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Abstract: Lung cancer is one of the most common malignancies with the highest mortality rate and
the second-highest incidence rate after breast cancer, posing a serious threat to human health. The
accidental discovery of the antitumor properties of cisplatin in the early 1960s aroused a growing
interest in metal-based compounds for cancer treatment. However, the clinical application of cisplatin
is limited by serious side effects and drug resistance. Therefore, other transition metal complexes
have been developed for the treatment of different malignant cancers. Among them, Ru(II/III)-based
complexes have emerged as promising anticancer drug candidates due to their potential anticancer
properties and selective cytotoxic activity. In this review, we summarized the latest developments
of Ru(II/III) complexes against lung cancer, focusing mainly on the mechanisms of their biological
activities, including induction of apoptosis, necroptosis, autophagy, cell cycle arrest, inhibition of cell
proliferation, and invasion and metastasis of lung cancer cells.

Keywords: Ruthenium complexes; lung cancer

1. Introduction

Primary bronchogenic carcinoma, also known as lung cancer, is a malignant tumor that
originates from the bronchial mucosa or gland. With a high incidence and mortality rate,
lung cancer poses a serious threat to human health, while its cases and deaths rise every
year [1]. Although its incidence follows breast cancer, lung cancer remains the leading cause
of cancer death, with approximately 1.8 million deaths (18%) worldwide [2]. Moreover, the
global cancer burden is expected to increase by 47% in 2040 compared to 2020, reaching a
total of 28.4 million cases [2]. However, current advances in novel chemotherapeutic agents,
targeted therapies, standardized diagnosis, and staging and multidisciplinary treatment of
lung cancer have improved patient survival rates [3]. Nevertheless, the prognosis of lung
cancer patients is still poor due to insufficient early diagnosis.

Lung cancer can be classified into central and peripheral lung cancer depending on
the anatomical part affected, as well as into two main pathological entities: non-small-cell
lung cancer (NSCLC) and small-cell lung cancer (SCLC). NSCLC can be further subdivided
into three histological subtypes: lung squamous cell carcinoma, lung adenocarcinoma,
and large cell carcinoma. NSCLC, which accounts for about approximately 85% of lung
cancer cases, has shown an increased mortality rate in recent years. Radical surgery is the
most common treatment applied to early-stage NSCLC patients, while chemotherapy is
mainly used for NSCLC patients in advanced or recurrent stages [3]. Moreover, NSCLC
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patients with unresectable tumors in the advanced stage are still treated with Pt-based
doublet chemotherapies such as cisplatin–etoposide and carboplatin–paclitaxel [4]. Cur-
rently, chemotherapy combined with Pt-based antineoplastic agents, such as cisplatin,
oxaliplatin, and carboplatin, has been efficiently used to treat various cancers, including
NSCLC. However, lung cancer patients show different sensitivity to Pt-based chemother-
apy and 20–40% of them tend to relapse within six months after treatment [5]. It is also
known that the anticancer activity of cisplatin targeting nuclear DNA is based on the
formation of cisplatin–DNA adducts, which stop DNA replication and transcription, while
triggering cancer cell apoptosis [6,7]. However, tumor resistance to cisplatin reduces the
accumulation of drugs in cancer cells, rapid DNA repair, and upregulation of transcription
factors [8], thus significantly limiting its clinical application. Moreover, Pt drugs can lead
to serious side effects, such as nephrotoxicity, ototoxicity, nausea, vomiting, hair loss, etc.,
further limiting their effective use [8,9]. Therefore, researchers have focused on the devel-
opment of alternative anticancer drugs to overcome the drawbacks of Pt-based agents in
NSCLC patients.

Considering the effectiveness of cisplatin and its derivatives, other transition-metal
complexes, such as Ru-, Ir-, Rh-, Pd-, Au-, and Os-based complexes, have emerged as a new
generation of promising anticancer agents due to their potential anticancer properties and
selective cytotoxic activity [10–13]. Among them, Ru complexes have received particular
attention owing to their good biodistribution and multimodal actions. Moreover, Ru com-
pounds can effectively bind to the serum transferrin receptor, which is highly expressed in
tumor cells, thus increasing the number of Ru–transferrin complexes that could preferably
be delivered at the tumor site [14,15]. Ru can be found in two stable oxidation states
(II and III) [16], which can coordinate with ancillary ligands of different geometries to
prepare diverse Ru(II/III) complexes with different steric and electronic properties [17].
For example, arene has been widely used as a ligand, as it can stabilize the oxidation
state of metal complexes. Hence, a series of hydrophilic and hydrophobic arene Ru(II/III)
complexes have been designed and synthesized with great potential for the development
of metal-based chemotherapeutic drugs [18,19]. There are few studies focused on Ru(IV)
complexes that search for efficient anticancer candidates. Of note are the recent research
reported by Lu, Y et al. who have proposed a novel dual-targeting Ru(IV) candidate with
antitumor and antimetastatic properties in vitro and in vivo studies via the PARP/ATM
pathway [20]. There are different signaling pathways that participate in the anticancer
activity of various Ru complexes, including the mitochondria-mediated pathway, the DNA
damage-mediated pathway, and the death receptor-mediated pathway [21,22].

Ru complexes can also trigger phototoxicity in cells, which induces a series of pho-
tochemical and photobiologic processes, leading to irreversible photodamage in tumor
tissues [16]. Thus, Ru compounds, such as Ru(II) polypyridyl complexes, which could
interact with bovine serum albumin (BSA) and with DNA via minor grooves [23–26], are
considered attractive photo-mediated activation prodrugs for photodynamic therapy (PDT)
and photoactivated chemotherapy (PACT) [27]. Given also that photofrin, a hematopor-
phyrin derivative, is the only PDT drug approved by the Food and Drug Administration
for cancer therapy, including early and advanced lung cancer [28,29], extensive studies
have been performed to develop novel Ru(II/III) complexes for efficient cancer treat-
ment [16,18,30]. Metal-based anticancer candidate imidazolium [trans-RuCl4(1H-imidazole)
(DMSO-S) (NAMI-A; DMSO = dimethyl sulfoxide) (Figure 1) was the first Ru compound
to be studied on human beings, which has reached the phase II stage [31–34]. The study
was launched in 2008 when NAMI-A administered in combination with gemcitabine was
given to patients with advanced NSCLC [34]. Previously, fundamental works have shown
that its lower molar cytotoxicity over cisplatin results from its reduced reactivity against
DNA in intact cells, and more studies in animal models have exhibited the excellent and
selective activity against lung metastases of some solid metastasizing tumors at a concen-
tration with relatively mild toxicity [32,33,35]. The other two important promising Ru(III)
complexes that have entered clinical trials were indazolium [trans-RuCl4(1H-indazole)2]
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(KP1019) [36–39] and sodium [trans-RuCl4(1H-indazole)2] (KP1339) [40] (Figure 1). The
pharmacokinetics of KP1019, which was characterized by a small volume of distribution,
low clearance, and long half-life, has been researched in a phase I dose-escalation study,
in which five out of six patients treated with KP1019 experienced disease stabilization
with no severe side effects [36,39]. With these pioneering works, Ru complexes are at-
tracting increasing attention from chemical researchers. The recent years have witnessed
the development of Ruthenium complexes as second-generation metal-based anticancer
agents, possessing high potency of targeting cancer cells due to their low toxicity, the
ability to induce apoptosis, selective anti-invasion, and anti-metastasis activity [41–43].
Some of them have also shown anti-angiogenic properties and could therefore be used
to inhibit angiogenesis, the basis of tumor growth and metastasis [44]. Moreover, with
the purpose of improving their in vivo stability, solubility, cellular uptake, and effective-
ness, some research groups with meticulous design have developed special drug delivery
systems (nanoparticles, liposomes, etc.), which could encapsulate Ru-based compounds
appropriately [30,45–47].
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Figure 1. Structures of three important Ruthenium complexes entering clinical trials.

