolic plasticity of cancer cells and their reprogramming in response to lim-
itations imposed by the tumor microenvironment are essential in allowing the faster ac-
quisition of energy, and sustaining tumor growth, invasion and metastization [75,106,107].
Several metabolic pathways have been shown to be exacerbated in cancer cells, which
includes the glycolytic flux, known for almost a century since the pioneering studies of Otto
Warburg [108], and also lipid and glutamine metabolism [106,107,109]. Recent findings
from our research group showed that exposure to sweet cherry extract suppressed the
glycolytic activity of the androgen-sensitive prostate cancer cells LNCaP (Table 2, [45]). The
diminished glucose consumption and lactate production observed in LNCaP cells were
underpinned by the reduced expression of glucose transporter (GLUT) 3 and monocarboxy-
late transporter (MCT) 4, and decreased activity of lactate dehydrogenase (LDH) (Figure 3).
Moreover, these effects seem to be specific to this cell line that mimics a mild-aggressive
stage of prostate cancer, not being followed in the non-neoplastic PNT1A cells, or in the
more aggressive PC3 cell model [45].
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Figure 3. Sweet cherry actions in the regulation of glucose metabolism. Sweet cherry extract modulated glucose uptake in

both neoplastic and non-neoplastic cancer cells, which was linked with the decreased expression of glucose transporters

(GLUTs), GLUT1 and GLUTS3. After entering the cell, glucose undergoes glycolysis with the production of pyruvate that

can be converted to lactate by lactate dehydrogenase (LDH) or to acetyl-coenzyme A (Acetyl-CoA), which enters the

tricarboxylic acid (TCA) cycle. In prostate cancer cells, the presence of sweet cherry extract also reduced lactate production,

which was underpinned by the decreased activity of LDH and a reduced expression of the lactate exporter, monocarboxylate

transporter (MCT) 4. In addition, sweet cherry extract downregulated phosphofructokinase-1 (PFK-1) expression in non-

neoplastic cells, whereas increasing LDH activity. Green and red arrows mean up- and down-regulation of expression

and/or activity, respectively.
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The potential of sweet cherries and even other fruits and their bioactive compounds
in modulating the metabolic reprogramming of cancer cells is a very recent research issue.
Even so, other reports also have shown this influence (Table 2). Berry extract was shown to
decrease glucose uptake and the expression of (GLUT) 2 in Caco-2 cells, which was mainly
due to the effect of cyanidin-3-O-glucoside and cyanidin-3-O-rutinoside [110]. In line
with these data, anthocyanins from grape pomace extract reduced glucose consumption,
lactate production and the intracellular levels of lactate, pyruvate and glutamate in HepG2
cells [111].

In what concerns lipid metabolism, a study in a mouse model xenografted with breast
cancer cells showed that a sweet cherry extract enriched in anthocyanins inhibited the
expression of acetyl-CoA acetyltransferase (ACAT1) and lipase E, hormone sensitive type
(Table 2, [81]). In HepG2 cells, cyanidin-3-O-glycoside decreased de novo lipid biosynthesis
and inhibited mitochondrial FOF1-ATPase [112]. Mechanistically, the reduced activity of
mitochondrial FOF1-ATPase was linked with cyanidin-3-O-glycoside activation of protein
kinase C ¢. Importantly, the inhibition of the activity of mitochondrial FOF1-ATPase
demonstrated that this anthocyanin affected the ADP/ATP ratio [112]. On the other hand,
anthocyanins from grape pomace extract increased oxygen consumption and mitochondrial
respiration, driving ATP synthesis [111]. Grape pomace extract is a complex mixture of
different anthocyanins, which may explain the reported differences in ATP homeostasis.

