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Abstract: A novel organocatalytic multicomponent cyanovinylation of aldehydes was designed
for the synthesis of conjugated cyanomethyl vinyl ethers. The reaction was implemented for the
synthesis of a 3-substituted 3-(cyanomethoxy)acrylates, using aldehydes as substrates, acetone
cyanohydrin as the cyanide anion source, and methyl propiolate as the source of the vinyl com-
ponent. The multicomponent reaction is catalyzed by N-methyl morpholine (2.5 mol%) to deliver
the 3-(cyanomethoxy)acrylates in excellent yields and with preponderance of the E-isomer. The
multicomponent reaction manifold is highly tolerant to the structure and composition of the aldehyde
(aliphatic, aromatic, heteroaromatics), and it is instrumentally simple (one batch, open atmospheres),
economic (2.5 mol% catalyst, stoichiometric reagents), environmentally friendly (no toxic waste), and
sustainable (easy scalability).

Keywords: cyanomethyl vinyl ethers; 3-(cyanomethoxy)acrylates; multicomponent; cyanohydrin;
cyanovinylation; organocatalysis; tertiary amine; N-methyl morpholine

1. Introduction

Cyanomethyl vinyl ethers (CMVEs) 1 constitute densely functionalized linear syn-
thetic platforms which have found use as monomeric units in the construction of alkenyl
ether-vinyl ester copolymers [1–5], as building blocks in the construction of multi-substituted
2,3-dihydrofurans [6,7] and 2,3-dihydropyrroles [7], and as convenient platforms for mech-
anistic investigations in the Claisen rearrangement of allyl vinyl ethers [8–10] (Scheme 1A).
They are usually synthesized in a step-wise manner from the corresponding aldehydes
through the formation of the O-formyl cyanohydrin intermediate and carbonyl methyle-
nation [9] (Scheme 1B). When the vinyl moiety is endowed with electron withdrawing
groups (e.g., 3), the cyanohydrin is directly converted into the conjugated cyanomethyl
vinyl ether derivative by the amine-catalyzed Michael addition on the corresponding con-
jugated alkyne [6,7] (Scheme 1B). In both protocols, the corresponding cyanohydrin has to
be synthesized and isolated to be used in the following reaction step. A direct synthesis of
CMVEs 1 from the parent aldehydes should be desirable in terms of synthetic efficiency and
both labor and step economies. With this idea in mind, we designed the three-component
reaction (3CR) depicted in Scheme 1C, which implements a novel cyanovinylation of alde-
hydes to construct conjugated CMVEs 3. To the best of our knowledge, this transformation
has not been reported in the bibliography [11]. We report herein our results in the design
and implementation of this 3CR and its practical application to the synthesis of methyl
3-substituted 3-(cyanomethoxy)acrylates (CMAs) 7.
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The 3CR process was designed to operate under organocatalytic conditions accord-
ing to the catalytic concept of “a good nucleophile generates a strong base” [12–15] 
(Scheme 2). This catalytic concept allows for launching base-driven processes by the in 
situ generation of catalytic amounts of a strong base in the reaction medium. It is techni-
cally performed by the reaction of a Lewis base (nucleophilic catalyst) on a conjugated 
alkyne to generate a conjugated vinyl anion (strong base). In the design of this 3CR man-
ifold, we chose a tertiary amine as the Lewis base catalyst, because they have proved to 
be excellent catalysts for the in situ generation of allenolate anions type I [12,16]. With this 
catalytic principle in mind, we designed the 3CR depicted in Scheme 2. The reaction man-
ifold generates CMAs 7 through the catalytic cyanovinylation of an aldehyde substrate in 
the presence of stoichiometric amounts of cyanide anion and methyl propiolate (4). The 
choice of the cyanide anion source was an important design issue, because it had to be 
safe, environmentally friendly and suitable for the generation of cyanide anion under 
basic conditions, without introducing other reactive species into the catalytic cycle. 
Among of the commercially available cyanide precursors, we chose acetone cyanohydrin 
(5) because it meets all these criteria: it is safe [17] and it releases cyanide anion and 
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2. Results and Discussion
2.1. Design of a 3CR Manifold for the Synthesis of 3-(Cyanomethoxy)acrylates 7

The 3CR process was designed to operate under organocatalytic conditions according
to the catalytic concept of “a good nucleophile generates a strong base” [12–15] (Scheme 2).
This catalytic concept allows for launching base-driven processes by the in situ generation
of catalytic amounts of a strong base in the reaction medium. It is technically performed
by the reaction of a Lewis base (nucleophilic catalyst) on a conjugated alkyne to generate
a conjugated vinyl anion (strong base). In the design of this 3CR manifold, we chose
a tertiary amine as the Lewis base catalyst, because they have proved to be excellent
catalysts for the in situ generation of allenolate anions type I [12,16]. With this catalytic
principle in mind, we designed the 3CR depicted in Scheme 2. The reaction manifold
generates CMAs 7 through the catalytic cyanovinylation of an aldehyde substrate in the
presence of stoichiometric amounts of cyanide anion and methyl propiolate (4). The choice
of the cyanide anion source was an important design issue, because it had to be safe,
environmentally friendly and suitable for the generation of cyanide anion under basic
conditions, without introducing other reactive species into the catalytic cycle. Among of
the commercially available cyanide precursors, we chose acetone cyanohydrin (5) because
it meets all these criteria: it is safe [17] and it releases cyanide anion and acetone (waste)
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in the presence of bases [18]. The presence of acetone in the reaction medium should not
introduce reactivity distortion issues in the catalytic process.
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Scheme 2. Catalytic 3CR for the synthesis of conjugated 3-(cyanomethoxy)acrylates 7.

With all considerations in mind, we envisioned the 3CR depicted in Scheme 2, which
would be launched by the addition of the catalyst on the conjugated alkyne to generate the
allenolate I (Scheme 2, reaction a). Allenolate I is a strong base, and it would deprotonate
the acetone cyanohydrin (5) to generate the cyanide anion and the reactive ammonium
acrylate II (reaction b). Addition of the cyanide anion on the aldehyde 6 would form the
cyanohydrin III (reaction c), which would then add onto the ammonium acrylate II to
deliver the final CMA 7 with liberation of the catalyst to reinitiate the cycle (reaction d).
Based on our own experience [12–14,16], the catalytic cycle should deliver 7 as an E/Z
mixture of isomers, with a clear preponderance of the E-isomer.