Based on these promising results, in this review, we summarize the recent findings
on the anticancer mechanisms of Ru-based compounds targeting lung cancer, including
apoptosis, autophagy, necroptosis, anti-metastasis, and cell cycle arrest (Figure 2 and
Table 1).
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Table 1. Ruthenium complexes as promising candidates against lung cancer.

No. IC50 (µ/M) Cell Lines Biology and Mechanism Ref.

Ru1 10–12.5 ± 0.5 H1299 Cytotoxicity [48]Ru2 15–20 ± 0.5 H1299

Ru3 30 ± 5 A549 (1) Anti-proliferation
(2) Pro-apoptosis

(3) Caspase 3/7-dependent apoptosis
[49]

Ru4
5 ± 2.6 A549

Ru5 18 ± 0.67 A549 (1) Anti-proliferation
(2) Pro-apoptosis

(3) Enhanced the LDH, NO, and ROS release
[50]Ru6 24 ± 1.0 A549

Ru7 22 ± 1.17 A549
Ru8 24 ± 0.93 A549

Ru9/G26b
Ru10/G94a >200 A549

(1) Anti-proliferation
(2) Anti-metastasis

(3) Suppressed MMP-2, MMP-9 and VEGF
[51]

Ru11/AH197 5.0 HOP-62 Anti-metastasis and inhibited cell motility [51]

Ru12 0–20
0–20

A549
A427

(1) Anti-proliferation
(2) Pro-apoptosis

(3) G0/G1 phase arrest
(4) DNA damage, caspase-dependent apoptosis involving PARP activation and

induction of p53-dependent pathway

[51]

Ru13 - A549 (1) Anti-proliferation [51]

Ru14 30.9 A549
(1) Anti-proliferation

(2) G0/G1 phase arrest
(3) induced late apoptosis

[51]

Ru15–18 - A549 (1) Anti-proliferation [51]

Ru19 1.39 ± 0.15
3.39 ± 0.47

A549
A549cisR

(1) Anti-proliferation
(2) Induced apoptosis

(3) Anti-migration and anti-invasion
[51]

Ru20 1.41 ± 0.23
5.70 ± 0.33

A549
A549cisR

(1) Anti-proliferation
(2) Induced apoptosis [51]

Ru21 17.34 ± 0.42
51.59 ± 2.57

A549
HBE

(1) Anti-proliferation
(2) Pro-apoptosis

(3) Generated a peak of apoptosis in sub-G1 phase, via both mitochondrial and
death receptor apoptotic pathways

[51]

Ru22 21.97 ± 2.31 A549
Anti-proliferation [51]Ru23 444.38 ± 3.19 A549

Ru24 37.62 ± 2.83 A549

Ru25 >240 A549

(1) Anti-proliferation
(2) Apoptosis induction

(3) S-phase arrest, G2/M phase arrest
(4) Anti-metastasis

(5) Inhibited MMP2 and MMP9 enzyme activities, intrinsic mitochondrial
pathway-triggered apoptosis

[52]

Ru26 158 ± 15 A549 (1) Anti-proliferation
(2) Anti-metastasis

(3) Inhibited MMP2 and MMP9 enzyme activities

[53]

Ru27
14.1 ± 0.3 A549

Ru28 10.7 ± 0.7 A549

(1) Anti-proliferation
(2) Anti-metastasis

(3) G0/G1 phase arrest
(4) Pro-apoptosis

(5) Inhibited MMP2 and MMP9 enzyme activities, caspase-independent
apoptosis

[52]

Ru29 >240 A549
(1) Anti-proliferation
(2) Anti-metastasis

(3) Inhibited MMP2 and MMP9 enzyme activities
[53]

Ru30 3.8 (2.3–6.2)
40.3 (22.6–71.7)

A549
BEAS-2B

(1) Anti-proliferation
(2) G2/M phase arrest

(3) The changes in morphology and organization patterns of the actin
cytoskeleton, apoptosis, mitochondrial membrane potential changes and DNA

damage result from increased ROS

[54]

Ru31 11.3 ± 1.1
54.3 ± 3.4

A549
BEAS-2B

(1) Anti-proliferation
(2) Induced apoptosis

(3) Through Mitochondrial Apoptotic Pathway, and ROS accumulation, DNA
damage

[55]

Ru32
30.1 ± 1.2
48.1 ± 3.7

A549
BEAS-2B

Ru33 1.5 ± 0.3 A549

(1) Anti-proliferation
(2) Induced apoptosis

(3) G0/G1 phase arrest
(4) Through an intrinsic ROS-mediated mitochondrial dysfunction pathway

[56]
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Table 1. Cont.

No. IC50 (µ/M) Cell Lines Biology and Mechanism Ref.

Ru34 12.94 ± 0.43 (Dark)
13.84 ± 3.57 (Light) A549

(1) Anti-proliferation [57]
Ru35 17.42 ± 2.39 (Dark)

2.90 ± 0.83 (Light) A549

Ru36 6.03 ± 0.89 (Dark)
1.25 ± 0.17 (Light) A549

(1) Anti-proliferation
(2) Phototoxicity

(3) Induced apoptosis
(4) ROS production and increased Bax/Bcl2 ratio and PERK levels

[57]

Ru37 89.30 ± 3.95 (Dark)
21.89 ± 4.53 (Light) A549 (1) Anti-proliferation [57]

Ru38 18.3 ± 2.7 A549

(1) Anti-proliferation
(2) Induced apoptosis

(3) G0/G1 phase arrest
(4) Via the mitochondrial pathway, ROS accumulation, the mitochondrial
dysfunction and Bcl-2 and caspase correlative family member activation

[58]

Ru39
21.24 ± 1.24
23.10 ± 3.2

176.47 ± 13.4

A549
NCI-H460

HBE

(1) Anti-proliferation
(2) Apoptosis and autophagy induction

(3) Mitochondrial dysfunction, ROS generation, caspase 3-dependent
apoptosis, ERK mediated-autophagy

[59]

Ru46 3.0 ± 0.1 A549

(1) topo I and II inhibitors
(2) induced necroptosis, via ROS burst, plasma membrane permeabilization,

and cytosolic ATP reduction
(3) induced DNA damage, activated PARP1, RIPK1, RIPK3, and MLKL

[60]

Ru47

Normoxia
17.5 ± 5.7 (24 h)
3.4 ± 0.5 (48 h)

Hypoxia
10.9 ± 2.8 (24 h)
4.9 ± 1.6 (48 h)

A549

(1) Anti-proliferation
(2) Anti-metastasis, Anti-invasion

(3) Pro-apoptosis
(4) S-phase arrest

(5) Decreased the number of adherent cells to different surfaces (fibronectin,
collagen, plastic) and the expression of several MMPs and protein-lysine
6-oxidase, increased the expression of the extracellular matrix inhibitor

