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Abstract: The doubly decarboxylative Michael–type addition of pyridylacetic acid to chromone-
3-carboxylic acids or coumarin-3-carboxylic acids has been developed. This protocol has been
realized under Brønsted base catalysis, providing biologically interesting 4-(pyridylmethyl)chroman-
2-ones and 2-(pyridylmethyl)chroman-4-ones in good or very good yields. The decarboxylative
reaction pathway has been confirmed by mechanistic studies. Moreover, attempts to develop an
enantioselective variant of the cascade are also described.

Keywords: decarboxylation; Michael addition; chromone-3-carboxylic acid; coumarin-3-carboxylic acid

1. Introduction

Development of new C–C bond forming processes constitutes a fundamental task in
the contemporary synthetic organic chemistry. The Michael reaction [1–4] is a very powerful
means to accomplish this task, allowing access to various useful building blocks for organic
synthesis [5–11]. Decarboxylative Michael reactions, where Michael acceptors and donors
are activated through the presence of the carboxylic acid moiety, have recently emerged as
a very useful strategy to access new reactivities [12–30]. In such a setup, carboxylate moiety
serves a double purpose. It enhances the electrophilic or nucleophilic properties of the
starting material and creates the opportunity for its facile removal via the decarboxylation
process. One of the most common strategies, utilized to realize decarboxylative Michael
reaction, was the activation of the Michael donors via decarboxylation with malonic acid
half-thioesters (MAHT) and related systems being the most commonly employed [16–23].

The pyridine and chromanone motifs are found in various natural products (Scheme 1).
The chromanone ring system (chroman-2-on and chroman-4-on) and related compounds
are found in different bioactive molecules relevant for the life-science industry [31–40].
Although these compounds are abundant in nature, synthetic methods for their preparation
are not very common. On the other hand, pyridine is the second most frequent nitrogen-
containing heterocyclic scaffold, and is present in 62 U.S. FDA approved drugs displaying
a wide range of biological activities [41–47] with pyridine skeletons often serving as
“privileged” scaffolds in drug design and discovery. Moreover, it is also a versatile building
block utilized for the synthesis of chiral ligands applied in asymmetric catalysis [48–50]. In
general, significant effort has been devoted to the synthesis of pyridine derivatives [49–51].
Representative examples of pyridine and chromanone derivatives are shown in Scheme 1.

Given the importance of pyridine and chromanone chemistry for both academic and
industrial purposes studies on the development of new doubly decarboxylative routes have
been undertaken. It was anticipated that a new route to create hybrid molecules containing
both structural fragments might rely on a doubly decarboxylative Michael reaction between
2-pyridylacetic acid 1 and coumarin-3-carboxylic acid 2 or chromone-3-carboxylic acids 4.
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In this context it is worth mentioning that the addition of methyl pyridine to carboxylic
acid group-activated coumarins and chromones was a subject of previous studies [6c,d].
However, very harsh reaction conditions (reactions were performed in 1,4-dioxane at high
temperatures 120–140 ◦C) were required to accomplish this task (Scheme 2).
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Scheme 2. Previous studies and synthetic objective of the present work.

Herein, we present our studies on the reaction between coumarin-3-carboxylic acids 2
or chromone-3-carboxylic acids 3 (acting as electrophilic olefin) with 2-pyridylacetic acid
hydrochloride 1 and related systems (acting as a pronucleophiles) proceeding under mild,
basic conditions. Our studies demonstrate that activation of 2-methylpyridine through
the presence of additional carboxylic-acid-group is beneficial for the process, providing
an alternative method for the preparation of hybrid molecules containing pyridine and
chromanone units.

