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Abstract: Azobenzenes are photochromic molecules that possess a large range of applications. Their
syntheses are usually simple and fast, and their purifications can be easy to perform. Oligosaccharide
is also a wide family of biopolymer constituted of linear chain of saccharides. It can be extracted from
biomass, as for cellulose, being the principal constituent of plant cell wall, or it can be enzymatically
produced as for cyclodextrins, having properties not far from cellulose. Combining these two materi-
als families can afford interesting applications such as controlled drug-release systems, photochromic
liquid crystals, photoresponsive films or even fluorescent indicators. This review will compile the
different syntheses of azo-dyes-grafted oligosaccharides, and will show their various applications.

Keywords: azobenzene; oligosaccharides; cellulose; cyclodextrin; host/guest; grafted photochromes

1. Introduction
1.1. Azo Molecules

Photochromic family is composed of several switches, which are able to change their
conformation upon light illumination. Some molecules can be cited as spiropyrans [1],
chromenes [2,3] indogoid [4] and azobenzenes [5], also known as diazo molecules.

Diazo molecules are photochromes which are capable of an isomerization under
a UV-light illumination, leading to their stable trans-form to their metastable cis-form
(Figure 1) [6].
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Figure 1. Isomerization capabilities of a nude azobenzene and simplified state model for a nude
azobenzene. ε = extinction coefficients, Φ = quantum yields for the photoisomerization, k = rate of
thermal relaxation.
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A simplified state model for azobenzene isomerization can be described, leading
to the energy that the system needs or release during the transformations (Figure 1) [7].
And for cis- to trans-thermal release, the azobenzene substituents as well as the electronic
distribution allow the thermodynamically stable trans-form of the azo-dye to be restored
very quickly [8].

Two ways of isomerization can be discussed, leading from trans- to cis-isomer: N=N
torsion (rotamers) vs. N-inversion (invertomers) [9–15]. However, according the review of
Bandara and Burdette [16], if trans-azobenzene isomerization always occurs in the S1 state
(Figure 2) by an inversion process, regardless of the initial excitement, some theoretical
studies predict isomerization of trans-azobenzene to be multi-dimensional or dominated
by rotation.
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Figure 2. Proposed mechanisms for the trans-cis isomerization; A simplified Jablonski diagram
showing the S0, S1 and S2. states of trans-azobenzene. Reuse (reprint) with permission of Bandara,
H.M.D.; Burdette, S.C. Photoisomerization in Different Classes of Azobenzene. Chem. Soc. Rev. 2012,
41, 1809–1825, doi:10.1039/C1CS15179G. Copyright (2012) Royal Society of Chemistry.

Amongst the possibilities offered for their syntheses, several pathways can be found
in the literature (Figure 3) [17].
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• Diazo coupling which implies the formation of a diazonium salt attacked by an
electron-enriched aromaric.

• Mills reaction or oxidative/reductive coupling for in situ the formation of the diazo
bond between two anilines/nitrobenzenes.
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For the diazo coupling, several phenolic compounds can provide good electron-
enriched substrates. We can cite for example the nude phenol [18–24], but also natural
compound such as salicylaldehyde [25–27], vanillin [28,29], or even resorcinol [30,31].

Oxidative/Reductive couplings lead to symmetrical azobenzenes. For symmetrical
reductive couplings, from nitrobenzene derivatives, reductive metals can be used such as
Zinc [32] or Magnesium [33]. Catalytic hydrogenation can also successfully be used [34,35],
as well as complex hydrides [36]. For symmetrical oxidative couplings, KMnO4/CuSO4,
MnO2 or mCPBA can be used [37–40]. However, the simplest way for the symmetrical
oxidative coupling is to use the air oxygen [41–44]. Mills reaction allows also oxidative
coupling from anilines, but leading to unsymmetrical azobenzenes [45–50].