A critical concern in this design arises from the reactivity of the cyanide anion toward
the aldehyde 6 versus the ammonium acrylate II (step c). The catalytic cycle requires that
the cyanide anion fully react with the aldehyde to avoid the undesirable formation of
methyl 3-cyanoacrylate 8 (reaction e) [12]. It must be noted that the formation of methyl 3-
cyanoacrylate 8 is also catalytic: its formation releases the catalyst to reinitiate the cycle [12].
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Gratifyingly, the reactivity of the cyanide anion toward the aldehyde was good enough to
mostly funnel the catalytic manifold toward formation of the CMA 7.

2.2. Implementation of the 3CR Manifold

We chose the reaction of benzaldehyde (6a), acetone cyanohydrin (5) and methyl
propiolate (4) as the benchmark reaction to find a set of convenient reaction conditions
for the 3CR (Table 1). A wide panel of different tertiary amines and solvents was used
in this exploratory study. Among all the combinations of tertiary amines and solvents
assayed (entries 1–18), the combination of N-methylmorpholine (NMM) and n-hexanes
showed to be the best, funneling the 3CR toward a nearly quantitative production of
CMA 7a (99%, E/Z:3/1) (only traces of 3-cyanoacrylate 8 were observed) (entry 8). More
importantly, the NMM charge could be reduced up to 2.5 mol% without significant loss
in efficiency (94%) and stereoselectivity (2.5/1) (entry 21). The effect of temperature on
the stereoselectivity was studied carrying out the reaction at 0 ◦C and −78 ◦C, without
observing any appreciable improvement at both temperatures (entries 22 and 23). As
expected, no reaction was observed in the absence of catalyst (entry 24). Thus, we chose the
conditions depicted in entry 21 as the standard reaction conditions: N-methyl morpholine
(2.5 mol%), n-hexanes, room temperature.

Table 1. Optimization of the 3CR manifold a.
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2.3. Scope of the 3CR Manifold

The scope of the catalytic 3CR was studied using a wide array of different aldehydes
6 and the standardized reaction conditions (Scheme 3). Aldehydes were chosen to span
a wide reactivity profile, including aromatic (6a–o) heteroaromatic (6p–q) and aliphatic
(6r–w). The reaction process was widely tolerant with respect to the aldehyde nature
delivering the corresponding CMAs 7a–w in yields spanning from 55% (7u) to 99% (7b, 7g
and 7j).
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Although the electronic nature of the aromatic rings did not show a general influence
in the efficiency of the 3CR (compare 7b, 7g and 7j), the steric environment of the carbonyl
function of the aldehyde was more determining, requiring, in the most steric-demanding
cases, the use of higher charges of catalyst (12.5 mol%) and longer reaction times (overnight)
to achieve good yields of CMAs (see 7c, 7d, 7e and 7w). Under the standard reaction
conditions, the hindered 1-methyl-2-naphthaldehyde (6m) and isobutanal (6v) delivered
the corresponding 7m and 7v in good yields (73%), and their reactions were not further
implemented. The reactivity of the linear aliphatic aldehydes was dependent on the length
of the chain, being optimal for 2–3 carbon atoms (7r, 7s) and disadvantageous for longer
chains (7t, 7u). With regard to the stereoselectivity of the reaction, the E/Z ratio was
moderate in all cases, spanning from 1.7/1 for 7m to 3.2/1 for 7c, 7g, 7h and 7k.

Additionally, the scaling power of this 3CR and its suitability for real-world synthesis
was established performing the reaction of benzaldehyde (6a) on a gram-scale (8 mmol).
Under these conditions, CMA 7a was obtained in 91% yield as a mixture of E/Z isomers
(2.4/1).

Finally, and in accordance with our previous findings on the use of tertiary amines as
catalysts for domino processes involving activated alkynes [13,16,19], the use of internal
alkynes such as methyl 2-octynoate or ethyl phenylpropiolate did not lead to the formation
of products.

3. Materials and Methods
3.1. General Information

1H NMR and 13C NMR spectra of CDCl3 solutions were recorded either at 400 and
100 MHz or at 500 and 125 MHz (Bruker Ac 200 and AMX2-500 respectively). 1H and 13C
NMR spectra for compounds 7 are available from the Supplementary Materials. High-
resolution mass spectra were recorded with a mass spectrometer LCT Premier XE (Manch-
ester, UK) with two types of ionization sources: electrospray (ESI), an atmospheric pressure
chemical ionization source (APCI), and with an orthogonal acceleration time-offlight (oa-
TOF) analyzer. Analytical thin-layer chromatography plates used were E. Merck Brinkman
UV-active silica gel (Kieselgel 60 F254) on aluminum. Flash column chromatography was
carried out with E. Merck silica gel 60 (particle size less than 0.020 mm) using appropriate
mixtures of ethyl acetate and hexanes, or ethyl acetate and dichloromethane as eluents.
All reactions were performed in oven-dried glassware. All materials were obtained from
commercial suppliers and used as received.

3.2. General Procedure for the Synthesis of Cyanomethyl Vinyl Ether 7a

To a solution of aldehyde (6) (2.0 mmol), acetone cyanohydrin (5) (2.0 mmol) and
methyl propiolate (4) (2.0 mmol) in n-hexanes (6 mL) was added N-methylmorpholine
(0.05 mmol) at once and the reaction mixture was stirred for 1 h at room temperature.
The solvent was removed under reduced pressure, and the residue was purified by flash
column chromatography (silica gel; n-hexane/ethyl acetate: 80/20) to give the desired
3-(cyanomethoxy)acrylate 7.

