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Abstract: As one of the nanostructures with enzyme-like activity, nanozymes have recently attracted
extensive attention for their biomedical applications, especially for bacterial disinfection treatment.
Nanozymes with high peroxidase activity are considered to be excellent candidates for building
bacterial disinfection systems (nanozyme-H2O2), in which the nanozyme will promote the generation
of ROS to kill bacteria based on the decomposition of H2O2. According to this criterion, a cerium
oxide nanoparticle (Nanoceria, CeO2, a classical nanozyme with high peroxidase activity)-based
nanozyme-H2O2 system would be very efficient for bacterial disinfection. However, CeO2 is a
nanozyme with multiple enzyme-like activities. In addition to high peroxidase activity, CeO2

nanozymes also possess high superoxide dismutase activity and antioxidant activity, which can act
as a ROS scavenger. Considering the fact that CeO2 nanozymes have both the activity to promote
ROS production and the opposite activity for ROS scavenging, it is worth exploring which activity
will play the dominating role in the CeO2-H2O2 system, as well as whether it will protect bacteria
or produce an antibacterial effect. In this work, we focused on this discussion to unveil the role
of CeO2 in the CeO2-H2O2 system, so that it can provide valuable knowledge for the design of a
nanozyme-H2O2-based antibacterial system.
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1. Introduction

Nanozymes, as a type of nanomaterial with enzyme-like activities, have recently
garnered considerable researchers’ attention toward their biological and biomedical appli-
cations [1–3]. Thus far, various types of nanomaterials have been reported to have catalytic
activities similar to those of peroxidase, catalase, superoxide dismutase, oxidase, and other
natural enzymes, including different metal and metal oxide nanoparticles, carbon-based
nanomaterials, as well as some organic nanostructures [4–7]. Compared with natural
enzymes, nanozymes exhibit several advantages such as tunable size and activity, facile
preparation, low cost, and high stability against denaturing [8,9]. These superior prop-
erties sufficiently meet the demands for diverse biological and biomedical applications.
Indeed, nanozymes have recently been frequently used for disease treatment, such as
cancer therapy, bacterial disinfection, as well as Alzheimer’s disease treatment [10–12].

Bacterial infection has long been a major threat for human health. Antibiotics treatment
is currently a golden standard for bacterial disinfection. However, the overuse of antibiotics
greatly promotes antibiotic resistance development in bacterial pathogens. Therefore, the
exploration of new antimicrobial strategies is urgently demanded [13–16]. Nanozyme-
based antibacterial strategies have been recently demonstrated to be a promising new
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approach for bacterial infection treatment [17–24]. For example, Qu et al. developed
graphene quantum dots (GQDs) that can act as a peroxidase mimic to enhance the antibac-
terial capacity of H2O2 and can be used for wound disinfection [25]. Wang and coworkers
reported Cu2WS4 nanocrystals (CWS NCs) with excellent antibacterial activity owing to
their high intrinsic peroxidase activity that can catalyze the decomposition of H2O2 to
form ·OH, so that it inhabits wound bacterial infection [26]. Besides, Qu and his team
also proposed that MOF/Ce-based nanozymes with dual enzymatic activities can not
only disperse biofilms ascribed to the Ce complex, but also kill bacteria on-site, thereby
avoiding the proliferation of bacteria and the recurrence of biofilms [27]. Notably, most of
these works were based on the peroxidase activity of nanozymes to promote the reactive
oxygen species (ROS) generation of H2O2 to kill bacteria [28–34]. Thus, the nanozyme with
high peroxidase activity can be regarded as an excellent candidate for building a bacterial
disinfection nanozyme system.

The cerium oxide nanoparticle (Nanoceria, CeO2) is a classical nanozyme with high
peroxidase activity [35,36]. According to the criterion that high peroxidase activity is more
conducive to promoting the production of ROS, the CeO2-H2O2 nanozyme system would
be very efficient for bacterial disinfection. However, CeO2 could show multiple enzyme-
like activities owing to different shapes and sizes [8,37]. In addition to high peroxidase
activity, CeO2 also possesses high superoxide dismutase activity and antioxidant activity,
which can be used as a ROS scavenger. In view of the fact that CeO2 has both the activity of
promoting ROS production and the opposite activity of ROS scavenging, it is meaningful
to discuss which activity will play the dominating role in the CeO2-H2O2 system, and
whether it will protect bacteria or produce an antibacterial effect (Scheme 1). Herein, we
focus on this discussion to unveil the role of CeO2 in the CeO2-H2O2 system, which will
offer valuable knowledge for the design of a nanozyme-H2O2 based antibacterial system.
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Scheme 1. A schematic representation of the question to be answered in this work.