[61]

Ru48/Ru-hq1 50.9 ± 5.3 (2D)
103.9 ± 10.8 (3D) A549 (1) Anti-proliferation

(2) Anti-migration, anti-invasion
(3) Pro-apoptosis

(4) G2/M phase arrest

[62]

Ru49/Ru-hq2
24.9 ± 6.5 (2D)

213.6.9 ± 8.6 (2D) A549

Ru50/PIPE 17.99 ± 0.39 (24 h)
4.11 ± 0.27 (48 h) A549

(1) Anti-proliferation
(2) Induced apoptosis
(3) G1/S phase arrest

(4) Reduced cyclin D1 expression and ERK phosphorylation levels, and
induced apoptosis by intrinsic pathway

[63]

Ru51 10.0 ± 1.0 A549 (1) Anti-proliferation
(2) S-phase arrest [64]Ru52 7.0 ± 0.5 A549

Ru53 3.0 ± 0.5 A549

2. Ru(III) Complexes

Ru(III) complexes are rapidly evolving into next-generation anticancer drugs. Ru(III)
hydrazone complexes owing uncoordinated phenolic oxygen were offered as better drug
candidates than Ru(II) complexes with the same ligands because the phenolic oxygen in
Ru(III) complexes could effectively interact with biomolecules by hydrogen bond, while
phenolic oxygen of Ru(II) complexes was deprotonated for coordinating with Ru metal [50].
Moreover, several Ru(III) complexes that have entered clinical trials in different phases, such
as KP1019 [36–39], KP-1339 [40], and NAMI-A [31–33,65], showed promising anticancer
activity with limited side effects and have been used to prepare various derivatives.

2.1. Apoptosis

Recent studies have shown that Ru(III) complexes inhibit tumor cell proliferation
by inducing apoptosis, which refers to genetically identified programmed cell death and
plays a vital role in normal tissue homeostasis [66]. Apoptosis is not only involved in
the occurrence and growth of tumors but can also trigger cancer cell death, making it a
suitable pathway for the development of anticancer drugs [67]. There are two main types
of apoptosis pathways: the intrinsic pathway, which depends on mitochondria, and the
extrinsic pathway, which depends on death receptors [67,68].

The tryptamine-based mixed ligand Schiff base Ru(III) complexes Ru(Cl)2(SB) (phen = 1,
10-Phenenthroline) (SB = Schiff base) (Ru1) and Ru(Cl)2(SB)(bipy) (bipy = 4,4′-bipyridine)
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(Ru2) (Figure 3) showed moderate antibacterial activity against Gram-positive and Gram-
negative strains, but significantly high anticancer activity against NSCLC cells (H1299).
In addition, they exhibited high cytotoxicity to NSCLC cells with IC50 = 10–12.5 ± 0.5
and 15–20 ± 0.5 µg/mL, respectively, but low toxicity to human erythrocytes compared
to cisplatin [48]. Further cell studies indicated that the mechanism of action of Ru(III)
complexes bearing tetradentate bis (aminophenolate) ligands against various cell types,
including lung cancer, was based on the induction of programmed cell death [69]. In
the case of mer- [RuCl3(PPh3)(dmpbt)] (Ru3) and fac- [RuCl3(PPh3)(dmpbt)] (Ru4) (PPh3
= triphenylphosphine, dmpbt = 2-(3,5-dimethylpyrazoll-yl) benzothiazole) (Figure 3),
apoptosis was further promoted by their caspase 3/7 activity [49]. In another study, Ru(II)
and Ru(III) hydrazone complexes {[RuIII(HL) Cl2(PPh3)2] (Ru5), [RuII(L)(CO)(PPh3)2]
(Ru6), ([RuIII(HL) Cl2(AsPh3)2] (Ru7), and [RuII(L)(CO)(AsPh3)2] (Ru8)} (Figure 3) were
prepared through a one-pot process and enhanced the release of lactate dehydrogenase,
nitric oxide, and ROS [50]. The chromatin condensation, nuclear shrinkage, and plasma
membrane blebbing were also observed using fluorescence microscopy, indicating that
their in vitro cytotoxicity toward A549 cells resulted from apoptosis induction [50].
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2.2. Anti-Metastasis

Cancer therapies generally fail when genetically unstable cancer cells adapt to the
tissue microenvironment, leading to tumor metastasis [70,71]. Tumor metastasis involves
several steps, including loss of cell adhesion, increased motility and invasiveness, entry and
survival into the circulation, and eventual settlement into new tissues or distant organs [72].
Metastatic tumors are resistant to various cancer therapies, especially drugs and radiother-
apy [73], indicating the need for the development of new compounds targeting the tumor
metastasis pathway [74]. To date, various analogs have been designed and synthesized to
prevent metastasis and/or inhibit the growth of metastatic tumors. Antineoplastic Ru(III)
complexes are currently the most effective, such as NAMI-A, which can greatly reduce
lung metastasis and the formation of solid metastasizing tumors in mice [75]. Therefore,
a series of NAMI-A derivatives have been prepared that could modify important metas-
tasis parameters such as tumor invasion, matrix metalloproteinases (MMP) activity, and
cell cycle progression [42]. The new analogs also maintained the potent characteristics
of NAMI-A and could selectively interact with solid metastatic tumors. Furthermore,
the introduction of different ligands improved their stability in aqueous solutions [76].
Two NAMI-A derivatives bearing a pyridine ligand, Ru9/G26b and Ru10/G94a (Figure 4),
displayed little direct cytotoxicity to human (A549) and mouse Lewis lung cancer cells
but had a significant suppressive effect on the invasion and migration of cancer cells [51].
Like with NAMI-A, in vivo studies in 4T1 mammary carcinoma-bearing mice showed
that the occurrence and development of lung metastasis were suppressed significantly
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and that no retinal toxicity or hepatotoxicity was found in mice after intraperitoneal in-
jection of Ru9 and Ru10 at a dose of 17.5 mg/kg per day for consecutive 6 days, with
three times in a 1-day interval. Ru9 in particular could suppress important molecules
involved in metastasis, such as MMP-2 and MMP-9, and the vascular endothelial growth
factor [51]. More interestingly, plasma atomic emission spectrometry showed that Ru9
possessed higher metabolic stability due to having a longer Ru-elimination time in the
lungs, indicating its better anti-metastatic effect compared to NAMI-A and Ru10 [51]. In
an earlier study, the hetero multinuclear complex [Na2] {[RuCl4(DMSO-S)(µ-pyz)]2PtCl2},
AH197 (Ru11/AH197) was also synthesized [77], and its effect on the motility and DNA
electrophoretic mobility of NSCLC (A549) and breast cancer (MDA-MB-231) cells was
compared to that of [K] [RuCl4(DMSO-S)(µ-pyz)Pt(DMSO-S)Cl2] (IT127), NAMI-A, and
Na [trans-RuCl4(DMSO)(pyz)] (AH403) [78]. The Ru2Pt trinuclear species showed higher
inhibitory activity in the order Ru11 > IT127 > NAMI-A > AH403 (Figure 4) [78], while
it was shown that the inhibition of cell motility might contribute to the anti-metastatic
properties of the complexes [79].
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3. Ru(II) Complexes

Ru(II) complexes are also known for their low toxicity, different modes of action, and
non-cross resistance to traditional Pt-based drugs, especially cisplatin. Therefore, recent
studies have focused on understanding the anticancer mechanism of Ru(II) complexes to
develop more effective Ru(II)-based drug candidates.