3.3. Characterization Data for 3-(cyanomethoxy)acrylates 7

Methyl 3-(cyano(phenyl)methoxy)acrylate (7a). (E-isomer, major): (8.0 mol scale) (1.12 g,
64.5%). White solid: 1H NMR (CDCl3, 400 MHz): δ = 3.71 (s, 3H), 5.53 (d, 1H, J = 12.6 Hz),
5.65 (s, 1H), 7.46–7.53 (m, 5H), 7.56 (d, 1H, J = 12.6 Hz). 13C NMR (CDCl3, 100 MHz):
δ = 51.5, 70.3, 101.3, 115.2, 127.4 (2C), 129.4 (2C), 130.7, 131.2, 158.1, 166.7 ppm. HRMS
(ESI+): m/z [M + Na]+ calculated for C12H11NO3Na 240.0636, found 240.0637. (Z-isomer,
minor): (8.0 mol scale) (466 mg, 26.8%). Yellowish solid: 1H NMR (CDCl3, 400 MHz):
δ = 3.69 (s, 3H), 5.09 (d, 1H, J = 7.1 Hz), 5.83 (s, 1H), 6.59 (d, 1H, J = 7.1 Hz), 7.45–7.46
(m, 3H), 7.53–7.55 (m, 2H). 13C NMR (CDCl3, 100 MHz): δ = 51.2, 71.9, 101.0, 115.6, 127.3
(2C), 129.4 (2C), 130.6, 131.3, 152.7, 164.5 ppm.
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Methyl 3-(cyano(p-tolyl)methoxy)acrylate (7b). (E-isomer, major): (341.2 mg, 74%). White
solid: 1H NMR (CDCl3, 400 MHz): δ = 2.39 (s, 3H), 3.71 (s, 3H), 5.51 (d, 1H, J = 12.7 Hz),
5.62 (s, 1H), 7.27 (d, 2H, J = 8.1 Hz), 7.38 (d, 2H, J = 8.1 Hz), 7.54 (d, 1H, J = 12.7 Hz). 13C
NMR (CDCl3, 100 MHz): δ = 21.2, 51.3, 70.2, 101.1, 114.8 (2C), 115.4, 127.4 (2C), 128.2, 130.0
(2C), 141.0, 158.1, 166.7 ppm. HRMS (ESI+): m/z [M + Na]+ calculated for C13H13NO3Na
254.0793, found 254.0791. (Z-isomer, minor): (120.0 mg, 26%). Yellow oil: 1H NMR
(CDCl3, 400 MHz): δ = 2.32 (s, 3H), 3.64 (s, 3H), 5.01 (d, 1H, J = 7.2 Hz), 5.76 (s, 1H), 6.53
(d, 1H, J = 7.2 Hz), 7.20 (d, 2H, J = 8.1 Hz), 7.37 (d, 2H, J = 8.1 Hz). 13C NMR (CDCl3,
100 MHz): δ = 21.2, 51.1, 71.8, 101.6, 115.7 (2C), 127.4 (2C), 128.4, 129.9 (2C), 125.8, 140.9,
164.5 ppm.

Methyl 3-(cyano(3,4-dimethylphenyl)methoxy)acrylate (7c). (E-isomer, major): (337.0 mg,
69%). White solid: 1H NMR (CDCl3, 500 MHz): δ = 2.25 (s, 3H), 2.27 (s, 3H), 3.67 (s, 3H),
5.47 (d, 1H, J = 12.5 Hz), 5.55 (s, 1H), 7.19 (s, 2H), 7.23 (s, 1H), 7.27 (d, 2H, J = 8.1 Hz), 7.38
(d, 2H, J = 8.1 Hz), 7.50 (d, 1H, J = 12.5 Hz). 13C NMR (CDCl3, 125 MHz): δ = 19.6, 19.7,
51.4, 70.3, 100.9, 115.5, 125.0, 128.5, 128.6, 130.5, 138.0, 139.7 158.2, 166.9 ppm. HRMS (ESI+):
m/z [M + Na]+ calculated for C14H15NO3Na 268.0950, found 268.0954. (Z-isomer, minor):
(104.5 mg, 21%). Transparent oil: 1H NMR (CDCl3, 500 MHz): δ = 2.24 (s, 3H), 2.25 (s,
3H), 3.65 (s, 3H), 5.01 (d, 1H, J = 7.1 Hz), 5.74 (s, 1H), 6.55 (d, 1H, J = 7.1 Hz), 7.17 (d, 1H,
J = 8.0 Hz), 7.22 (d, 1H, J = 8.0 Hz), 7.26 (s, 1H). 13C NMR (CDCl3, 125 MHz): δ = 19.5, 19.7,
51.1, 71.8, 100.3, 115.8, 125.0, 128.5, 128.6, 130.4, 137.9, 139.6, 152.9, 164.7 ppm.

Methyl 3-(cyano(o-tolyl)methoxy)acrylate (7d). (E-isomer, major): (340.0 mg, 72%).
White solid: 1H NMR (CDCl3, 500 MHz): δ = 2.40 (s, 3H), 3.71 (s, 3H), 5.55 (d, 1H,
3J(H,H) = 12.4 Hz), 5.81 (s, 1H), 7.26–7.32 (m, 2H), 7.38 (t,1H, J = 7.5 Hz), 7.57 (d, 1H,
J = 7.5 Hz), 7.59 (d, 1H, J = 12.4 Hz). 13C NMR (CDCl3, 125 MHz): δ = 18.6, 51.3, 68.6, 100.9,
115.1, 126.7, 128.0, 129.1, 130.7, 131.4, 136.6, 158.0, 166.6 ppm. HRMS (ESI+): m/z [M + Na]+

calculated for C13H13NO3Na 254.0793, found 254.0796. (Z-isomer, minor): (110.0 mg, 24%).
Transparent oil: 1H NMR (CDCl3, 500 MHz): δ = 2.46 (s, 3H), 3.68 (s, 3H), 5.06 (d, 1H,
J = 7.1 Hz), 5.88 (s, 1H), 6.60 (d, 1H, J = 7.1 Hz), 7.25–7.30 (m, 2H), 7.36 (t, 1H, J = 7.5 Hz),
7.59 (d, 1H, J = 7.5 Hz). 13C NMR (CDCl3, 125 MHz): δ = 18.8, 51.3, 70.8, 100.6, 115.4, 126.6,
128.2, 129.3, 130.8, 131.5, 137.1, 152.8, 164.5 ppm.