Many applications can be found for molecules bearing an azo moiety. If dyes as
application are the most popular [51–54], many examples can be found for antimicrobial
effect, where trans-cis isomerization impact on bacteria were discussed [55–57], for retina
recovery [58,59], or even in the electric domain, by combining azobenzenes with triph-
enylamine moieties, where ROMP (Ring-Opening Metathesis Polymerization) thus used
led to electrical storage capability polymers [60] or when azobenzenes are co-sensitizers
for solar cells [61]. In the domain of synthetic enhancement, azobenzene can also be used
as chemoreactor for catalysis in water [62,63] or enhancement of cellulolytic enzyme for
example [64].

Even if this molecule can be toxic depending on what group is present on the aromatic
rings [65] the use of such a photochrome is of great interest.

1.2. Oligosaccharides

All saccharide molecules are characterized by different factors, such as their anomeric
configuration (α, β), their series (D, L), their relative configuration (gluco-, galacto- etc.)
and their cycle form (furanose/pyranose). When the number (n) of glycosidic moieties
between monosaccharides varies between 2 and 10, by convention, the formed oligomer
is called oligosaccharide. However, this osidic number is not always fixed, and bigger
oligosaccharides can be found. Indeed, polysaccharides are molecules with a degree of
polymerization higher than 20–25 but this definition is not so strict, as with the presence of
25 residues, they can still be called oligosaccharides [66]. That is why small cellulose can
be classified as oligosaccharide.

When n = 2, the well-known saccharose or cellobiose are obtained for example
by starch degradation [67,68] and when n = 3, we can find isomaltotriose, raffinose or
melecitose (Figure 4), found in 1833 from the larch tree [69] and also present in honey for
example. If n = 4, formula can lead for example to the stachyose oligosaccharide (Figure 5).
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Figure 4. Melecitose structure.

Oligosaccharides can also be linear (Stachyose) or cyclic (Cyclodextrins), where n = 7
for the beta-version (presented in Figure 5), and with a lampshade-shape ring [70].
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Figure 5. Linear and cyclic models of oligosaccharides.

Amongst linear oligosaccharides, the most known contain a sequence of monomeric
sugars and their name are related to these sequences [71]. We can cite for example
fructooligosaccharides (FOS), galactooligosaccharides (GOS), xylooligosaccharides (XOS)
shown in Figure 6, but also arabinooligosaccharides (AOS), and algae derived marine
oligosaccharides (ADMO) from which Chitosan is of growing interest [72].
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Cyclodextrins are cyclic oligosaccharides composed of α-(1→4)-linked glucosyl units.
They possess a central hydrophobic cavity, whereas the outside of the lampshade is hy-
drophilic [73]. There are three major versions of cyclodextrins: alpha (where n = 6 glucose
units), beta (where n = 7) and gamma (where n = 8). For these three objects, the cyclodex-
trins possess cavities even as isolated molecules in the absence of guests. All cyclodextrins
have a height of 7.9 Å and an outer diameter of 14.5–17.5 Å. The diameter of the hydropho-
bic cavity is around 4.9 Å for α-, 6.2 Å for β-, and 7.9 Å for γ-cyclodextrin, where some
variations can apply (Figure 7) [74].
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Cyclodextrins possess also two faces: the primary face (shortest) and the secondary
face (largest).

With this special shape and physicochemical properties, cyclodextrins can host organic
compounds and solubilize them in aqueous solutions. This can lead to various applica-
tions, such as odor control [75] separation and analysis [76] catalysis [77,78] or even drug
delivery [79].

So the combination of azobenzene moieties and small or large oligosaccharides, linear
or cyclic can lead to great applications and this is what will be seen in the next parts of
this review.

2. Mono/Multivalent Sugar Photoswitch

Azobenzene can be attached to one or more oligosaccharides leading to a mono or
multivalent sugar photoswitch mainly dedicated to lectin-based adhesion control.

Indeed, the inhibition of bacterial adhesion on surface if of great interest. Often
bacterial adhesion depends on the interaction of adhesive organelles called fimbriae. For
example, in the case of Escherichia coli, this bacterium uses fimbriae (long, hairlike organelles
that project from the bacterium’s surface) to establish infection (Figure 8) [80]. They consist
of interlinking subunits of a single protein called pilin that forms a rigid, coiled helix-
shaped rod. Sticky proteins called adhesins cap the tip of the rod and bind to carbohydrate
receptors on their host.