3.1. Apoptosis

With air stability, aqueous solubility, and structural diversity, the versatile half-
sandwich Ru(II)-η6-p-cymene complexes have been reported as potential anticancer drugs,
as they show distinct anti-proliferative activity and can effectively induce apoptosis [80].
For instance, [(Ru(η6-p-cymene)Cl)2(1,3,5-triaza-7-phosphaadamantane)] (RAPTA-C) (Figure 5)
inhibited tumor metastasis and growth by inducing the apoptosis of Ehrlich ascites carci-
noma cells through mitochondrial and p53-JNK pathways [81]. Similarly to RAPTA-C, a
bimetallic Ru(II) cymene complex, [(Ru(η6-p-cymene) Cl)2(1,3-bis(2-methyl-6-(pyridin-2-yl)
pyrimidin-4-yl) benzene)] (Ru12) (Figure 5), showed strong anticancer activity toward
human NSCLC A549 and A427 cancer cells by inhibiting cell proliferation, migration,
and invasion, which was stable in solution state in D2O/DMSO-d6 mixture as well as in
solid state under air and light [82]. Mitochondria-mediated apoptosis of NSCLC was also
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observed upon treatment with Ru12, followed by an increase in the apoptosis regulator Bax
and caspase-3/-9 activation. Thus, Ru12 induced DNA damage and cell death via caspase-
dependent apoptosis by activating poly(ADP-ribose) polymerase(PARP) and triggering
the p53-dependent pathway [82]. Moreover, Ru12 inhibited cancer cell migration and
invasion, which in turn blocked the expression of the c-Myc(myelocytomatosis) oncogene
that is important for cell cycle progression, apoptosis, and cellular transformation, and
it has been related to cancer metastasis [82,83]. In a current study, another two sets of
organometallic arene Ru(II) complexes against cancer cells (NSCLC A549, colon adenocar-
cinoma LoVo, and hepato cellular carcinoma HuH-7) have been reported by Balaji, S and
coworkers. Structurally, the complexes with p-cymene moiety outperformed the anticancer
activity of the complexes containing benzene moiety, in that the latter had less hydrophobic
interaction with the cell membrane [84].
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Recently, six new bimetallic Ru(II) arene complexes [Ru2(η6-p-cymene)2(1,3-bib)2Cl2]X2
(X = Cl− (Ru13), I− (Ru14), NO3

− (Ru15), BF4
− (Ru16), PF6

− (Ru17), and CF3SO3
− (Ru18);

1,3-bib = 1,3-di(1H-imidazol-1-yl) benzene) were designed and synthesized [85]. Ru13–18
(Figure 5) performed good stability in aqueous solution, and UV-Vis spectra also suggested
that bidentate imidazole-based ligand strengthens the stability of the Ru-arene complex,
comparing to mononuclear N-heterocyclic ligand. All showed moderate proliferative or
anti-proliferative activity due to their interaction with glutathione on lung (A549) cancer
cells, but strong intercalative binding ability to ctDNA. Moreover, Ru14 showed a relatively
better anti-proliferative activity compared to the other complexes due to the increased po-
larization of I−. Further treatment of A549 cells with Ru14 led to concentration-dependent
late apoptosis and cell cycle arrest in the G1/G0 phase. In a subsequent study, a hydrazone
moiety was rationally incorporated into two tetranuclear arene Ru(II) complexes, Ru19
and Ru20 (Figure 5), to improve their pharmacological activity [86]. With high stability in
DMEM containing 10%FBS and PBS with 10%DMSO, both complexes had high anticancer
activity in vitro and could induce the apoptosis of various human cancer cell lines, includ-
ing cisplatin-resistant lung (A549) cancer cells. To certify the systemic toxicity of Ru19,
a series of animal experiments were conducted by the group. Impressively, no damage
was observed in major organs, including the kidney, in the mice treatment with Ru19
(6 mg/kg), while a mass of vacuolization in the cell cytoplasm of renal tubules were found
in the cisplatin-treated mice, suggesting that the compound Ru19 exhibited lower systemic
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toxicity and was potentially more tolerated by animals than cisplatin [86]. Apart from
targeting cisplatin-resistant cancer cells to address chemoresistance issue, Teixeira, R. G
et al. proposed a novel approach that organometallic Ru(II) compounds increased cisplatin
cytotoxicity up to 1390-fold at nontoxic doses by inhibiting multidrug resistance-associated
protein 1 (MRP1) and the P-glycoprotein 1 (Pgp) transporters [87]. It further promoted
Ru(II) compounds as more valuable and prospective agents for lung cancer chemotherapy,
in particular for those patients with cisplatin resistance.

A series of Ru(II) methylimidazole complexes (Ru21–24) (Figure 6) with strong anti-
proliferative activity against various human cancer cells were also synthesized [88]. Al-
though Ru12 induced NSCLC apoptosis via the mitochondria-dependent pathway [82],
two pathways were involved in the mechanism of action of Ru21. Specifically, Ru21 acti-
vated the BID protein and depleted the mitochondrial membrane potential in A549 cells
by regulating the expression of pro-survival and pro-apoptotic Bcl-2 family proteins [88].
Moreover, the Ru(II) polypyridyl complexes Ru25 and Ru28 (Figure 6) showed completely
different mechanisms [52]. Ru25 induced marginal oxidative stress and preferably accu-
mulated in lysosomes, triggering apoptosis via an intrinsic mitochondrial pathway, while
enlarged mitochondria were detected in Ru25-treated A549 cells. In contrast, Ru28, which
was mainly localized in mitochondria and endoplasmic reticulum, did not have the same
effect and induced caspase-independent apoptosis [52].
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ROS are generated under normal cell activity and are involved in cellular signal-
ing. However, high ROS levels produced mainly by mitochondrial dysfunction may lead
to oxidative damage of cellular structures such as DNA damage and apoptosis [89,90].
Therefore, agents modulating ROS generation have been designed for clinical cancer
therapy. For instance, Ru30 [54], Ru31–32 [55], Ru33 [56], Ru36 [57], and Ru38 [58]
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(Figures 6 and 7) altered the mitochondrial function and generated ROS in lung tumor
cells, leading to various adverse effects. [cis-[Ru(η2-O2CC7H7O2)(dppm)2]PF6] (dppm
= bis(diphenylphosphino)methane) (Ru30), with stability in DMSO monitored by 31P
{1H} NMR experiments, showed high cytotoxic activity against Leishmania promastig-
otes [91,92] and selectively targeted lung target tumor cells [54], while no toxic effect was
observed on normal bronchial epithelial BEAS-2B cells. In addition, the increased ROS
levels generated by 3.8 µM Ru30 in A549 lung tumor cells caused oxidative stress, which
led to proliferation inhibition, changes in the morphology and organization patterns of the
actin cytoskeleton, G2/M phase arrest, apoptosis, changes in the mitochondrial membrane
potential, and DNA damage [54]. Ru31 [Ru(dip)2(SA)] and Ru32 [Ru(dmp)2(SA)] (dip = 4,
7-diphenyl-1,10-phenanthroline; dmp = 2,9-dimethyl-1,10-phenanthroline; SA = salicylate),
two Ru(II) complexes bearing O,O-chelated ligands with low toxicity to BEAS-2B, could
also induce apoptosis in A549 cells via caspase family proteins and PARP activation, ROS
accumulation, DNA damage, MMP reduction, and Cytochrome c release from mitochon-
dria [55]. Significant in vitro anticancer activity, combined with proven solution stability
and hydrophobic property, prompted the group to further conduct in vivo experiments to
test the toxicity [55]. Accordingly, developing zebrafish embryos were used, incubating
with various concentrations (0, 12.5, 25, 50, 100, and 200 µM) of Ru31 in water. Although
lower cumulative hatch rate and increased lethality rate, even unhealthy features such as
pericardial cysts and spine curvature were notably observed with treatment concentrations
up to 200 µM, but there were no apparent side effects found in zebrafish embryos after
treatment with concentrations from 12.5 to 50 µM of Ru31. Combined with low toxicity
towards both normal BEAS-2B cells in vitro and zebrafish embryos in vivo implied that
Ru31 has great potential to develop as a promising therapeutic agent against lung cancer
with safety profiles [55].
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Caspase-related family proteins are key components of induction and transduction
of apoptotic signaling in cells and are closely related to BCL-2 family proteins that either
induce (pro-apoptotic) or inhibit (anti-apoptotic) apoptosis [93,94]. Ru31 downregulated
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the expression levels of the anti-apoptotic proteins BCL-2 and BCL-xL, whereas it upregu-
lated the levels of the pro-apoptotic proteins BAX and BAD [55]. Since the high expression
levels of BCL-2 and BCL-xL have been associated with cisplatin resistance and tumor re-
currence in NSCLC patients [95], Ru31 may indirectly inhibit the resistance and relapse of
lung cancer. [Ru(dmp)2(pddppn)](ClO4)2 (pddppn = phenantheno [1,2-b]-1,4-diazabenzo
[i] dipyrido [3,2-a:2′,3′-c]phenazine) (Ru33) could also downregulate the expression of
BCL-2, BCL-x, BAK, and BIM, while upregulating the expression of BAG-1 and BAD, thus
inducing apoptosis of NSCLC A549 cells via an intrinsic ROS-mediated mitochondrial
dysfunction pathway [56]. Moreover, Ru33 effectively inhibited the growth of BEL-7402
(human hepatocellular cell line), HeLa (human cervical cancer cell line), MG-63 (human
osteosarcoma cell line), and A549 cancer cells with IC50 values of 1.6 ± 0.4, 9.0 ± 0.8,
1.5 ± 0.2, and 1.5 ± 0.3 µM, respectively [56].