Methyl 3-(cyano(2,6-dimethylphenyl)methoxy)acrylate (7e) (E-isomer, major): (319.6 mg,
65%). Transparent solid: 1H NMR (CDCl3, 400 MHz): δ = 2.48 (s, 6H), 3.70 (s, 3H), 5.52
(d, 1H, J = 12.4 Hz), 5.97 (s, 1H), 7.09 (d, 2H, J = 7.5 Hz), 7.23 (t, 1H, J = 7.5 Hz), 7.50 (d,
1H, J = 12.4 Hz). 13C NMR (CDCl3, 100 MHz): δ = 20.0 (2C), 51.1, 65.8, 100.7, 115.1, 127.8,
129.6 (2C), 130.6, 137.6 (2C), 158.2, 166.8 ppm. HRMS (ESI+): m/z [M + Na]+ calculated for
C14H15NO3Na 268.0950, found 268.0950. (Z-isomer, minor): (125.1 mg, 26%). Transparent
oil: 1H NMR (CDCl3, 500 MHz): δ = 2.54 (s, 6H), 3.69 (s, 3H), 5.05 (d, 1H, J = 6.9 Hz), 6.00
(s, 1H), 6.54 (d, 1H, J = 6.9 Hz), 7.08 (d, 2H, J = 7.6 Hz), 7.22 (t, 1H, J = 7.6 Hz). 13C NMR
(CDCl3, 125 MHz): δ = 20.0 (2C), 51.1, 68.2, 100.2, 115.6, 128.1, 129.5 (2C), 130.5, 137.7 (2C),
153.6, 164.5 ppm.

Methyl 3-(cyano(4-methoxyphenyl)methoxy)acrylate (7f) (E-isomer, major): (316.8 mg,
64%). White solid: 1H NMR (CDCl3, 400 MHz): δ = 3.71 (s, 3H), 3.81 (s, 3H), 5.50 (d,
1H, J = 12.6 Hz), 5.58 (s, 1H), 6.97 (d, 1H, J = 8.7 Hz), 7.42 (d, 1H, J = 8.7 Hz), 7.52 (d, 1H,
J = 12.6 Hz). 13C NMR (CDCl3, 100 MHz): δ = 51.4, 55.4, 70.1, 101.2, 114.8 (2C), 115.4,
123.2, 129.3 (2C), 158.0, 161.5, 166.8 ppm. HRMS (ESI+): m/z [M + Na]+ calculated for
C13H13NO4Na 270.0742, found 270.0743. (Z-isomer, minor): (130.9 mg, 27%). Yellow solid:
1H NMR (CDCl3, 400 MHz): δ = 3.68 (s, 3H), 3.81 (s, 3H), 5.05 (d, 1H, J = 7.1 Hz), 5.77 (s,
1H), 6.57 (d, 1H, J = 7.1 Hz), 6.94 (d, 1H, J = 8.7 Hz), 7.45 (d, 1H, J = 8.7 Hz). 13C NMR
(CDCl3, 100 MHz): δ = 51.1, 55.4, 71.6, 100.5, 114.7 (2C), 115.8, 123.3, 129.2 (2C), 152.7, 161.3,
164.5 ppm.

Methyl 3-(cyano(2,3,4-trimethoxyphenyl)methoxy)acrylate (7g) (E-isomer, major): (467.1 mg,
76%). Transparent oil: 1H NMR (CDCl3, 400 MHz): δ = 3.65 (s, 3H), 3.81 (s, 3H), 3.84 (s,
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3H), 3.92 (s, 3H), 5.46 (d, 1H, J = 12.5 Hz), 5.88 (s, 1H), 6.69 (d, 1H, J = 8.6 Hz), 7.21 (d,
1H, J = 8.6 Hz), 7.52 (d, 1H, J = 12.5 Hz). 13C NMR (CDCl3, 100 MHz): δ = 51.1, 55.9, 60.6,
61.2, 65.9, 100.4, 115.6, 117.2, 123.3, 141.8, 151.4, 156.1, 158.5, 166.7 ppm. HRMS (ESI+):
m/z [M + Na]+ calculated for C15H17NO6Na 330.0954, found 330.0951. (Z-isomer, minor):
(147.8 mg, 24%). Yellow oil: 1H NMR (CDCl3, 400 MHz): δ = 3.68 (s, 3H), 3.86 (s, 3H), 3.89
(s, 3H), 3.98 (s, 3H), 5.05 (d, 1H, J = 7.05 Hz), 5.97 (s, 1H), 6.67 (d, 1H, J = 7.05 Hz), 6.73 (d,
1H, J = 8.52 Hz), 7.32 (d, 1H, J = 8.52 Hz). 13C NMR (CDCl3, 100 MHz): δ = 51.1, 56.1, 60.8,
61.5, 68.1, 99.9, 107.4, 116.0, 117.6, 123.5, 142.1, 151.6, 153.6, 156.1, 164.6 ppm.

Methyl 3-(cyano(3,4,5-trimethoxyphenyl)methoxy)acrylate (7h) (E-isomer, major): (428.4 mg,
70%). Yellow oil: 1H NMR (CDCl3, 400 MHz): δ = 3.67 (s, 3H), 3.82 (s, 3H), 3.84 (s, 6H), 5.50
(d, 1H, J = 12.8 Hz), 5.60 (s, 1H), 6.67 (s, 2H), 7.51 (d, 1H, J = 12.8 Hz). 13C NMR (CDCl3,
100 MHz): δ = 51.3, 56.1 (2C), 60.7, 70.2, 101.1, 104.6 (2C), 115.2, 126.3, 139.7, 153.8 (2C),
157.9, 166.6 ppm. HRMS (ESI+): m/z [M + Na]+ calculated for C15H17NO6Na 330.0954,
found 330.0951. (Z-isomer, minor): (135.1 mg, 22%). Yellow solid: 1H NMR (CDCl3, 400
MHz): δ = 3.68 (s, 3H), 3.83 (s, 3H), 3.86 (s, 6H), 5.10 (d, 1H, J = 7.1 Hz), 5.77 (s, 1H), 6.58
(d, 1H, J = 7.1 Hz), 6.75 (s, 2H). 13C NMR (CDCl3, 100 MHz): δ = 51.1, 56.2 (2C), 60.7, 71.9,
100.9, 104.5 (2C), 115.6, 126.6, 139.6, 152.7 (2C), 153.9, 164.5 ppm.