It remains to be clarified if sweet cherry and other fruit extracts could have an action
over energy metabolism in vivo, and if this is related to the suppression of tumor growth
and metastization. Experiments in genetic cancer models or xenografts will be pivotal to
shed light on this issue.
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Table 2. Summary of the biological effects of sweet cherry extract and bioactive compounds targeting cancer hallmarks.
Extract Concentra-
. . tion/Phenolic .
Hallmark of Type of Study/Biological Experiment Con- Time of Effect Reference
Cancer model Treatment
tent/Dose/Mass of
Sweet Cherry
Incubation with sweet cherry extract . . 90 min J Intracellular ROS
High phenolic
Pre-incubation with sweet cherry extract before H,O, content 24h
administration
Hep2G cells Incubation with sweet cherry extract . 90 min J Intracellular ROS in a concentration [38]
Low phenolic dependent-manner
Pre-incubation with sweet cherry extract before H,O, content 24h
administration
J Intracellular ROS
50 GAE */mL 1h J Carbonyl proteins [42]
Restored GSH/GSSG ratio
Pre-incubation with sweet cherry extract before H,O, 10 me dr
administration Weigh% /m}L 4h | Intracellular ROS [40]
+NO
25% (v/0) 24h L [52]
i dati Inhibited LDH leak
O)éltdatlve In vitro . nhibite eakage
ress aco-2 cells " i i _
Pre-incubation with Swe'et'cherl.'y extract before t-BHP 10.mg dry 4h | Intracellular ROS [40]
administration weight/mL
J Intracellular ROS
50 GAE/mL 1h J Carbonyl proteins [42]
Co-incubation with sweet cherry extract and H,O» Restored GSH/GSSG ratio
10 mg dry
weight/mL
4h J Intracellular ROS [40]
. . . 10 mg dry
Co-incubation with sweet cherry extract and t-BHP .
weight/mL
} Intracellular ROS
SH-SY5Y Pre-incubation with sweet cherry extract before H,O, 1 GSH 10
cells administration 50 ng/mL 24h T GR (4]
1 NQO1
SK-N-MC Pre-incubation with swe.et. Cher.ry extract before H,O, 1GAE/mL 2h | Intracellular ROS [42]
cells administration




Molecules 2021, 26, 2941

17 of 30

Table 2. Cont.

Extract Concentra-

. . tion/Phenolic .
HalCl::‘acil: of Type of Srt:legé?lologlcal Experiment Con- T:;::rengflt Effect Reference
tent/Dose/Mass of
Sweet Cherry
Pre-incubation with sweet cherry extract before exposure to 1.81 mg GAE/mL 3h
MSU 2.32 mg GAE/mL -
THP-1 cells Pre-incubation with MSU before treatment with sweet cherry 1.81 mg GAE/mL Unknown | Intracellular ROS
extract 2.32 mg GAE/mL
LNCaP cells Incubation with sweet cherry extract 20 pg/mL 72 h Inhiiitlg(;rﬁ;eiglgzlljoziodi tion [45]
1 GPx
Inhibited lipid peroxidation
50g/kg | Catalase
J SOD
In vivo Wistar rats High fructose-diet with freeze-dried sweet cherry 12 weeks T GPx [57]
T GR
100 g/kg | Catalase
. SOD
10 healthy . . . . . 1 Plasma lipophilic antioxidant capacity
men Daily consumption of sweet cherries after overnight fasting 280 g 6 days 1 Plasma hydrophilic antioxidant capacity [58]
Human 12 volunteers Consumption of sweet cherr}es twice a day after lunch and 200 g 3 days 1 Urinary antioxidant capacity [59]
subjects diner
10 health 1 Lipophilic oxygen radical absorbance
womeny Daily consumption of sweet cherries after overnight fasting 280 g 6 days capacity [60]
|} Ferric reducing ability of plasma
Pre-incubation with sweet cherry extract before exposure to 1.81 mg GAE/mL ih Hibited fhe oh LIL-1B . 4
MSU Inhibited the phagocytosis of monosodium
. 2.32mg GAE/mL urate crystals
In vitro THP-1cells - - ; - [56]
Pre-incubation with MSU crystals before treatment with sweet 1.81 mg GAE/mL N icabl JIL-1B
Inflammation cherry extract ot applicable Inhibited phagocytosis of monosodium
232 mg GAE/mL urate crystals
50 g/kg } CRP
In vivo Wistar rats High fructose-diet with freeze-dried sweet cherry 100 2/k 12 weeks | CRP [571]
8/ Kg

11IL-10
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Table 2. Cont.

Hallmark of
Cancer

Extract Concentra-

Type of Study/Biological E . tion/Phenolic
model xperiment Con-
tent/Dose/Mass of
Sweet Cherry

Time of
Treatment

Effect

Reference

Daily consumption of sweet cherry-based beverage 75,400 ug/mL

10 days

J IL-1B in young rats during the dawn,
afternoon (18 h) and the acrophase of the
melatonin rhythm
J IL-1B in old rats during the dawn and
the acrophase of the melatonin rhythm
{TNEF-o in old rats during the dawn
1 IL-2 in young rats during the dawn and
afternoon (18 h)