Another study investigated the mechanism of action of Ru complexes, showing that
Ru36 can lead to significant ROS production and induce apoptosis, while increasing the
BAX/BCL-2 ratio and PERK levels without affecting the expression of caspase-3 [57]. Four
additional Ru(II) complexes with different ancillary ligands { [Ru(bpy)2(dmbpy)](PF6)2
(Ru34), [Ru(phen)2(dmbpy)](PF6)2 (Ru35), [Ru(bphen)2(dmbpy)](PF6)2 (Ru36), [Ru(BPS)2dmbpy]
Na2 (Ru37) (dmbpy = dimethyl-2,2′-bipyridine)} (Figure 7) were also prepared in the
same study, and their effect on NSCLC (A549) and triple-negative breast (MDA-MB-231)
cancer cells were investigated [57]. The increase in lipophilicity as a strategy to enhance
the cellular uptake and the antiproliferative activity of the Ruthenium complexes on
cancer cells is important [96,97]. Among them, Ru36 was the only lipophilic complex and
exhibited the highest cellular uptake and significant phototoxicity [57]. [Ru(MeIm)4(p-
cpip)]2+ (p-cpip = 2-(4-chlorophenyl)-1H-imidazo [4,5-f] [1,10]phenanthroline, MeIm = 1-
methylimidazole) (Ru38) has also been recently synthesized and characterized, exhibiting
relatively high cytotoxicity against lung cancer (A549) cells, as well as high selectivity to
tumor vs. normal cells compared to cisplatin [58]. In addition, Ru38 induced apoptosis via
the mitochondrial pathway, which involved ROS accumulation, mitochondrial dysfunction,
and activation of BCL-2 and caspase family proteins [58].

3.2. Autophagy

Unlike apoptosis, autophagy is an evolutionarily conserved degradation pathway
for the recycling of cytoplasmic components and plays a significant role in response to
metabolic and therapeutic stresses [98,99]. Recent studies presented scientific evidence
supporting the participation of autophagy in tumor progression, such as the development
of multidrug resistance of cancer cells, but autophagy also can help in killing cancer cells
that are resistant to anticancer agents as a potential target for cancer therapy [99,100].

To the best of our knowledge, there are only a few studies on the inhibition of cell
growth caused by metal complexes through autophagy induction. For instance, a Pt-
based complex, [Pt(O,O’-acac)(γ-acac)(DMS)], induced autophagy in Caki-1 renal can-
cer cells [101] and rat B50 neuroblastoma [102]. Apart from Pt-based agents, Piccolo M
et al. [103] and Irace C et al. [104] have certified that the activation of autophagic pathways
is a common feature with Ru(III) complexes against breast cancer cells. These findings
could pave the way for the development of other autophagy-inducing metal complexes
to overcome apoptosis-resistant cancer cells. In 2016, the mechanism of Ru(II) complex
targeting lung cancer cells by autophagy induction was reported by Chen, L et al. for
the first time [59]. Specifically, the formation of autophagosomes and acidic vesicular
organelles along with LC3-II upregulation was observed in A549 and NCI-H460 cancer
cells treated with a Ru(II) imidazole complex, [Ru(Im)4(dppz)]2+ (dppz = pyrido [3.2-
a:2′,3′-c]phenazine) (Ru39) (Figure 7). Ru39 caused mitochondrial dysfunction and ROS
generation in A549 cells, thus partially inducing caspase-3-dependent apoptosis, which
causes cell death, as well as autophagy mediated by the extracellular signal-regulated
kinase (ERK) signaling pathway. Eventually, the accumulation of Ru39 in mitochondria
could induce autophagy and compete with mitochondria-mediated apoptosis [59]. Fur-
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thermore, the antitumor activity of Ru39 was further evaluated in vivo mice bearing A549
xenografts, which were treated with Ru39 at 10 or 20 mg/kg. After 28 days, it was observed
that the weight and volume of tumors were significantly reduced, and the expressions of
LC3-II, cleaved caspase-3, CD-31, and Ki-67 were up-regulated via immunohistochemical
analysis. Accordingly, Ru39 could inhibit tumor growth very well in vitro and in vivo
and develop as a promising anticancer candidate promoting cell death via both apoptosis
and autophagy pathway [59]. Resembled Ru-based complexes were also highly active
against glioblastoma cell lines, inducing cell death via apoptosis and autophagy in a
p53-independent manner [105].

3.3. Necroptosis

Promoting apoptosis is one of the main methods to treat tumors. However, the
anti-apoptotic properties may lead to resistance to cytotoxic chemotherapeutic drugs or
radiotherapy [106]. Necroptosis is another type of regulated cell death closely related to the
receptor-interacting protein kinases 1 and 3 (RIPK1 and RIPK3) and mixed-lineage kinase
domain-like protein (MLKL) [107]. Necroptosis begins with the activation of RIPK and
MLKL, which increase the levels of Ca2+, causing lysosomal membrane permeabilization,
and release cathepsins into the cytosol [108]. Although relevant studies are scarce, a recent
report has shown that inducing necroptosis in cancer cells can overcome chemotherapy
failure due to apoptotic resistance [109], while metal complexes have been shown to induce
cancer cell death through necroptosis [110,111].