2. Results
2.1. Preparation and Characterization of CeO2 Nanozyme

The CeO2 nanozyme was first synthesized according to a facile solvothermal method,
of which the inorganic salt Ce (NO3)3·6H2O and organic acid C2H5COOH were selected as
the initial materials without any surfactants [27]. As shown in Figure 1a, the transmission
electron microscopy (TEM) images demonstrated the formation of CeO2 nanospheres with
uniform dispersion. Dynamic light scattering (DLS) analysis was performed to determine
the distribution of the hydration particle size of CeO2, which is placed at around 150 nm
from Figure 1b. Furthermore, the X-ray photoelectron energy spectrum was employed
to analyze the element and chemical value state of CeO2 nanospheres. We can observe
from Figure 1c that there were main peaks such as Ce4+ 3d3/2 and Ce4+3d5/2 at around
914.2 and 896.0 eV in the Ce 3d core spectrum, and the Ce3+ 3d3/2 and Ce3+ 3d5/2 peaks
are subscribed at 898.4 and 880.0 eV, respectively. In addition, the crystalline and phase
information were implied by powder X-ray diffraction (XRD) patterns. As shown in
Figure 1d, there were four clearly specific peaks, and the peaks at 2θ = 28.5◦, 32.8◦, 47.4◦,
and 56.4◦ can be subscribed to the characteristic (111), (200), (220), and (311) reflections
of the face-centered cubic structure of CeO2 nanocrystals (JCPDS No. 43–1002, the red
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line in Figure 1d). All the above results demonstrate the successful synthesis of the CeO2
nanoparticles.
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pattern of CeO2 (black curve).

2.2. The Peroxidase Activity of CeO2 Nanozyme

In this work, we utilized a classical colorimetric assay to estimate the peroxidase
activity of CeO2 nanospheres. TMB (3,3’,5,5’-tetramethylbenzidine) was used as a substrate.
In the presence of peroxidase mimics and H2O2, colorless TMB can be oxidized to blue
oxTMB, which exhibits two specific absorbance peaks at 370 and 652 nm. As shown
in Figure 2a, neither the nanozyme nor H2O2 alone could produce any color changes,
but there appeared two sharp and strong peaks at 370 and 652 nm with the presence of
both CeO2 and H2O2, which indicated that CeO2 nanospheres had intrinsic peroxidase
enzymatic activity. Likewise, we investigated the effect of pH on its peroxidase activity,
and the nanozyme was demonstrated to possess optimistic catalytic activity at a pH range
from 4.0 to 6.0 (Figure 2b).
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different reaction systems; (b) the effect of different pH on absorbance of TMB at 652 nm.

2.3. ROS Generation

Considering that the catalytic capacity of most of the nanozymes with peroxidase
activity may originate from the decomposition of H2O2 to generate ROS hydroxyl radicals
(·OH), we further investigated the generation of ·OH in the CeO2-H2O2 system to verify
the peroxidase activity of the CeO2 nanozyme. Terephthalic acid (TA), which could capture
·OH to generate fluorescent product 2-hydroxy terephthalic acid (TAOH) (Figure 3a), was
used as a fluorescence probe for the tracing of ·OH. As shown in Figure 3b, compared
with the fluorescent intensity of TA alone, there was a remarkable increase with the
addition of H2O2. However, when we added the CeO2 nanozyme to the H2O2-TA system,
the fluorescent intensity did not show any increase but sharply decreased to near the
background intensity, which was contrary to what we predicted. This may be because
CeO2 possesses certain antioxidant properties as obstacles to the decomposition of H2O2
to generate ·OH [37]. In other words, CeO2 shows considerable ROS scavenging capacity
in the CeO2 nanozyme-H2O2 system.
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spectra of reaction system including only TA; TA and H2O2; TA, CeO2, and H2O2 after 2 h of reaction.
[TA] = 0.5 mM, H2O2 = 1 mM, [CeO2] = 0.25 mg/mL.