1 IL-2 in old rats during the dawn
1 IL-4 in young rats during the dawn
during the dawn, afternoon (18 h) and the
acrophase of the melatonin rhythm
1 IL-4 in old rats during the dawn during
the dawn, afternoon (18 h) and the
acrophase of the melatonin rhythm

ngicézve Daily consumption of sweet cherry-based beverage 75,400 pug/mL

10 days

J IL-1B in young birds during the dawn
and the afternoon (18 h)

1 IL-1B in old birds during the afternoon
(18 h) and the acrophase of the melatonin
rhythm
JTNEF-« in young birds during the dawn
1 TNF-« in old birds during the afternoon
(18 h) and the acrophase of the melatonin
rhythm
1 IL-2 in young birds during the acrophase
of the melatonin rhythm
1 IL-2 in old birds during the dawn during
the dawn and the acrophase of the
melatonin rhythm
1 IL-4 in young birds during the dawn
during the dawn, afternoon (18 h) and the
acrophase of the melatonin rhythm
1 IL-4 in old birds during the dawn during
the dawn, afternoon (18 h) and the
acrophase of the melatonin rhythm

[70]
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Table 2. Cont.
Extract Concentra-
. . tion/Phenolic .
Hallmark of Type of Study/Biological Experiment Con- Time of Effect Reference
Cancer model Treatment
tent/Dose/Mass of
Sweet Cherry
Obese-
diabetic Diet supplemented with anthocyanin-depleted cherry powder 100 g 12 weeks LIL-6 [71]
mice
Diet supplemented with cyanidin-3-glucoside 20 mg of +IL-6
Diet-induced Lo PP cyant ghuca 4 8. J Inducible NO synthase
. cyanidin-3-rutinoside and pelargonidin-3-glucoside extracted anthocyanins/kg 16 weeks [74]
obese mice . . JTNF-
from sweet cherries body weight
| NF-xB
2 healthy
men and 18 . . . J CRP
healthy Daily consumption of sweet cherries 280 g 28 days 1 NO [60]
women
J CRP
| EGF
J Endothelin 1
Human 2 men and 16 + EN-RAGE
subjects N Daily consumption of sweet cherries 280 g 28 days J Ferritin [62]
women
LIL18
L PAI-1
1 IL-1 receptor antagonist
J Ferritin
1 CRP (after 3 h of sweet cherry
10 healthy . . . . consumption)
women Daily consumption of sweet cherries after overnight fast 280 g 6 days 1 NO (after 3 h of sweet cherry [72]

consumption)
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Table 2. Cont.

Extract Concentra-

. . tion/Phenolic .
Hallmark of Type of Study/Biological Experiment Con- Time of Effect Reference
Cancer model Treatment
tent/Dose/Mass of
Sweet Cherry
A549 cells Incubation with sweet cherry extract organic fraction
HelLa cells Incubation with sweet cherry extract organic fraction
Incubation with sweet cherry crude extract
15.62-250 pug/mL 24-72 h 1 Cell viability [19]
SK-B-NE Incubation with sweet cherry crude extract
(2)-C cells cu yerd
SHC_eSIEfY Incubation with sweet cherry crude extract
Incubation with undigested cherry extract 121'9(? C%I(I;)OUL J Proliferative activity
SW480 cells 24h |} Proliferative activity (more pronounced [24]
Incubation with digested cherry extract 61.22 umol/L effect compared to undigested cherry
extract)
HCT-15 cells Incubation with digested cherry extract 73.51 ug/mL (IC50) 48 h | Proliferative activity [18]
0.5 mg/mL 2496 h 1 Proliferative activity (78]
Cell dgath . 0-20 mg dried
and In vitro HT29 cells Incubation with sweet cherry extract weight of cherry 96 h [40]
Proliferation /mL
0.5 mg/mL 24-96 h G1/GO cell cycle arrest [77]
0-20 mg dried
MKN45 cells Incubation with sweet cherry extract weight of cherry 96 h 1 Cell viability [40]
/mL
BT-474 cells Incubation with sweet cherry whole extract 80-320 ug GAE/mL 48h | Cell growth (79]
Incubation with sweet cherry extract enriched in anthocyanins ~ 40-320 ug GAE/mL
Incubation with sweet cherry whole extract 80-320 ug GAE/mL
MDA-MB- : . - - .
231 Incubation with sweet cherry extract enriched in anthocyanins ~ 40-320 ug GAE/mL 48h 1 Cell growth
11 i i i i
cells Incubation with sweet cherry extract enriched in 40-320 pg GAE/mL
proanthocyanins
80-320 ug GAE/mL 48h | Cell growth [79]
1 AKT mRNA levels
MDA-MB-
453 Incubation with sweet cherry whole extract JmTOR mRNA levels
cells 83 ug GAE/mL 8h 1 p-38-MAPK mRNA levels
J Survivin mRNA levels

J Sirtuin 1 mRNA levels
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Table 2. Cont.