Methyl 3-(benzo[d][1,3]dioxol-5-yl(cyano)methoxy)acrylate (7i). (E-isomer, major): (361.5 mg,
69%). Orange solid: 1H NMR (CDCl3, 500 MHz): δ = 3.70 (s, 3H), 5.49 (d, 1H, J = 12.5 Hz),
5.55 (s, 1H), 6.01 (s, 2H), 6.84 (d, 1H, J = 8.0 Hz), 6.94 (s, 1H), 6.97 (d, 1H, J = 8.0 Hz), 7.50 (d,
1H, J = 12.5 Hz). 13C NMR (CDCl3, 125 MHz): δ = 51.4, 70.1, 101.2, 101.9, 107.7, 108.7, 115.3,
122.0, 124.7, 148.6, 149.7, 157.9, 166.7 ppm. HRMS (ESI+): m/z [M + Na]+ calculated for
C13H11NO5Na 284.0535, found 284.0530. (Z-isomer, minor): (140.7 mg, 27%). Yellow solid:
1H NMR (CDCl3, 500 MHz): δ = 3.69 (s, 3H), 5.08 (d, 1H, J = 7.1 Hz), 5.72 (s, 1H), 6.01 (s,
2H), 6.57 (d, 1H, J = 7.1 Hz), 6.84 (d, 1H, J = 8.0 Hz), 7.00 (s,1H), 7.02 (d, 1H, J = 8.0 Hz). 13C
NMR (CDCl3, 125 MHz): δ = 51.2, 71.7, 100.7, 101.8, 107.7, 108.6, 115.6, 121.9, 124.9, 148.7,
149.6, 152.6, 164.5 ppm.

Methyl 3-(cyano(4-fluorophenyl)methoxy)acrylate (7j) (E-isomer, major): (345.0 mg, 73%).
Transparent oil: 1H NMR (CDCl3, 500 MHz): δ = 3.69 (s, 3H), 5.12 (d, 1H, J = 12.5 Hz), 5.67
(s, 1H), 7.14 (t, 2H, J = 8.5 Hz), 7.48–7.51 (m, 2H), 7.53 (d, 1H, J = 12.5 Hz). 13C NMR (CDCl3,
125 MHz): δ = 51.5, 69.4, 101.3, 112.2, 116.5 (d, 2C, J = 22.6 Hz), 127.2 (d, J = 3.2 Hz), 129.6 (d,
2C, JCF = 8.9 Hz), 157.9, 163.8 (d, JCF = 250.8 Hz), 166.6 ppm. HRMS (ESI+): m/z [M + Na]+

calculated for C12H10FNO3Na 258.0542, found 258.0547. (Z-isomer, minor): (125.0 mg,
27%). Yellow oil: 1H NMR (CDCl3, 500 MHz): δ = 3.69 (s, 3H), 5.12 (d, 1H, J = 7.1 Hz),
5.81 (s, 1H), 6.59 (d, 1H, J = 7.1 Hz), 7.14 (t, 2H, J = 7.9 Hz), 7.55 (t, 2H, J = 7.9 Hz). 13C
NMR (CDCl3, 125 MHz): δ = 51.2, 71.2, 101.1, 115.5, 116.5 (d, 2C, JCF = 22.2 Hz), 127.3 (d,
J = 2.8 Hz), 129.4 (d, 2C, J = 8.8 Hz), 152.7, 163.8 (d, J = 251.0 Hz), 164.4 ppm.

Methyl 3-(cyano(4-(trifluoromethyl)phenyl)methoxy)acrylate (7k). (E-isomer, major): (283.2 mg,
50%). White solid: 1H NMR (CDCl3, 400 MHz): δ = 3.72 (s, 3H), 5.55 (d, 1H, J = 12.5 Hz),
5.76 (s, 1H), 7.57 (d, 1H, J = 12.5 Hz), 7.65 (d, 2H, J = 8.3 Hz), 7.74 (d, 2H, J = 8.3 Hz). 13C
NMR (CDCl3, 100 MHz): δ = 51.5, 69.3, 101.7, 114.7, 123.4 (q, J = 270.3 Hz), 126.4 (q, 2C,
J = 3.6 Hz), 127.7 (2C), 132.8 (q, J = 33.5 Hz), 134.9, 157.8, 166.5 ppm. HRMS (ESI+): m/z
[M + Na]+ calculated for C13H10F3NO3Na 308.0510, found 308.0510. (Z-isomer, minor):
(88.0 mg, 15%). Yellow solid: 1H NMR (CDCl3, 400 MHz): δ = 3.71 (s, 3H), 5.18 (d, 1H,
J = 6.9 Hz), 5.89 (s, 1H), 6.62 (d, 1H, J = 6.9 Hz), 7.73 (dd, 4H, J = 8.6 Hz and 4.6 Hz). 13C
NMR (CDCl3, 100 MHz): δ = 51.2, 71.2, 101.8, 115.1, 123.4 (q, J = 273.8 Hz), 126.4 (q, 2C,
J = 3.9 Hz), 127.5 (2C), 132.6 (q, J = 33.1 Hz), 135.2, 152.5, 164.3 ppm.

Methyl 3-(cyano(naphthalen-2-yl)methoxy)acrylate (7l). (E-isomer, major): (360.9 mg,
67%). White solid: 1H NMR (CDCl3, 400 MHz): δ = 3.71 (s, 3H), 5.57 (d, 1H, J= 12.6 Hz),
5.81 (s, 1H), 7.56 (d, 1H, J = 8.6 Hz), 7.55–7.58 (m, 2H), 7.60 (d, 1H, J = 12.6 Hz), 7.86–7.89 (m,
2H), 7.92 (d, 1H, J = 8.6 Hz), 7.99 (s, 1H). 13C NMR (CDCl3, 100 MHz): δ = 51.4, 70.5, 101.4,
115.3, 123.6, 127.2, 127.6, 127.7, 127.8, 128.3, 128.4, 129.6, 132.7, 133.9, 158.0, 166.7 ppm.
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HRMS (ESI+): m/z [M + Na]+ calculated for C16H13NO3Na 290.0793, found 290.0794. (Z-
isomer, minor): (147.6 mg, 28%). Yellow solid: 1H NMR (CDCl3, 400 MHz): δ = 3.71 (s, 3H),
5.09 (d, 1H, J = 7.0 Hz), 6.00 (s, 1H), 6.64 (d, 1H, J = 7.0 Hz), 7.55–7.58 (m, 3H), 7.84–7.89 (m,
2H), 7.91 (d, 1H, J = 8.6 Hz), 8.05 (s, 1H). 13C NMR (CDCl3, 100 MHz): δ = 51.1, 72.1, 100.9,
115.6, 123.7, 127.1, 127.4, 127.6, 127.7, 128.4, 128.5, 129.7, 132.7, 133.9, 152.7, 164.5 ppm.