2.4. The Evaluation of Antibacterial Activity of CeO2-H2O2 System

Finally, the antibacterial activities were investigated by using a Gram-negative bac-
terium (Escherichia coli, E. coli) as a model strain. In view of the effect of the pH value on
the nanozyme activity, all the bacterial experiments were performed at pH 6.0 with PBS
(phosphate-buffered saline) as the buffer. As shown in Figure 4b, CeO2 (0.25 mg/mL) alone
caused a weak antibacterial effect. H2O2 showed concentration-dependent antibacterial
activity. At a low concentration of 0.5 mM, H2O2 showed a weak antibacterial activity
(Figure 4c). When the concentration of H2O2 was increased to 1.5 mM, almost all the bacte-
ria were killed, indicating a significant high antibacterial activity (Figure 4d). Thereafter,
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the bacterial effect of the CeO2 nanozyme-H2O2 system was investigated. As shown in
Figure 4e, compared with H2O2 (0.5 mM) alone, the presence of CeO2 (0.25 mg/mL) did
not cause an obvious change in the number of bacteria, which demonstrated that the CeO2
nanozyme did not promote the killing effect of H2O2 against bacteria in this nanozyme-
H2O2 system. Interestingly, compared with H2O2 (1.5 mM) alone, the presence of CeO2
(0.25 mg/mL) caused an obvious increase in the number of bacteria, which indicated that
the CeO2 greatly inhibited the killing effect of H2O2 against bacteria in this nanozyme-
H2O2 system (Figure 4g). This role was further found to be in a concentration-dependent
manner. When we reduced the CeO2 concentration to 0.1 mg/mL, the effect of CeO2 on
the bacterial killing activity of H2O2 decreased accordingly (Figure 4f). On the contrary,
the effect of CeO2 on the bacterial killing activity of H2O2 was dramatically increased with
the increase in the concentration of CeO2 to 0.4 mg/mL. The further study demonstrated
that CeO2 played a similar protection role in the nanozyme-H2O2 system toward the
Gram-positive bacterium (Bacillus subtilis, B. subtilis) (Figure 4f–i). All the above results
manifested that the peroxidase activity of CeO2 did not contribute to the antibacterial effect
of the nanozyme-H2O2 system. Instead, the ROS scavenging capacity of CeO2 protected
the bacteria from being killed by H2O2. Although the phenomenon we observed may be
different from other enzymes with multiple activities, our work would provide valuable
new knowledge for the design of the nanozyme-H2O2-based antibacterial system.
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Figure 4. Photographs of bacterial colonies formed by E. coli and B. subtilis with different treatment
at room temperature for 2 h. (a) E. coli; (b) E. coli + 0.25 mg/mL CeO2; (c) E. coli + 0.5 mM H2O2;
(d) E. coli + 1.5 mM H2O2; (e) E. coli + 0.5 mM H2O2 + 0.25 mg/mL CeO2; (f) E. coli + 1.5 mM H2O2

+ 0.1 mg/mL CeO2; (g) E. coli + 1.5 mM H2O2 + 0.25 mg/mL CeO2; (h) E. coli + 1.5 mM H2O2 +
0.4 mg/mL CeO2; (i) B. subtilis; (j) B. subtilis + 1 mM H2O2; (k) B. subtilis + 1 mM H2O2 + 0.25 mg/mL
CeO2; (l) B. subtilis + 1 mM H2O2 + 0.4 mg/mL CeO2.

3. Materials and Methods
3.1. Chemicals and Instrument

All reagents and solvents were purchased from commercial sources. Hydrogen-
peroxide is an AR reagent with a concentration of 30% in water. The degree of purity of
other compounds was at least 98%, and they were used without any further treatment.
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PL spectra were collected by a FL-970 Fluorescence Spectrometer (slit width of 2.5 nm
and PMT voltage of 600 V). UV-vis adsorption spectra were measured by a UV-2600
spectrometer (SHIMADZU, Japan). The size of nanoparticles was monitored with a SZ-
100V2 Nano Particle Analyzer. The X-ray diffraction (XRD) patterns of the products
were determined on a DX-2700 X-ray diffractometer with Cu Kα radiation (λ = 1.5416 Å),
with an operation voltage and current maintained at 35 kV and 25 mA, respectively. X-
ray photoelectron spectroscopy (XPS) measurements were conducted on a Kratos AXIS
Ultra DLD photoelectron spectrometer with Al Kα X-ray radiation as the X-ray source
for excitation. The nanostructure of products was analyzed with a 120 kV JEM-1400Flash
transmission electron microscope (TEM) with a Gatan Rio16 digital camera. Samples for
TEM were prepared by dropping dilute solutions of nanoparticles onto carbon-coated
copper grids and then maintained at 40 ◦C to wait for the solvent to evaporate.