By designing antagonists of the respective carbohydrate-bacterial lectin, this can lead
to an adhesion inhibition [81]. That is what was done by V. Chandrasekaran et al. in 2013
where the first azobenzene mannobioside as photoswitchable ligand for the bacterial lectin
FimH was synthesized [82]. First the azobenzene mannoside was synthesized followed by
a second glycosylation using a mannosyl donor (Figure 9). It is noticeable that both trans-
and cis-conformations of the tested molecule had an 50% inhibitory of surface adhesion on
mannan-coated surface similar to the power the best standard against E. coli (p-nitrophenyl
α-D-mannoside).
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Figure 9. Azobenzene mannobioside.

Other azobenzene-conjugated carbohydrates were synthesized, and led to hydrogela-
tor capacity with specific affinity for lectins. The derivatives were lactonolactone-glycine-
azobenzene, maltonolactone-glycine-azobenzene or cellobionolactone-glycine-azobenzene,
where lactonolactone-glycine-azobenzene was shown to provide a bioactive interface for
cell attachment [83].

When azobenzenes containing multivalent sugar ligands were synthesized (Figure 10),
these azobenzene-appended sugar derivatives showed high affinity binding with the
relevant lectins, especially with a high increase in binding affinity related to the monomeric
sugar ligand alone. More interestingly, isomerization of the cis-form led to a better binding
with the lectin than the trans-form [84].
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Early studies of tris-diazo-cellobiose called phlorocello have also already been done
for immunochemical tests (Figure 11). This study made in 1965 [85] had already in mind
that mono- and disaccharides are antigenic when conjugated to a protein carrier and that
antibodies produced show a specificity for the introduced sugar.

Molecules 2021, 26, x FOR PEER REVIEW 7 of 23 
 

 

N

N

N
N

UV

Vis

 

Figure 10. Schematic isomerization of multivalent sugar ligand azobenzene. The elliptic drawings represents the sugar 

moieties. 

Early studies of tris-diazo-cellobiose called phlorocello have also already been done 

for immunochemical tests (Figure 11). This study made in 1965 [85] had already in mind 

that mono- and disaccharides are antigenic when conjugated to a protein carrier and that 

antibodies produced show a specificity for the introduced sugar. 

OH

OH OH

N

N
N

N

N
N

 

Figure 11. Schematic representation of phlorocello. The elliptic drawings represents the cellobiosic moieties. 

3. Cellulose 

3.1. Azo-Dye-Grafted or Coupled Cellulose 

Azobenzene introduction onto cellulose molecular chains through etherification re-

action display reversible trans-cis-trans photoisomerization under successive UV/vis illu-

mination [86]. This interesting coupling involving a non-labile bond and synthesized eas-

ily from an epoxyazobenzene can lead to good solubility of the final polymer, as well as a 

good resistance against the phenomenon of fatigue. 

Esterification can also lead to azobenzene-functionalized cellulose. The synthesis im-

plies a conventional DCC/DMAP activation of the reactants (Figure 12) for the ester for-

mation from hydroxypropylcellulose (HPC) [87]. 

Figure 11. Schematic representation of phlorocello. The elliptic drawings represents the cel-
lobiosic moieties.

3. Cellulose
3.1. Azo-Dye-Grafted or Coupled Cellulose

Azobenzene introduction onto cellulose molecular chains through etherification re-
action display reversible trans-cis-trans photoisomerization under successive UV/vis il-
lumination [86]. This interesting coupling involving a non-labile bond and synthesized
easily from an epoxyazobenzene can lead to good solubility of the final polymer, as well as
a good resistance against the phenomenon of fatigue.