A series of Ru(II) complexes bearing 1,1-(pyrazin-2-yl) pyreno [4,5-e] [1,2,4] triazine
with different ancillary ligands have been recently prepared and used to induce necroptosis
by Xiong K et al. (Ru40–46) (Figure 8) [60]. All analogs showed significant antitumor
activity against drug-resistant cancer cells, including A549 lung cancer cells (IC50 (Ru46)
= 3.0 ± 0.1 µM). More importantly, Ru40–46 prevented the DNA binding of topoiso-
merases (topo) I and II, which are crucial nuclear enzymes that regulate DNA replication,
transcription, recombination, and chromosome segregation during mitosis [60,112]. The
characteristic indicators of necroptosis, including ROS burst, plasma membrane permeabi-
lization, and cytosolic ATP reduction, were also reported, while the cell signaling pathway
from topo I and II inhibition, DNA damage, and PARP1 activation to necroptosis induced
by the activation of RIPK1, RIPK3, and MLKL were elucidated [60]. In contrast, the group
also reported a collection of Ru(II) complexes containing asymmetric tridentate ligands
that could induce DNA damage and cancer cell death through apoptosis, which were also
topo I and II inhibitors [113]. Moreover, caspase-8 has been proven to regulate the switch
from apoptosis to necroptosis [114].
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3.4. Anti-Metastasis

Ru(II) compounds can not only suppress the primary tumor but also effectively inhibit
malignant tumor metastasis. A series of recently synthesized Ru(II)-containing polypyridyl
ligand complexes (Ru25–29 (Figure 6) [53] and Ru47 (Figure 9) [61]) showed anti-metastatic
properties, which was attributed to their targeting ability to MMPs [53]. Ru25–29 bearing
2,2′-bipyridine substituted with a semicarbazone-2-formylopyridine moiety as one of
the ligands and 4,4′-di-tert-butyl-2,2′-dipyridyl or 4,7-diphenyl-1,10-phenanthroline as
auxiliary ligands have been studied for their effect on the adhesion properties of human
A549 and pancreatic cancer cells [53]. All complexes enhanced the cell adherent properties
and could directly inhibit the activity of MMP2 and MMP9 enzymes in vitro. Among
them, Ru28 led to the most significant enhancement of cell adhesion with increasing
concentration [53].

Molecules 2021, 26, x FOR PEER REVIEW 14 of 21 
 

 

anti-metastatic properties, which was attributed to their targeting ability to MMPs [53]. 

Ru25–29 bearing 2,2′-bipyridine substituted with a semicarbazone-2-formylopyridine 

moiety as one of the ligands and 4,4′-di-tert-butyl-2,2′-dipyridyl or 4,7-diphenyl-1,10-phe-

nanthroline as auxiliary ligands have been studied for their effect on the adhesion prop-

erties of human A549 and pancreatic cancer cells [53]. All complexes enhanced the cell 

adherent properties and could directly inhibit the activity of MMP2 and MMP9 enzymes 

in vitro. Among them, Ru28 led to the most significant enhancement of cell adhesion with 

increasing concentration [53]. 

Another Ru polypyridyl complex bearing an nitroimdazole unit {[Ru(dip)2(bpy-2-ni-

troIm)]Cl2 (dip = 4,7-diphenyl-1,10-phenanthroline, bpy-2-nitroIm = 4- [3-(2-nitro-1H-im-
idazol-1-yl) propyl]-2,2′-bipyridine)} (Ru47) could reduce the activity of MMP enzymes 

to inhibit tumor metastasis [115], while its effect on cancer and endothelial cells has also 

been reported [61]. Similar to Ru25–29, Ru47 changed the cell adhesion properties, thus 

reducing the number of adherent cells on different surfaces (fibronectin, collagen, and 

plastic) and the expression levels of several MMPs (MMP1a, MMP3, MMP9, LOX, TIMP1, 

THBS1, and ITB1) and protein-lysine 6-oxidase, while increasing the expression of the ex-

tracellular matrix inhibitor [61]. Ru47 was also studied in hypoxia, as hypoxia results from 

poor vascular organization of the tumor, promoting drug resistance and malignant pro-
gression [116,117]. The results suggested that Ru47 was more cytotoxic against human 

breast (4T1) and lung (A549) cancer cells than cisplatin, while it induced cell apoptosis 

and affected endothelial cell vasculature by activating oxidative stress and modulating 

the mRNA expression profile of ICAM-1 and VCAM-1 genes involved in metastasis and 

angiogenesis [61]. 

Two other complexes, Ru48/Ru-hq1 [η6-p-cymene) Ru(5-bromo-8-hydroxyquino-

linato) Cl] and Ru49/Ru-hq2 [(η6-p-cymene) Ru (k2-O,N-5,7-dibromo-HyQ) Cl] (Figure 

9), have also been screened as potential novel agents for bone, lung, and breast cancer 

chemotherapy [62]. Both complexes are stable in DMSO and DMEM solution within the 

time-frame of the biological experiments and attenuated cell viability with greater selec-

tivity and specificity than cisplatin, while they inhibited cell proliferation, migration, and 

invasion on cell monolayers at lower concentrations (2.5–10 µM). The higher inhibitory 

effect of Ru48/Ru-hq1 and Ru49/Ru-hq2 on cell invasion compared to cisplatin was fur-

ther confirm using 3D multicellular spheroid models [62]. Similar results were obtained 

for Ru19, which inhibited cancer cell migration and invasion and had higher safety mar-

gins for animals than cisplatin [86]. Therefore, Ru48–49 and Ru19 may be used as cisplatin 

alternatives to manage lung cancer and inhibit tumor metastasis. 

 

Figure 9. Structures of promising Ru(II) complexes inhibiting tumor metastasis. Figure 9. Structures of promising Ru(II) complexes inhibiting tumor metastasis.

Another Ru polypyridyl complex bearing an nitroimdazole unit {[Ru(dip)2(bpy-2-
nitroIm)]Cl2 (dip = 4,7-diphenyl-1,10-phenanthroline, bpy-2-nitroIm = 4- [3-(2-nitro-1H-
imidazol-1-yl) propyl]-2,2′-bipyridine)} (Ru47) could reduce the activity of MMP enzymes
to inhibit tumor metastasis [115], while its effect on cancer and endothelial cells has also
been reported [61]. Similar to Ru25–29, Ru47 changed the cell adhesion properties, thus
reducing the number of adherent cells on different surfaces (fibronectin, collagen, and
plastic) and the expression levels of several MMPs (MMP1a, MMP3, MMP9, LOX, TIMP1,
THBS1, and ITB1) and protein-lysine 6-oxidase, while increasing the expression of the
extracellular matrix inhibitor [61]. Ru47 was also studied in hypoxia, as hypoxia results
from poor vascular organization of the tumor, promoting drug resistance and malignant
progression [116,117]. The results suggested that Ru47 was more cytotoxic against human
breast (4T1) and lung (A549) cancer cells than cisplatin, while it induced cell apoptosis
and affected endothelial cell vasculature by activating oxidative stress and modulating
the mRNA expression profile of ICAM-1 and VCAM-1 genes involved in metastasis and
angiogenesis [61].