2. Results

In optimization studies, coumarin-3-carboxylic acid 2a or chromone-3-carboxylic acid
3a and 2-pyridylacetic acid hydrochloride 1a were selected as model reactants. The reaction
was realized under basic conditions using 20 mol% excess of base over the hydrochloride).
To our delight, in the presence of DABCO, the formation of target products 4a or 5a was ob-
served (Table 1, entry 1). Adducts 4a or 5a were isolated in 69% and 23% yields, respectively.
In the course of further studies, the influence of the base was checked (Table 1, entries 1–7).
The yield of the reaction was improved to 77% (in the case of coumarin derivative 4a)
and 56% (in the case of 4-chromone derivatives 5a) when N-methylmorpholine (NMM)
was used (Table 1, entry 7). However, the formation of various products of substrate
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degradation was observed in the 1H NMR spectra of the crude reaction mixture samples,
with the majority of side products being decarboxylated versions of the starting materials
1a, 2a and 3a. Therefore, screening of the relative substrate ratio, thus taking into account
their partial decomposition under reaction conditions, was undertaken (Table 1, entries
8–9). The use of 1,5-fold excess of 2-pyridylacetic acid hydrochloride 1 with respect to 2a or
3a proved the most effective yielding 4a or 5a in 98% or 70% yields, respectively (Table 1,
entry 11). The amount of base was kept at 20 mol% while taking into account the amount
needed to counterbalance the hydrochloride 1a (Table 1, entry 11). In the next step, we
turned our attention to solvent screening, but this did not improve the yields any further in
both variants of the reaction (Table 1, entries 13–15). In the course of further studies, the use
of coumarin 2b or 4-chromone 3b was evaluated (Table 1, entries 16 and 17). It was shown
that starting materials 2b or 3b devoided of carboxylic groups moiety were inactive due
to their decreased electrophilicity, which is consistent with the literature covering similar
reactions [51]. Additionally, the control reaction of 2-methyl pyridine 1b and 2a in the
presence of 0.2 equiv of N-methylmorpholine was performed (Table 1, entry 18) and no
reaction was observed.

Table 1. Optimization studies of doubly decarboxylative synthesis of 4-(2-pyridylmethyl)chroman-2-ones 4 and 2-(4-
pyridylmethyl)chroman-4-ones 5 a.
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No. Solvent 
Base  

(equiv.) X Y 
2 or 3 

(equiv)  1a (equiv.)  Yield of 4a 
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1 THF DABCO (1.2) COOH COOH 1.0 1.0 69 23 
2 THF DMAP (1.2) COOH COOH 1.0 1.0 62 50 
3 THF Pyrrolidine (1.2) COOH COOH 1.0 1.0 65 50 

No. Solvent Base (equiv.) X Y 2 or 3 (equiv) 1a (equiv.) Yield of 4a Yield of 5a

1 THF DABCO (1.2) COOH COOH 1.0 1.0 69 23
2 THF DMAP (1.2) COOH COOH 1.0 1.0 62 50
3 THF Pyrrolidine (1.2) COOH COOH 1.0 1.0 65 50
4 THF 2,6-lutidine (1.2) COOH COOH 1.0 1.0 54 38
5 THF TEA (1.2) COOH COOH 1.0 1.0 71 21
6 THF DIPEA (1.2) COOH COOH 1.0 1.0 74 42
7 THF NMM (1.2) COOH COOH 1.0 1.0 77 56
8 THF NMM (1.2) COOH COOH 1.5 1.0 71 63
9 THF NMM (1.2) COOH COOH 1.2 1.0 47 52

10 THF NMM (1.4) COOH COOH 1.0 1.2 82 61
11 THF NMM (1.7) COOH COOH 1.0 1.5 98 70
12 THF NMM (2.2) COOH COOH 1.0 2.0 92 70
13 Toluene NMM (1.7) COOH COOH 1.0 1.5 19 40
14 MeCN NMM (1.7) COOH COOH 1.0 1.5 75 69
15 CH2Cl2 NMM (1.7) COOH COOH 1.0 1.5 75 54
16 THF NMM (1.7) COOH H 2b (1.0) 1.5 no reaction -
17 THF NMM (1.7) COOH H 3b (1.0) 1.5 - no reaction
18 THF NMM (0.2) H COOH 2a (1.0) 1b (1.5) no reaction -