Esterification can also lead to azobenzene-functionalized cellulose. The synthesis
implies a conventional DCC/DMAP activation of the reactants (Figure 12) for the ester
formation from hydroxypropylcellulose (HPC) [87].
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the ester and amide groups were easily seen on infrared spectra (1731 and 1695 cm−1),
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the proton NMR led to the calculation of the degree of substitution DS(AZO) using
the formula:

DS(azo) = 13 ∑ A(HPC)÷ (7 + 6× DS(HPC))∑ A(AZO)

where ∑ A(AZO) is the sum of the integrated areas of the peaks from the azobenzene
moieties at 7.82, 7.68, 7.41 and 2.69 ppm;

∑ A(HPC) is the sum of integrated areas of the peaks of HPC at 3–5.5, 1.20 and
1.07 ppm;

DS(HPC) = 3.57 is the degree of substitution with the hydroxypropyl groups of HPC.
For smart fibrous materials, the functionalization of commercial microcrystalline

cellulose with azobenzene molecules can be done, leading to photo- and thermal-responsive
materials. Moreover, nanoporous and non-porous nano/micro fibrous materials can be
made by electrospinning of azobenzene-cellulose solutions, leading to fibrous materials,
with light-reversible functional groups [88].

3.2. For Drug Delivery and Health

Host-guest interactions play an important role in the cyclodextrin (CD) area. Indeed,
CD dimers can interact with hosts [77,89] and this interaction can have an important physic-
ochemical involvement. Kim et al. in 2020 synthesized azobenzene-grafted carboxymethyl
cellulose (CMC) hydrogels for a controlled drug release system [90]. This system was photo-
switchable, reduction-responsive and self-healing as it is seen in Figure 13. Moreover, as
the system was found to be non-cytotoxic, a naproxen (non-steroidal anti-inflammatory
drug) release of the hydrogels could be photo-controlled to be able to deliver up to 80% of
drug within 3 h by UV light or reducing agent.
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Azobenzene-Grafted Carboxymethyl Cellulose Hydrogels with Photo-Switchable, Reduction-Responsive and Self-Healing
Properties for a Controlled Drug Release System. International Journal of Biological Macromolecules 2020, 163, 824–832,
doi:10.1016/j.ijbiomac.2020.07.071. Copyright (2016) Elsevier.

3.3. With Liquid or Nano Crystal Properties

Azobenzenes can also be covalently linked to hydroxypropyl cellulose (HPC) [91].
Then, AZO-EHPC [92] or AZO-HPHPC (Figure 14) can give access to a degree of azoben-
zene substitution in the range of 0.6–1.8 by adjusting the mole ratio of azobenzene to HPC.
They also had the property of a very low Tg of approximately 20–40 ◦C being thermotropic
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liquid crystals and also fully reversible with a trans-cis-trans transition upon alternating irra-
diation of UV and visible light. However, the mixing of heat/cooling and UV illumination
were not tested, maybe because of the thermal instability of the metastable cis-azobenzene.
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Smart responsive nanomaterials have received much attention over the last decade
for their functional properties in response to environmental variables and especially
light [93,94]. In this context, exploring photochromic cellulose nanocrystals (CNCs) func-
tionalized thanks to poly {6-[4-(4-methoxyphenylazo) phenoxy]hexyl methacrylate} (PM-
MAZO) can lead to a changing of color in UV irradiation or pH, and thus to a great probe
related to these stimuli (Figure 15). It is also noticeable that for UV/Vis illumination, the
process was claimed to be fully reversible without fatigue [95].
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1725, doi:10.3390/ma11091725.

3.4. For UV Protection

Thanks to the ozone layer, from the broad irradiation emitted by the sun, only UVA
and UVB reach the earth’s surface. By functionalizing cellulose fabrics, one can induce UV
protection, which is becoming of great interest. Azobenzenic Schiff bases were synthesized
and coupled on cellulose with two concentrations of 2 g/L (called FC-1) and 5 g/L (called
FC-2). The results are of great interest, as the UV protective properties of fabrics can be
evaluated as good when the ultraviolet transmittance T(UVA) or T(UVB) is less than 5%
and ultraviolet protection factor (UPF) reaches 10 to 30 (Table 1) [96].
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Table 1. Azobenzenic Schiff bases coupled on cellulose and UV protective properties.
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Samples Concentrations (g/L) UPF T(UVA) T(UVB)

Control 0 8.31 10.09 11.81

FC-1 2 18.72 4.29 5.17

FC-2 5 31.7 3.09 3.73

The UV-protective properties of the functional cellulose fabrics were mainly attributed
to absorbing UV radiation of azobenzene Schiff base, which caused change of the molecular
structure based on its cis-trans isomerization and intermolecular proton transfer.