3.2. Synthesis of CeO2 Nanozyme

The CeO2 nanozyme was synthesized by one simple solvothermal method right in this
work. Briefly, 1 g of Ce(NO3)3·6H2O was dissolved in 1 mL of ultrapure water. Then, 1 mL
of C2H5COOH and 30 mL of glycol were added in the above solution with stirring until
the formation of a uniform solution. Following that, the mixture solution was transferred
to an autoclave and heated to 180 ◦C for 200 min to obtain the initial product. The product
was first centrifuged at 5000 rpm for 10 min to remove large particles; then, the supernatant
was centrifuged at 10,000 rpm for 10 min, and the precipitation was washed with ethanol
and ultrapure water twice. Ultimately, the product was redispersed into ultrapure water
for later use.

3.3. Detection of Peroxidase Activity of CeO2

The peroxidase activity was investigated by a catalytic reaction of the TMB with
the assistance of H2O2, and the catalytic performance was characterized by a specific
peak at 652 nm. Typically, the reaction solution (200 µL) containing PBS buffer solution
(0.2 M, 20 µL), TMB (80 mM, 2 µL), H2O2 (10 mM, 40 µL), and CeO2 nanozyme (40 µL)
was incubated at room temperature for 10 min, and the blue product (oxTMB) was then
monitored by a UV-spectrum at 652 nm.

3.4. Detection of OH

The detection of ·OH was dependent on the reaction of TA and ·OH. TA has weak
fluorescence in the absence of ·OH, but it has unique fluorescence around 425 nm in the
presence of ·OH ascribed to the generation of 2-hydroxy terephthalic acid.

The reaction solutions containing TA, TA + H2O2, and TA + H2O2 + nanozymes were
reacted for 2 h and then centrifuged to separate the supernatant. The fluorescent intensity
of the supernatant at around 430 nm was determined by a FL-970 fluorescence spectrometer.
The concentrations of TA, H2O2, and CeO2 nanozyme were 0.5 mM, 1 mM, 0.25 mg/mL,
respectively.

3.5. Antibacterial Experiment

The spread plate method was utilized to measure the bacterial number under different
treatments. E. coli was coped with five different groups: (a) without any addition, (b) CeO2,
(c) H2O2, and (d) CeO2 + H2O2 groups. In brief, the mono-colony of E. coli on a solid
Luria–Bertani (LB) agar plate was diverted to 2 mL of liquid LB culture medium and grown
at 37 ◦C for 5 h under 180 rpm rotation. After finishing this process, we chose 0.3 as the
initial optical density of bacteria at OD600 nm. Then, 20 µL of as-prepared bacteria solution
was mixed up with different groups we mentioned above with a 200 µL total volume and
incubated in 24-cell culture plates at a reaction system (pH = 5, PBS buffer solution 20 mM)
for 2 h. Thereafter, the bacteria solution was transferred from the 24-well plate to the solid
medium by the spread plate method and was cultured at 37 ◦C for 12 h. A similar method
was used in the B. subtilis experiment.
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4. Conclusions

In summary, we successfully synthesized a CeO2 nanozyme with both the peroxidase
and ROS scavenging activity. Based on this, we investigated the function between the
CeO2-H2O2 system and bacteria. The results of the bacterial experiments demonstrated
that the peroxidase activity of CeO2 did not contribute to the antibacterial effect in the CeO2-
H2O2 system; instead, the ROS scavenging capacity of CeO2 could protect the bacteria
from being killed by H2O2. Our present work not only unveils the role of CeO2 in the
CeO2-H2O2 system toward bacteria but also provides valuable new knowledge for the
design of nanozyme-H2O2-based antibacterial systems.
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