Hallmark of
Cancer

Type of Study/Biological
model

Extract Concentra-
tion/Phenolic
Experiment Con-
tent/Dose/Mass of
Sweet Cherry

Time of

Treatment Effect

Reference

83 ug GAE/mL

+ AKT
1 Phospho-p-38-MAPK/p38-MAPK
protein ratio
1 Phosphorylated ERK 1/2
1 Phosphorylated JNK
+ mTOR
| Phosphorylated mTOR
J Phosphorylated mTOR/ mTOR protein
ratio
1 Bax
1 Bcl-2
+ AIF
1 Cytochrome c
1 Cleaved caspase-9
1 Cleaved caspase-3
| Full PARP
1 Cleaved PARP
| Cleaved PARP/PARP protein ratio

24h

[79,80]

40-320 ug GAE/mL

48h 1 Cell growth

70 ug GAE/mL

} AKT mRNA levels
JmTOR mRNA levels
8h 1 p-38-MAPK mRNA levels
J Survivin mRNA levels
J Sirtuin 1 mRNA levels

Incubation with sweet cherry extract enriched in anthocyanins

70 ug GAE/mL

1+ mTOR
J Phosphorylated mTOR
J Phosphorylated mTOR/ mTOR protein
ratio
| Full PARP-1
1 Cleaved PARP-1
J Cleaved PARP-1/PARP-1 protein ratio

24h

[79]
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Table 2. Cont.

Hallmark of
Cancer

Type of Study/Biological
model

Extract Concentra-
tion/Phenolic
Experiment Con-
tent/Dose/Mass of
Sweet Cherry

Time of

Treatment Effect Reference

19 ug C3G */mL

+ AKT
| Phosphorylated AKT
1 Phospho-p-38-MAPK/p38-MAPK
protein ratio
1 Phosphorylated ERK 1/2
1 Phosphorylated JNK
1 Cleaved caspase-8
1 Bax [80]
1 Bal-2
+ AIF
1 Cytochrome ¢
T Cleaved caspase-9
T Cleaved caspase-3
| Full PARP-1
1 Cleaved PARP-1

40-320 ug GAE/mL

48 h 1 Cell growth

45 ug GAE/mL

Incubation with sweet cherry extract enriched in

} AKT mRNA levels
JmTOR mRNA levels
8h 1 p-38-MAPK mRNA levels
} Survivin mRNA levels
J Sirtuin 1 mRNA levels

proanthocyanins

45 ug GAE/mL

+ mTOR 7]

J Phosphorylated mTOR
J Phosphorylated mTOR/ mTOR protein
ratio
J Full PARP
1 Cleaved PARP
} Cleaved PARP/PARP protein ratio

24h
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Table 2. Cont.

Hallmark of Type of Study/Biological
Cancer model

Experiment

Extract Concentra-
tion/Phenolic
Con-
tent/Dose/Mass of
Sweet Cherry

Time of
Treatment

Effect

Reference

22.5 ug PCN */mL

+ AKT
+ Phospho-p-38-MAPK/p38-MAPK
protein ratio
1 Phosphorylated ERK 1/2
1 Phosphorylated JNK
1 Bax
1 Bcl-2
+ AIF
1 Cytochrome ¢
1 Cleaved caspase-9
1 Cleaved caspase-3
| Full PARP-1
1 Cleaved PARP-1

[80]

PNT1A cells

LNCaP cells

PC3 cells

Incubation with sweet cherry extract

0-200 ug/mL

0-200 ug/mL

20 pg/mL

0-200 ug/mL

20 pg/mL

72h

1} Cell viability

1 Cell viability

1 Caspase-3 activity
J Bcl-2
1 Bax/Bcl-2 protein ratio
1 Caspase-9

1 Cell viability

| Caspase-3 activity

[45]