Two other complexes, Ru48/Ru-hq1 [η6-p-cymene) Ru(5-bromo-8-hydroxyquinolinato)
Cl] and Ru49/Ru-hq2 [(η6-p-cymene) Ru (k2-O,N-5,7-dibromo-HyQ) Cl] (Figure 9), have
also been screened as potential novel agents for bone, lung, and breast cancer chemother-
apy [62]. Both complexes are stable in DMSO and DMEM solution within the time-frame
of the biological experiments and attenuated cell viability with greater selectivity and
specificity than cisplatin, while they inhibited cell proliferation, migration, and invasion
on cell monolayers at lower concentrations (2.5–10 µM). The higher inhibitory effect of
Ru48/Ru-hq1 and Ru49/Ru-hq2 on cell invasion compared to cisplatin was further confirm
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using 3D multicellular spheroid models [62]. Similar results were obtained for Ru19, which
inhibited cancer cell migration and invasion and had higher safety margins for animals
than cisplatin [86]. Therefore, Ru48–49 and Ru19 may be used as cisplatin alternatives to
manage lung cancer and inhibit tumor metastasis.

3.5. Cell Cycle Arrest

The cell cycle, which involves four main phases (G1, S, G2, and M), contributes signif-
icantly to the regulation of cell self-renewal and differentiation, while cyclin-dependent
kinases (CDKs) and cycle proteins play a key role in the process [118]. Therefore, clinical
trials have been performed recently to explore the synergistic effect of CDK inhibitors
and different anticancer drugs on various cancer types [119,120]. Additional studies have
shown that metallodrugs can target CDKs and cycle proteins to block the cell cycle in
different phases. For instance, Ru(II), Rh(III), Mn(II), and Zn(II) complexes blocked the
cell cycle in the S-phase, thus inhibiting cell proliferation by reducing the levels of cy-
clins A2/B1/D1/E1, CDK-2/6, and PCNA and increasing the levels of p21, p27, p53, and
CDC25A [121].

Given that the dysregulation of the cell cycle is associated with the development of
cancer, novel Ru(II)-based drugs that inhibited tumor proliferation were synthesized and
identified to disrupt the cell cycle in the G0/G1, G1/S, S, and G2/M phases (Figure 10).
Ru12 [82], Ru14 [85], Ru33 [56], Ru28 [52], and Ru38 [58] are typical examples of com-
pounds causing cell death via cell cycle arrest in the G0/G1 phase. Investigation of the
mechanism of action revealed that Ru12 could induce cell cycle arrest in the G0/G1 phase;
suppress the expression of cell-cycle-regulatory proteins, such as cyclins D1, A1, and B1,
upregulate p53, p21, and p15; and cleave PARP [82]. Interestingly, the anti-proliferative
complex Ru33 exhibited different mechanisms against different cancer cells: G2/M phase
arrest in BEL-7402 and MG-63 cells and G0/G1 phase arrest in A549 cells [56]. In addition,
Ru28 promoted cell accumulation in the G0/G1 phase, while the number of Ru25-treated
A549 cells increased remarkably in the S-phase but decreased in the G2/M phase [52].
Furthermore, the Ru(II) methylimidazole complex Ru21 inhibited the growth of A549
lung cells by inducing apoptotic cell death, as confirmed by the generation of a significant
apoptosis peak in the sub-G1 phase [88].
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The cytotoxicity of {[Ru(pipe)(dppb)(bipy)]PF6} (pipe = piperonylic acid, dppb =
1,4-bis(diphenylphosphino) butane) (Ru50) on A549 cells has been associated with the
induction of cell apoptosis via the intrinsic pathway [63]. The number of cells was signifi-
cantly increased in the G0/G1 phase of the cell cycle, while the population of A549 cells in
the S-phase was reduced when 9 µM of Ru50 was used. These results indicated that the
G1/S transition depended on the antineoplastic ability of Ru50, which reduced the cyclin
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D1 expression levels and attenuated ERK phosphorylation [63]. Furthermore, Ru(II)-based
compounds, such as the polypyridyl Ru complex Ru47 [61], arrested cell growth in the
S-phase. Similar results were also obtained for the arene Ru(II) carbazole-based hydrazone
complexes Ru51–53 [(η6-benzene) Ru(L) Cl] (L = carbazolone benzhydrazone ligands) [64]
(Figure 9), whereas Ru30 [54] and Ru48–49 [62] induced apoptosis and cell cycle arrest of
A549 lung cancer cells in the G2/M phase.

4. Conclusions/Discussions

Lung cancer remains a life-threatening malignancy due to poor prognosis and drug
resistance, which is one of the most severe challenges that still need to be addressed to
improve patients’ prognosis and survival rate. However, specific drugs preventing tumor
metastasis and recurrence have not yet been efficiently developed. In order to design and
synthesize effective anticancer agents, transition metal-based compounds have gradually
evolved as promising drug candidates due to their cytotoxicity and ability to prevent drug
resistance in tumor cells. Among them, Ru(II/III)-based compounds proved to be the
most effective, as they show high cytotoxicity, which induces apoptosis, necroptosis, or
autophagy and cell cycle arrest, thus inhibiting cell proliferation, invasion, and metastasis
(Figures 2 and 10). Most studies suggested that Ruthenium complexes were low in toxicity,
easily absorbed, and excreted quickly. More importantly, Ruthenium complexes were easily
absorbed by tumor tissues.

In this review, we summarized the recent developments of Ru(II) and Ru(III) com-
plexes and discussed their biological activity and mechanism of action against lung cancer.
The existing findings clearly support that Ru complexes can be used to develop effective
chemotherapeutic agents for human lung cancer, while they may serve as a guide for
the design of other metallodrugs with higher efficiency and better clinical application
potential. Nevertheless, the anticancer mechanisms of Ru(II/III) complexes require further
investigation, and their efficiency against other cancer types should also be explored in
future studies.

Author Contributions: Conceptualization, Q.S. and Y.L.; methodology, Q.S. and Y.L.; software, Y.L.;
validation, H.S., Y.W., J.Z. and Q.Z.; formal analysis, Q.S.; investigation, Q.S. and Y.L.; resources, J.Z.
and Q.Z.; data curation, Q.S. and Y.L.; writing—original draft preparation, Q.S. and Y.L.; writing—
review and editing, H.S., Y.W., J.Z. and Q.Z.; visualization, Y.L.; supervision, J.Z. and Q.Z.; project
administration, Q.S. and Y.L.; funding acquisition, J.Z. and Q.Z. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (21877103,
81602344, 21907069, 81802662), the Project of Natural Science Foundation of Guangdong Province
(2019A1515011958),ShenzhenScienceandTechnologyInnovationCommission(GrantNo. KQJSCX20170331104516),
SZU Medical Young Scientists Program (Grant No. 71201-000001). Medical Science and Technology
Research Foundation of Guangdong Province (Grant No. A2019475).

Acknowledgments: The authors thank Collaborative Innovation Center of Suzhou Nano Science
and Technology for support.

Conflicts of Interest: There are no conflict of interest.