4. Cyclodextrins
4.1. Inclusion/Exclusion of Azobenzenes

Cyclodextrins are well-known for their capability to include in their cavity hydropho-
bic compounds and especially azobenzenes [97–101]. But they can also be chemoreactors
for diazo coupling. This is what M. Craig et al. did in 1999 where azo-rotaxane was
synthesized as a single isomer (Figure 16) [102].
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But more surprisingly, a trans-azobenzene can inhibit the catalytic hydrolysis of an
ester group by a cyclodextrin [103]. Indeed, a trans-azobenzene, can be included in the
cyclodextrin cavity. However, when illuminated at 320–390 nm, the isomerization to cis-
azobenzene force it to go out of the cavity, letting place for the ester group to enter the
cyclodextrin, and to de hydrolyzed (Figure 17).
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4.2. Azo Functionalised Cyclodextrins

Azo-modified cyclodextrins on their primary face have been investigated by two ap-
proaches. The first one was a nucleophilic substitution with a mono-tosylated cyclodextrin
by a hydroxyazobenzene. The second one was done by click chemistry (Figure 18) [104].

Molecules 2021, 26, x FOR PEER REVIEW 12 of 23 
 

 

R

N

N

O

O

N

N

O

O
NN

N
N N

N

N

N

R'O

OR'

R=OTs
R'=H

R=N
3

R'=

+

a

b

 

Figure 18. Ways of syntheses. a. Cs2CO3, DMF, 90 °C, 24 h ; b. (EtO)3P·CuI, DMF, 100 °C, 2 h. 

However, the face to be modified has a great importance. Indeed, Ma et al. in 2007 

proved that [1] rotaxane functionalized in position 2 were found to be different from the 

corresponding isomers on the 6 position (Figure 19). More detailed, they have a better 

aqueous solubility, induced circular dichroism and different absorptions [105]. 

N

N

O N

O

O

SO3Na

N

N

ON

O

O

NaO3S

[1]rotaxane in position 6

[1]rotaxane in position 2
 

Figure 19. Roraxanes from Ma et al. 

The ways of synthesis play also a great role as azo-modified cyclodextrins can self 

lock/unlock [106]. Indeed, hydrothermal coupling between azidocyclodextrin and propar-

Figure 18. Ways of syntheses. a. Cs2CO3, DMF, 90 ◦C, 24 h; b. (EtO)3P·CuI, DMF, 100 ◦C, 2 h.

However, the face to be modified has a great importance. Indeed, Ma et al. in 2007
proved that [1] rotaxane functionalized in position 2 were found to be different from the
corresponding isomers on the 6 position (Figure 19). More detailed, they have a better
aqueous solubility, induced circular dichroism and different absorptions [105].
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The ways of synthesis play also a great role as azo-modified cyclodextrins can self
lock/unlock [106]. Indeed, hydrothermal coupling between azidocyclodextrin and propar-
gylic azobenzene lead to self-locked molecule which can self-assemble in bimolecular
capsule while plunged in water, reversibly by adding DMSO. However, Huisgen 1,3-
dipolar cycloaddition leads to self-unlocked molecule, which can self-assemble in linear
supramolecule (Figure 20).
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Figure 20. Self locking/unlocking molecules upon their way of synthesis. Reuse (reprint) with permission of Liu, Y.; Yang,
Z.-X.; Chen, Y. Syntheses and Self-Assembly Behaviors of the Azobenzenyl Modified β-Cyclodextrins Isomers. J. Org. Chem.
2008, 73, 5298–5304, doi:10.1021/jo800488f. Copyright (2008) American Chemical Society.