MDA-MB-
453 cells
xenograft
mice model

In vivo

Oral administration of sweet cherry whole extract

Oral administration of sweet cherry extract enriched in

anthocyanins

150 mg/kg body
weight/day

36 days

| Tumor growth
1 Phosphorylated ERK 1/2
| STAT3
1 Ki-67

| Tumor growth
1 Phosphorylated ERK 1/2

| AKT

| STAT3

1 p38-MAPK

$JNK

1 NF-«B

1 Ki-67

[81]
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Table 2. Cont.
Extract Concentra-
. . tion/Phenolic .
HalClmark of Type of Studg/?lologlcal Experiment Con- TTmtle oft Effect Reference
ancer mode tent/Dose/Mass of reatmen
Sweet Cherry
| Tumor growth
Oral administration of sweet cherry extract enriched in 1 Phosphorylated ERK 1/2
proanthocyanins J STAT3
1 Ki-67
1 Spl mRNA levels
83 ug GAE/mL 8h 1 Sp4 mRNA levels [79]
Incubation with sweet cherry whole extract + VEAM-1 mRNA levels
83 ug GAE/mL 24 h } VEGF (801
83 ug GAE/mL 48 h 1 (?) Cell motility
1 Spl mRNA levels
70 ug GAE/mL 8h 1 Sp4 mRNA levels
| VCAM-1 mRNA levels [79]
i MDA-MB- Incubation with sweet cherry extract enriched in anthocyanins 70 ug GAE/mL +Spl
Invasion and In vitro 453 - -
metastization M 24 h | Migration
cells 19 ug C3G/mL 1 PLCy-1
} VEGF [80]
19 ug C3G/mL 48 h 1 (?) Cell motility
1 Spl mRNA levels
45 ug GAE/mL 8h J Sp4 mRNA levels [79]
| VCAM-1 mRNA levels
Incubation with sweet cherry extract enriched in
proanthocyanins 45 ug GAE/mL oih 1 Spl
22.5 ug PCN/mL } VEGF [50]
22.5 ug PCN/mL 48 h 1 (?) Cell motility
1 Lactate production
J GLUT1
Metabolic In vitro PNTI1A cells Incubation with sweet cherry extract 20 pg/mL 72 h ﬁGPLF[IZS [45]
reprogram- L.
ming 1 LDH activity

I MCT4
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Table 2. Cont.
Extract Concentra-
. . tion/Phenolic .
Hallmark of Type of Study/Biological Experiment Con- Time of Effect Reference
Cancer model Treatment
tent/Dose/Mass of
Sweet Cherry
J Glucose consumption
J Lactate production
L GLUT3
LNCaP cells 4 PFK-1
| LDH activity
L MCT4
1 Glucose consumption

| PFK-1

PC3 cells 1 Lactate production
J LDH activity
MDA-MB-
. 453 cells Oral administration of sweet cherry extract enriched in 150 mg/kg body Abolished the expression of ACAT1
In vivo . . 36 days . .. [81]

xenograft anthocyanins weight/day | lipase E, hormone sensitive type

mice model

* GAE, gallic acid equivalent; C3G, cyanidin 3-glucoside; PCN, proanthocyanins; T—stimulatory effect or increased expression, or activity, of specific molecular targets; |—suppressor effect or diminished
expression, or activity, of specific molecular targets; (?) contradictory information or effect to be confirmed.
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5. Conclusions

Sweet cherries are one of the most appreciated fruits worldwide because of their
pleasant taste and aroma. In addition to their recognized organoleptic properties, sweet
cherries also represent a valuable source of nutrients extremely important for several
biological functions.

Regardless of the external influencing factors that can determine their specific chemical
composition, sweet cherry extracts are very rich in phenolic compounds, with anthocyanins
as the main bioactive compounds. The influence of bioactive phytonutrients on biological
function highly depends on their bioaccessibility and bioavailability. However, sweet
cherry bioactive compounds appear in human blood circulation, intact or as metabolized
conjugates. Moreover, consumption of sweet cherries proved, for example, to decrease
oxidant circulating species and serum levels of inflammatory markers (Table 2). However,
it is well established that digestion decreases the total phenolic compounds, and more
realistic models of the digestive process are needed to fully access the bioaccessibility and
bioavailability of the sweet cherries’ bioactive compounds and their specific functions.

Over the last few years, the cytoprotective effects of sweet cherries have been extended
from the well-known antioxidant and anti-inflammatory actions to the regulation of cell
death and proliferation, invasion and migration and the metabolic reprogramming of
cancer cells. From the present knowledge, it is quite exciting to conclude the broad action
of sweet cherries over several hallmarks of cancer. This has also opened the possibility
of strategically using this fruit as a dietary supplement or as a coadjuvant therapy in
cancer treatment. However, the existing findings mostly rely on in vitro studies, with
animal models and clinical trials being crucial to fully ascertain the anti-cancer effects of
sweet cherries.
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