Methyl 3-(cyano(3-methylnaphthalen-2-yl)methoxy)acrylate (7m). (E-isomer, major): (233.8 mg,
46%). White solid: 1H NMR (CDCl3, 500 MHz): δ = 2.66 (s, 3H), 3.71 (s, 3H), 5.58 (d, 1H,
J = 12.4 Hz), 6.40 (s, 1H), 7.33 (d, 1H, J = 8.4 Hz), 7.52 (t, 1H, J = 7.9 Hz), 7.57 (d, 1H,
J = 12.4 Hz), 7.62 (t, 1H, J = 7.9 Hz), 7.87 (d, 2H, J = 8.4 Hz), 8.22 (d, 1H, J = 8.4 Hz). 13C
NMR (CDCl3, 125 MHz): δ = 20.5, 51.4, 65.5, 100.9, 115.5, 123.1, 123.8, 125.9, 127.6, 128.0,
129.0, 130.6, 131.6, 132.8, 136.2, 158.2, 166.8 ppm. HRMS (ESI+): m/z [M + Na]+ calculated
for C17H15NO3Na 304.0950, found 304.0955. (Z-isomer, minor): (137.6 mg, 27%). Brown
solid: 1H NMR (CDCl3, 500 MHz): δ = 2.70 (s, 3H), 3.69 (s, 3H), 5.03 (d, 1H, J = 7.0 Hz), 6.44
(s, 1H), 6.56 (d, 1H, J = 7.0 Hz), 7.34 (d, 1H, J = 8.4 Hz), 7.52 (t, 1H, J = 7.4 Hz), 7.64 (t, 1H,
J = 7.4 Hz), 7.86 (d, 2H, J = 8.4 Hz), 8.34 (d, 1H, J = 8.4 Hz). 13C NMR (CDCl3, 125 MHz):
δ = 20.5, 51.3, 67.7, 100.8, 116.0, 123.4, 124.1, 125.9, 127.7, 128.9, 129.1, 130.8, 131.6, 132.9,
136.6, 153.2, 164.6 ppm.

Methyl 3-(cyano(9H-fluoren-2-yl)methoxy)acrylate (7n). (E-isomer, major): (412.1 mg,
67%). Yellow solid: 1H NMR (CDCl3, 500 MHz): δ = 3.72 (s, 3H), 3.92 (s, 2H), 5.55 (d,
1H, J = 12.5 Hz), 5.70 (s, 1H), 7.35–7.42 (m, 2H), 7.49 (d, 1H, J = 7.5 Hz), 7.57 (d, 1H,
J = 7.5 Hz), 7.59 (d, 1H, J = 12.5 Hz), 7.68 (s, 1H), 7.80–7.84 (m, 2H). 13C NMR (CDCl3,
125 MHz): δ = 36.7, 51.4, 70.5, 101.1, 115.5, 120.4, 120.5, 124.1, 125.1, 126.4, 126.9, 127.7,
129.0, 140.1, 143.5, 144.1, 144.2, 158.2, 166.7 ppm. HRMS (ESI+): m/z [M + Na]+ calculated
for C19H15NO3Na 328.0950, found 328.0951. (Z-isomer, minor): (162.2 mg, 27%). Orange
solid: 1H NMR (CDCl3, 500 MHz): δ = 3.72 (s, 3H), 3.94 (s, 2H), 5.10 (d, 1H, J = 7.1 Hz), 5.90
(s, 1H), 6.65 (d, 1H, J = 7.1 Hz), 7.35–7.42 (m, 2H), 7.56 (t, 2H, J = 7.6 Hz), 7.74 (s, 1H), 7.81
(d, 1H, J = 7.6 Hz), 7.84 (d, 1H, J = 7.6 Hz). 13C NMR (CDCl3, 125 MHz): δ = 36.9, 51.2, 72.2,
100.8, 115.8, 120.4, 120.5, 124.2, 125.2, 126.4, 127.0, 127.8, 129.3, 140.3, 143.6, 144.2, 144.3,
152.8, 164.6 ppm.

Methyl 3-(cyano(phenanthren-9-yl)methoxy)acrylate (7o). (E-isomer, major): (434.8 mg,
69%). White solid: 1H NMR (CDCl3, 500 MHz): δ = 3.71 (s, 3H), 5.54 (d, 1H, J = 12.5 Hz),
6.25 (s, 1H), 7.35–7.42 (m, 4H), 7.66 (d, 1H, J = 12.5 Hz), 7.91–7.94 (m, 2H), 8.07 (s, 1H), 8.64
(d, 1H, J = 8.4 Hz), 8.71 (d, 1H, J = 8.4 Hz). 13C NMR (CDCl3, 125 MHz): δ = 51.4, 69.4,
101.5, 115.1, 122.6, 123.3, 123.5, 124.6, 127.4, 127.5, 127.6, 127.8, 128.7, 129.4, 129.5, 129.9,
130.6, 131.3, 157.6, 166.7 ppm. HRMS (ESI+): m/z [M + Na]+ calculated for C20H15NO3Na
340.0950, found 340.0946. (Z-isomer, minor): (177.2 mg, 28%). White solid: 1H NMR
(CDCl3, 500 MHz): δ = 3.68 (s, 3H), 5.03 (d, 1H, J = 7.1 Hz), 6.39 (s, 1H), 6.68 (d, 1H,
J =7.1 Hz), 7.62 (t, 1H, J = 6.9 Hz), 7.65–7.72 (m, 3H), 7.90 (d, 1H, J = 7.9 Hz), 8.08 (s, 1H),
8.10 (d, 1H, J = 6.9 Hz), 8.60 (d, 1H, J = 8.4 Hz), 8.66 (d, 1H, J = 8.4 Hz). 13C NMR (CDCl3,
125 MHz): δ = 51.1, 71.1, 100.8, 115.5, 122.5, 123.3, 123.8, 124.8, 127.3, 127.5, 127.6, 127.8,
128.6, 129.4, 129.8, 129.8, 130.8, 131.3, 151.9, 164.4 ppm.