Moreover, it was proven that an azobenzene bearing two cyclodextrins was still able
to isomerize properly, as shown in 1998 by Aoyagi et al. (Figure 21) [107].
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Figure 21. Absorption spectra of 1 before (-) and after (- - -) photoirradiation. Reuse (reprint) with permission of Aoy-
agi, T.; Ueno, A.; Fukushima, M.; Osa, T. Synthesis and Photoisomerization of an Azobenzene Derivative Bearing Two
β-Cyclodextrin Units at Both Ends. Macromolecular Rapid Communications 1998, 19, 103–105, doi:10.1002/(SICI)1521-
3927(19980201)19:2<103::AID-MARC103>3.0.CO;2-R. Copyright (1998) Wiley.

The value of pH can also strongly modify the absorption of azo-modified cyclodex-
trin [108]. That was demonstrated in 1997 by Aoyagi et al. [109].

Here can be seen (Figure 22) a strong shift of the maximal absorbance of the molecule.
For example, at a pH of 2.75, this maximum (corresponding to the π→π* of the hole trans
molecule) is around 370 nm, whereas at a pH of 11.05, this maximum had shift to 490 nm
with a hyperchromic effect. The shift is nearly the same for the absorbance at 270 nm
(corresponding to the π→π* of the aromatic rings) shifted to 300 nm.
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Figure 22. Absorption spectra at various pH values. (down) reuse (reprint) with permission of Aoyagi, T.; Nakamura, A.;
Ikeda, H.; Ikeda, T.; Mihara, H.; Ueno, A. Alizarin Yellow-Modified β-Cyclodextrin as a Guest-Responsive Absorption
Change Sensor. Anal. Chem. 1997, 69, 659–663, doi:10.1021/ac960727z. Copyright (1997) American Chemical Society.

In terms of applications, azo-modified cyclodextrins can act as sensor or binder for
organic molecules [110–112]. For example, azo-modified β-Cyclodextrin polymer can be
used as a sensor for chlorophenols in water. Indeed, chlorinated by-products (CBPs) are
formed in water as a result of the reaction of chlorine and its derivatives, used in the
disinfection of water, with natural organic matter (NOM). So the sensitive detection of
such pollutants is of great interest, especially in drinking water [113]. The sensor was
synthesized as seen on Figure 23, and the 2,4-dichlorophenol was used as pollutant model,
showing a good sensitivity factor compared to chlorophenol, and phenol.
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Figure 23. Sensor synthesis (up) and sensitivity factor against phenol, 4-chlorophenol and 2,4-dichlorophenol (down).
Reuse (down) permitted by the Creative Common CC BY license from Ncube, P.; Krause, R.W.; Mamba, B.B. Fluorescent
Sensing of Chlorophenols in Water Using an Azo Dye Modified β-Cyclodextrin Polymer. Sensors 2011, 11, 4598–4608,
doi:10.3390/s110504598.

Another fluorescent probe for the detection of cholic acid and its derivatives (litho-,
deoxy-, chenodeoxy-, ursodeoxy-, hyodeoxy-cholic acid) was obtained by linking bis
dansyl-modified β-cyclodextrin dimer with azobenzene, and showing a selective molecular
recognition for steroidal compounds. Indeed, in this study, the dansyl moiety moves out of
the cyclodextrin cavity upon guest binding and play a role as a hydrophobic cap, showing
a decrease of the fluorescence [114].

In the domain of amphiphiles, the trans-cis isomerization can lead to a great difference
of autoassembling, thanks to a host-guest (de)complexing. That was demonstrated by
Guo et al. in 2019, where a photoresponsive self-assembly system based on host-guest
inclusion was synthesized and tested upon illumination [115]. An azobenzene group
was linked to a β-cyclodextrin by an alkyl chain, generating a novel amphiphile which
showed reversible aggregate behavior due to photo-isomerization of azobenzene. In the
case of trans-form, intermolecular host-guest complexes between CD and azobenzene were
formed, and further self-assembled into curved linear structures in water. Dissociation of
cis-azobenzene group from CD cavity was achieved upon illuminated by UV light, leading
to the aggregate transformation into vesicles (Figure 24).