Abbreviations

Ru: Ruthenium; NSCLC: non-small-cell lung cancer; SCLC: small cell lung cancer; LUSC: lung squa-
mous cell carcinoma; LUAD: lung adenocarcinoma; BSA: bovine serum albumin; PDT: photodynamic
therapy; PACT: photoactivated chemotherapy; MRP1: multidrug resistance-associated protein 1; Pgp:
P-glycoprotein 1; RIPK: receptor-interacting protein kinase; MLKL: mixed lineage kinase domain-like
protein; Topo: topoisomerase; MCS: multicellular spheroids; CDK: cyclin-dependent kinase; PARP:
Poly (ADP-ribose) polymerase protein; ERK: extracellular signal-regulated kinase; EAC: Ehrlich
ascites carcinoma; ROS: reactive oxygen species; LLC: lung cancer Lewis; VEGF: vascular endothelial
growth factor; AVOs: acidic vesicular organelles; Pt: platinum; MMPs: matrix metalloproteinases.



Molecules 2021, 26, 4389 16 of 20

References
1. Bade, B.C.; Dela Cruz, C.S. Lung Cancer 2020: Epidemiology, Etiology, and Prevention. Clin. Chest Med. 2020, 41, 1–24. [CrossRef]

[PubMed]
2. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN

Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [CrossRef]
[PubMed]

3. Zappa, C.; Mousa, S.A. Non-small cell lung cancer: Current treatment and future advances. Transl. Lung. Cancer Res. 2016, 5,
288–300. [CrossRef] [PubMed]

4. Rossi, A.; Di Maio, M. Platinum-based chemotherapy in advanced non-small-cell lung cancer: Optimal number of treatment
cycles. Expert Rev. Anticancer Ther. 2016, 16, 653–660. [CrossRef]

5. Giaccone, G.; Splinter, T.A.; Debruyne, C.; Kho, G.S.; Lianes, P.; van Zandwijk, N.; Pennucci, M.C.; Scagliotti, G.; van Meerbeeck,
J.; van Hoesel, Q.; et al. Randomized study of paclitaxel-cisplatin versus cisplatin-teniposide in patients with advanced non-
small-cell lung cancer. The European Organization for Research and Treatment of Cancer Lung Cancer Cooperative Group. J.
Clin. Oncol. 1998, 16, 2133–2141. [CrossRef]

6. Jamieson, E.R.; Lippard, S.J. Structure, Recognition, and Processing of Cisplatin-DNA Adducts. Chem. Rev. 1999, 99, 2467–2498.
[CrossRef]

7. Ghosh, S. Cisplatin: The first metal based anticancer drug. Bioorg. Chem. 2019, 88, 102925. [CrossRef] [PubMed]
8. Boulikas, T.; Vougiouka, M. Cisplatin and platinum drugs at the molecular level (Review). Oncol. Rep. 2003, 10, 1663–1682.

[CrossRef] [PubMed]
9. Oun, R.; Moussa, Y.E.; Wheate, N.J. The side effects of platinum-based chemotherapy drugs: A review for chemists. Dalton Trans.

2018, 47, 6645–6653. [CrossRef]
10. Ma, D.L.; He, H.Z.; Leung, K.H.; Chan, D.S.; Leung, C.H. Bioactive luminescent transition-metal complexes for biomedical

applications. Angew. Chem. Int. Ed. Engl. 2013, 52, 7666–7682. [CrossRef]
11. Ma, D.L.; Wu, C.; Wu, K.J.; Leung, C.H. Iridium(III) Complexes Targeting Apoptotic Cell Death in Cancer Cells. Molecules 2019,

24, 2739. [CrossRef] [PubMed]
12. Ohata, J.; Ball, Z.T. Rhodium at the chemistry-biology interface. Dalton Trans. 2018, 47, 14855–14860. [CrossRef] [PubMed]
13. Omondi, R.O.; Ojwach, S.O.; Jaganyi, D. Review of comparative studies of cytotoxic activities of Pt(II), Pd(II), Ru(II)/(III) and

Au(III) complexes, their kinetics of ligand substitution reactions and DNA/BSA interactions. Inorg. Chim. Acta 2020, 512, 119883.
[CrossRef]

14. Koiri, R.K.; Mehrotra, A.; Trigun, S.K. Targetting cancer with Ru(III/II)-phosphodiesterase inhibitor adducts: A novel approach
in the treatment of cancer. Med. Hypotheses 2013, 80, 841–846. [CrossRef] [PubMed]

15. Guo, W.; Zheng, W.; Luo, Q.; Li, X.; Zhao, Y.; Xiong, S.; Wang, F. Transferrin serves as a mediator to deliver organometallic
ruthenium(II) anticancer complexes into cells. Inorg. Chem. 2013, 52, 5328–5338. [CrossRef]

16. Lee, S.Y.; Kim, C.Y.; Nam, T.G. Ruthenium Complexes as Anticancer Agents: A Brief History and Perspectives. Drug Des. Dev.
Ther. 2020, 14, 5375–5392. [CrossRef]

17. Jablonska-Wawrzycka, A.; Rogala, P.; Michalkiewicz, S.; Hodorowicz, M.; Barszcz, B. Ruthenium complexes in different oxidation
states: Synthesis, crystal structure, spectra and redox properties. Dalton Trans. 2013, 42, 6092–6101. [CrossRef]

18. Suss-Fink, G. Arene ruthenium complexes as anticancer agents. Dalton Trans. 2010, 39, 1673–1688. [CrossRef]
19. Hairat, S.; Zaki, M. Half sandwiched Ruthenium(II) complexes: En Route towards the targeted delivery by Human Serum

Albumin (HSA). J. Organomet. Chem. 2021, 937, 121732, Corrigendum in 2021, 943, 121734. [CrossRef]
20. Lu, Y.; Zhu, D.; Gui, L.; Li, Y.; Wang, W.; Liu, J.; Wang, Y. A dual-targeting ruthenium nanodrug that inhibits primary tumor

growth and lung metastasis via the PARP/ATM pathway. J. Nanobiotechnol. 2021, 19, 115. [CrossRef]
21. Lin, K.; Zhao, Z.Z.; Bo, H.B.; Hao, X.J.; Wang, J.Q. Applications of Ruthenium Complex in Tumor Diagnosis and Therapy. Front.

Pharmacol. 2018, 9, 1323. [CrossRef]
22. Liu, J.; Lai, H.; Xiong, Z.; Chen, B.; Chen, T. Functionalization and cancer-targeting design of ruthenium complexes for precise

cancer therapy. Chem. Commun. 2019, 55, 9904–9914. [CrossRef]
23. Jakubaszek, M.; Goud, B.; Ferrari, S.; Gasser, G. Mechanisms of action of Ru(ii) polypyridyl complexes in living cells upon light

irradiation. Chem. Commun. 2018, 54, 13040–13059. [CrossRef]
24. Mede, T.; Jager, M.; Schubert, U.S. “Chemistry-on-the-complex”: Functional Ru(II) polypyridyl-type sensitizers as divergent

building blocks. Chem. Soc. Rev. 2018, 47, 7577–7627. [CrossRef]
25. Oliveira, K.M.; Honorato, J.; Goncalves, G.R.; Cominetti, M.R.; Batista, A.A.; Correa, R.S. Ru(II)/diclofenac-based complexes:

DNA, BSA interaction and their anticancer evaluation against lung and breast tumor cells. Dalton Trans. 2020, 49, 12643–12652.
[CrossRef]
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