Methyl 3-(cyano(thiophen-2-yl)methoxy)acrylate (7p). (E-isomer, major): (282.0 mg, 64%).
Orange oil: 1H NMR (CDCl3, 400 MHz): δ = 3.70 (s, 3H), 5.52 (d, 1H, J = 12.6 Hz), 5.91 (s,
1H), 7.04 (dd, 1H, J = 5.1 and 3.6 Hz), 7.33 (d, 1H, J = 3.6 Hz), 7.47 (d, 1H, J = 5.1 Hz), 7.52
(d, 1H, J = 12.6 Hz). 13C NMR (CDCl3, 100 MHz): δ = 51.4, 65.5, 101.6, 114.6, 127.3, 129.4,
129.5, 132.9, 157.3, 166.6 ppm. HRMS (ESI+): m/z [M + Na]+ calculated for C10H9NO3SNa
246.0201, found 246.0201. (Z-isomer, minor): (115.1 mg, 26%). Orange oil: 1H NMR (CDCl3,
400 MHz): δ = 3.70 (s, 3H), 5.11 (d, 1H, J = 7.2 Hz), 6.06 (s, 1H), 6.63 (d, 1H, J = 7.2 Hz),
7.06 (dd, 1H, J = 5.1 and 3.7 Hz), 7.38 (d, 1H, J = 3.7 Hz), 7.50 (d, 1H, J = 5.1 Hz). 13C NMR
(CDCl3, 100 MHz): δ = 51.2, 67.0, 101.3, 114.9, 127.4, 129.7, 129.8, 133.2, 151.6, 164.4 ppm.

Methyl 3-(benzo[b]thiophen-3-yl(cyano)methoxy)acrylate (7q). (E-isomer, major): (347.8 mg,
64%). Yellow solid: 1H NMR (CDCl3, 500 MHz): δ = 3.71 (s, 3H), 5.59 (d, 1H, J = 12.5 Hz),
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6.00 (s, 1H), 7.43–7.49 (m, 2H), 7.60 (d, 1H, J = 12.5 Hz), 7.80 (d, 1H, J = 7.2 Hz), 7.83 (s,
1H), 7.90 (d, 1H, J = 7.2 Hz), 13C NMR (CDCl3, 125 MHz): δ = 51.5, 65.4, 101.6, 114.6, 121.5,
123.1, 125.2, 125.5, 125.6, 129.4, 135.4, 140.7, 157.5, 166.6 ppm. HRMS (ESI+): m/z [M + Na]+

calculated for C14H11NO5SNa 296.0357, found 296.0349. (Z-isomer, minor): (152.5 mg,
28%). Yellow oil: 1H NMR (CDCl3, 500 MHz): δ = 3.69 (s, 3H), 5.07 (d, 1H, J = 7.1 Hz), 6.16
(s, 1H), 6.65 (d, 1H, J = 7.1 Hz), 7.42–7.48 (m, 2H), 7.86 (s, 1H), 7.88 (d, 1H, J = 7.0 Hz), 7.95
(d, 1H, J = 7.0 Hz), 13C NMR (CDCl3, 125 MHz): δ = 51.2, 67.2, 101.0, 115.0, 122.0, 123.0,
125.3, 125.6, 125.9, 129.2, 135.4, 140.7, 152.0, 164.4 ppm.

Methyl 3-(1-cyanopropoxy)acrylate (3r). (E-isomer, major): (207.5 mg, 62%). Transparent
liquid: 1H NMR (CDCl3, 400 MHz): δ = 1.11 (t, 3H, J = 7.4 Hz), 1.97–2.04 (m, 2H), 3.70 (s,
3H), 4.54 (t, 1H, J = 6.5 Hz), 5.41 (d, 1H, J = 12.6 Hz), 7.56 (d, 1H, J = 12.6 Hz). 13C NMR
(CDCl3, 100 MHz): δ = 8.8, 26.5, 51.4, 69.4, 100.3, 115.9, 158.7, 166.8 ppm. HRMS (ESI+):
m/z [M + Na]+ calculated for C8H11NO3Na 192.0637, found 192.0633. (Z-isomer, minor):
(99.0 mg, 29%). Transparent liquid: 1H NMR (CDCl3, 400 MHz): δ = 1.13 (t, 3H, J = 7.4
Hz), 1.99–2.07 (m, 2H), 3.68 (s, 3H), 4.60 (t, 1H, J = 6.5 Hz), 5.07 (d, 1H, J = 7.0 Hz), 6.58 (d,
1H, J = 7.0 Hz). 13C NMR (CDCl3, 100 MHz): δ = 8.8, 26.7, 51.1, 72.1, 100.1, 116.4, 153.8,
164.5 ppm.

Methyl 3-(1-cyanobutoxy)acrylate (7s). (E-isomer, major): (219.4 mg, 59%). Transparent
liquid: 1H NMR (CDCl3, 400 MHz): δ = 0.95 (t, 3H, J = 7.2 Hz), 1.46–1.55 (m, 2H), 1.87–1.94
(m, 2H), 3.66 (s, 3H), 4.58 (t, 1H, J = 6.5 Hz), 5.39 (d, 1H, J = 12.6 Hz), 7.46 (d, 1H, J = 12.6 Hz).
13C NMR (CDCl3, 100 MHz): δ = 13.1, 17.6, 34.6, 51.2, 68.1, 100.2, 116.1, 158.7, 166.7 ppm.
HRMS (ESI+): m/z [M + Na]+ calculated for C9H13NO3Na 206.0793, found 206.0792. (Z-
isomer, minor): (113.6 mg, 31%). Transparent liquid: 1H NMR (CDCl3, 400 MHz): δ = 0.98
(t, 3H, J = 7.1 Hz), 1.54–1.63 (m, 2H), 1.93–2.03 (m, 2H), 3.69 (s, 3H), 4.64 (t, 1H, J = 6.5 Hz),
5.07 (d, 1H, J = 7.1 Hz), 6.57 (d, 1H, J = 7.1 Hz). 13C NMR (CDCl3, 100 MHz): δ = 13.2, 17.8,
35.0, 51.1, 70.9, 100.1, 116.5, 153.8, 164 ppm.

Methyl 3-((1-cyanopentyl)oxy)acrylate (7t). (E-isomer, major): (169.3 mg, 43%). Trans-
parent oil: 1H NMR (CDCl3, 500 MHz): δ = 0.90 (t, 3H, J = 7.72 Hz), 1.31–1.39 (m, 2H),
1.44–1.50 (m, 2H), 1.92–1.96 (m, 2H), 3.68 (s, 3H), 4.58 (t, 1H, J = 6.50 Hz), 5.40 (d, 1H,
J = 12.8 Hz), 7.47 (d, 1H, J = 12.8 Hz). 13C NMR (CDCl3, 125 MHz): δ = 13.5, 21.8, 26.3,
32.5, 51.3, 68.3, 100.2, 116.1, 158.7, 166.8 ppm. HRMS (ESI+): m/z [M + Na]+ calculated for
C10H15NO3 220.0950, found 220.0952. (Z-isomer, minor): (88.2 mg, 22%). Transparent oil:
1H NMR (CDCl3, 500 MHz): δ = 0.92 (t, 3H, J = 7.2 Hz), 1.34–1.41 (m, 2H), 1.48–1.54 (m,
2H), 1.94–2.02 (m, 2H), 3.67 (s, 3H), 4.63 (t, 1H, J = 6.5 Hz), 5.06 (d, 1H, J = 7.14 Hz), 6.57 (d,
1H, J = 7.1 Hz). 13C NMR (CDCl3, 125 MHz): δ = 13.6, 21.8, 26.3, 32.7, 51.0, 71.1, 99.9, 116.5,
153.8, 164.5 ppm.