For trans-molecule, intermolecular host-guest recognition occurs, and curved linear
structures are observed, which are mainly driven by hydrogen bonding. Upon UV light,
cis-isomer disfavors host-guest complex formation, and acts like a conventional amphiphile
generating vesicles (Figure 25).
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(2019) Elsevier.
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5. Conclusions

To conclude, the azo-functionalization of natural and unnatural oligosaccharides leads
to a high diversity of properties of interest.

First, the azo moieties can be attached to linear, big, small or cyclic sugars. This
versatility is of great interest from a synthetic point of view (Table 2). Indeed, the links
between azo moieties and oligosaccharides are usually ethers or amides between an already
formed azobenzene. However, diazotation can be made in situ on aminophenyl cellobioside
for example.

Table 2. Links between azo moieties and oligosaccharides and reagents used to obtain these links.
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Link Main Reagents Reference

Alkyle
• cellulosenanocrystals-bromo-isobutyric ester, azohexyl methacrylate, CuBr, AsAc,

PMDETA [95]

Amide

• glycine-azobenzene, lacto-malto-cellobiono-lactone [83]
• azobenzenecarbonyl chloride, aminoethylglycopyranosides [84]
• carboxymethylcellulose, aminoazobenzene, EDC [90]
• azobenzenedicarboxylic acid, aminoethylaminodeoxycyclodextrin, DCC, HOBt [114]
• azobenzeneoxypentylcarbonyl chloride, aminoethylaminodeoxycyclodextrin [115]

Ester • bis-chlorocarbonylazobenzene, cyclodextrin, pyridine [111]

Ether

• mannosyl trichlororacetimidate, hydroxyazobenzene, BF3.Et2O [82]
• bromoethoxyazobenzene, hydroxypropylcellulose, Na2CO3, KI [92]
• cellulose, bis-sulphatoethylsulfonylazobenzene, Na2CO3 [96]
• hydroxyazobenzene, O-tosyl-cyclodextrin, K2CO3 [105]
• dihydroxyazobenzene, O-tosyl-cyclodextrin, NaOH [107]
• dihydroxyazobenzene, O-tosyl-cyclodextrin, K2CO3 [112]
• hydroxynaphtaleneazophenol, O-tosyl-cyclodextrin, K2CO3 [113]

Oxapentylamine • naphtylsulfonylcyclodextrin, azobenzenoxy-oxapentylamine, DMF [110]

Triazole
• propargyloxyazobenzene, azidocyclodextrin, [ethanol, water] or [CuSO4·5H2O,

sodium ascorbate] [106]

Ether with in situ
diazotation

• diazotation from aminophenyl cellobioside, phloroglucinol [85]

Secondly, the applications are various (Table 3), such as for health (1965 to 2013),
hydrogels and liquid crystals (2013 to 2020), self assemblies (1999-2019) or sensors (1979
to 2011).

Table 3. Summary of the various applications for azo-guest or azo-grafted oligosaccharides.

Application Reference (Year of Publication)

Inhibitory of cell surface adhesion, immunochemistry, UV protection 82 (2013), 83 (2012), 84 (2005), 85 (1965), 96 (2012)

Hydrogels, liquid/nano crystals 90 (2020), 92 (2016), 95 (2018)

Smart rotaxanes and self-assemblies 102 (1999), 105 (2007), 106 (2008), 115 (2019)

Sensors 110 (1991), 111 (1979), 112 (2004), 113 (2011), 114 (2002)
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Finally, azo molecules, depending on the starting oligosaccharide material, can act as
a functional group, or a guest, leading to unprecedented physicochemical aspects even if
sometimes, the UV impact on the structure could have been investigated deeply. So linking
an azobenzene group to an oligosaccharide is simple to synthesize, simple to characterize,
and can improve the future materials.
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