Methyl 3-((1-cyanoheptyl)oxy)acrylate (7u). (E-isomer, major): (173.3 mg, 39%). Transpar-
ent oil: 1H NMR (CDCl3, 500 MHz): δ = 0.84 (t, 3H, J = 6.9 Hz), 1.25–1.33 (m, 6H), 1.43–1.49
(m, 2H), 1.90–1.95 (m, 2H), 3.66 (s, 3H), 4.58 (t, 1H, J = 6.5 Hz), 5.39 (d, 1H, J = 12.2 Hz),
7.47 (d, 1H, J = 12.2 Hz). 13C NMR (CDCl3, 125 MHz): δ = 13.7, 22.2, 24.1, 28.2, 31.2, 32.7,
51.2, 68.3, 100.1, 116.0, 158.6, 166.7 ppm. HRMS (ESI+): m/z [M + Na]+ calculated for
C12H19NO3Na 248.1263, found 248.1260. (Z-isomer, minor): (73.0 mg, 16%). Transparent
oil: 1H NMR (CDCl3, 500 MHz): δ = 0.87 (t, 3H, J = 6.9 Hz), 1.27–1.31 (m, 4H), 1.32.−1.38
(m, 2H), 1.50–1.56 (m, 2H), 1.95–2.03 (m, 2H), 3.68 (s, 3H), 4.64 (t, 1H, J = 6.8 Hz), 5.06 (d,
1H, J = 7.1 Hz), 6.58 (d, 1H, J = 7.1 Hz). 13C NMR (CDCl3, 125 MHz): δ = 13.9, 22.4, 24.3,
28.3, 31.3, 33.0, 51.1, 71.1, 100.1, 153.8, 164.5 ppm.

Methyl 3-(1-cyano-2-methylpropoxy)acrylate (7v). (E-isomer, major): (181.7 mg, 50%).
Transparent oil: 1H NMR (CDCl3, 400 MHz): δ = 1.05 (d, 3H, J = 6.7 Hz), 1.08 (d, 3H,
J = 6.7 Hz), 2.15–2.21 (m, 1H), 3.66 (s, 3H), 4.40 (d, 1H, J = 5.8 Hz), 5.46 (d, 1H, J = 12.7 Hz),
7.47 (d, 1H, J = 12.7 Hz). 13C NMR (CDCl3, 100 MHz): δ = 17.0, 17.4, 51.2, 73.7, 100.0, 115.2,
158.9, 166.8 ppm. HRMS (ESI+): m/z [M + Na]+ calculated for C9H13NO3Na 206.0793,
found 206.0792. (Z-isomer, minor): (85.5 mg, 23%). Yellow oil: 1H NMR (CDCl3, 400 MHz):
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δ = 1.11 (d, 3H, J = 6.7 Hz), 1.14 (d, 3H, J = 6.7 Hz), 2.20–2.29 (m, 1H), 3.68 (s, 3H), 4.39 (d,
1H, J = 6.9 Hz), 5.05 (d, 1H, J = 7.0 Hz), 6.56 (d, 1H, J = 7.0 Hz). 13C NMR (CDCl3, 100 MHz):
δ = 17.3, 17.6, 51.1, 76.7, 100.0, 115.7, 154.1, 164.6 ppm.

Methyl 3-(1-cyano-2,2-dimethylpropoxy)acrylate (7w). (E-isomer, major): (534 mg, 68%).
Transparent oil: 1H NMR (CDCl3, 500 MHz): δ = 1.11 (s, 9H), 3.71 (s, 3H), 4.19 (s, 1H), 5.44
(d, 1H, J = 12.7 Hz), 7.52 (d, 1H, J = 12.7 Hz). 13C NMR (CDCl3, 125 MHz): δ = 25.0 (3C),
35.4, 51.4, 77.5, 100.0, 115.2, 159.2, 166.9 ppm. HRMS (ESI+): m/z [M + Na]+ calculated
for C10H15NO3Na 220.0950, found 220.0951. (Z-isomer, minor): (213.5 mg, 27%). White
solid: 1H NMR (CDCl3, 500 MHz): δ = 1.11 (s, 9H), 3.66 (s, 3H), 4.21 (s, 1H), 5.01 (d, 1H,
J = 6.8 Hz), 6.56 (d, 1H, J = 6.8 Hz). 13C NMR (CDCl3, 125 MHz): δ = 25.0 (3C), 35.6, 50.9,
80.3, 99.5, 115.7, 154.8, 164.5 ppm.

4. Conclusions

We have shown that the organocatalytic multicomponent cyanovinylation of aldehy-
des is a powerful synthetic tool for the synthesis of conjugated cyanomethyl vinyl ethers
3. The power of this synthetic tool was demonstrated in the synthesis of an array of 3-
(cyanomethoxy)acrylates 7 endowed with a diverse substitution pattern at the position C-3.
The reaction was performed in a three-component format using as inputs an aldehyde, ace-
tone cyanohydrin (5), methyl propiolate (4) and a catalytic amount of N-methylmorpholine.
The 3CR was performed at room temperature in n-hexanes to deliver (E/Z)-3-substituted-
3-(cyanomethoxy)acrylates 7 in excellent yields and with a preponderance of the E-isomer.
The reaction is highly tolerant to the structure and composition of the aldehyde (aliphatic,
aromatic, heteroaromatic), and it is instrumentally simple (one batch, open atmospheres),
economical (2.5 mol% catalyst, stoichiometric reagents), environmentally friendly (no toxic
waste), and sustainable (easy scalability).

Supplementary Materials: 1H and 13C NMR spectra for compounds 7 are available online.
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