a Reactions were performed on a 0.1 mmol scale in 0.2 mL of the solvent.
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Having established the optimal reaction conditions, we turned our attention to
the scope of the method by using various, substituted coumarin-3-carboxylic acids 2
or chromone-3-carboxylic acids 3 (Schemes 3 and 4). It was demonstrated that many
substituents were well-tolerated in the case of the reaction with coumarins 2, including
electron-withdrawing, electron-donating groups, and bulky aromatic rings (Scheme 3).
Only in the case of coumarin-3-carboxylic acid 2j bearing two chloride atoms on the
aromatic ring was lower yield observed.
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In the course of further studies, the scope of the developed reactions with various
chromone-3-carboxylic acids 3 was evaluated (Scheme 4). However, it was found that
when electron-donating groups (acids 3b, 3c) as well as electron-withdrawing group (3e)
were present in chromone-3-carboxylic acid moiety, the reaction proceeded with inferior
results in comparison to their coumarin variant.
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The scope of the method with regard to pronucleophiles turned out to be challenging,
yielding no product when 4-pyridylacetic acid hydrochloride 6 was used in the reaction
with coumarin-3-carboxylic acid 2 and only 23% yield of a corresponding chromone
derivative 3, mainly due to the formation of a gel which stopped the stirrer dipole and
inhibited the reaction (Scheme 5). Interestingly, the ultrasound modification of the reaction
helped to increase the yields substantially, achieving over 95% yield for 7 and 75% for
8, respectively. In this modification the vial with a reaction mixture was subjected to
ultrasound vibrations for 1.5 h.
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Notably, the developed process can proceed according to two mechanistic scenarios
(Scheme 6). The first possibility concerns classical Michael-type addition of 9 generated
from 2-pyridylacetic acid hydrochloride 1 to chromone-3-carboxylic acid 4a followed by
a double decarboxylation. On the other hand, the second possible mechanism involves
two separate decarboxylation processes: (1) initial decarboxylation of 2-pyridylacetic
acid hydrochloride 1 to give the corresponding carbanion 10 that undergoes Michael
addition; (2) second decarboxylation of the Michael adduct to give target product 5a.
In order to confirm one of these two plausible reaction pathways, studies using mass
spectrometry were performed. Interestingly, the molecular peak corresponding to the
Michael adduct 12 was observed (cationic mode, calculated for C16H13NO4 [M + H]+:
284, found: 284). Furthermore, no molecular peak relating to 11 was detected in the
spectra. Given these results, the mechanistic scenario involving decarboxylation, Michael
addition and the second decarboxylation (Pathway b) is proposed as the one involved in
the developed methodology.
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Given the potential of the reaction, we turned our attention towards the development
of enantioselective approach (Scheme 7). It was anticipated that by using cinchona alkaloids
or their derivatives as Brønsted base catalysts in the studied reaction, access to enantiomer-
ically enriched products should be possible. A model reaction of chromone-3-carboxylic
acid 3a and 2-pyridylacetic acid hydrochloride 1 was performed in the presence of different
types of organocatalyst 13: (13a) squaramides containing cinchona alkaloid derivatives;
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(13b) thioureas containing cinchona alkaloid derivatives; (13c) thiosquaramides containing
cinchona alkaloid derivatives; (13d) protected and/or modified alkaloids without H-bond
donor amides; (13e) phase-transfer catalysts; (13f) ethers containing two cinchona alkaloid
moieties. Reaction was performed at room temperature and in tetrahydrofuran as a solvent.
All tested catalysts promoted model reaction; however, enantioselectivity of the process
was very low.
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3. Conclusions

In conclusion, a new doubly decarboxylative Michael addition of pyridylacetic acid 1
to coumarin-3-carboxylic acids 2 or chromone-3-carboxylic acids 3 was developed. The
scope studies confirmed the high efficiency of the transformation with regard to both
coumarin-3-carboxylic acids and chromone-3-carboxylic acids providing access to a wide
variety of interesting hybrid molecules bearing two important heterocyclic scaffolds:
coumarin-pyridine and chromanone-pyridine ring systems. The decarboxylative reaction
pathway has been confirmed by mechanistic studies. Initial studies on the development of
asymmetric variants of the reaction have also been described.

4. Materials and Methods
4.1. General Methods

NMR spectra (See Supplementary Materials) were acquired on a Bruker Ultra Shield
700 instrument (Bruker Corporation, Billerica, MA, USA), running at 700 MHz for 1H and
176 MHz for 13C, respectively. Chemical shifts (δ) were reported in ppm relative to residual
solvent signals (CDCl3: 7.26 ppm for 1H NMR, 77.16 ppm for 13C NMR). Mass spectra
were recorded on a Bruker Maxis Impact spectrometer using electrospray (ES+) ionization
(referenced to the mass of the charged species). Analytical thin layer chromatography
(TLC) was performed using pre-coated aluminium-backed plates (Merck Kieselgel 60
F254) and visualized by ultraviolet irradiation. Unless otherwise noted, analytical grade
solvents and commercially available reagents were used without further purification. For
flash chromatography (FC), silica gel (Silica gel 60, 230–400 mesh, Merck, Darmstadt,
Germany) was used. The enantiomeric ratio (er) of the products was determined by chiral
stationary phase HPLC (Daicel Chiralpak IA column). 2-Pyridylacetic acid hydrochloride 1
and 4-Pyridylacetic acid hydrochloride 6 were used as commercially-available reagents.
Chromone-3-carboxylic acids 2 and coumarin-3-carboxylic acids 3 were prepared from the
corresponding 2-hydroxyacetophenones following the literature procedure [52,53].

4.2. General Procedure

An ordinary screw-cap vial was charged with a magnetic stirring bar; the correspond-
ing coumarin-3-carboxylic acid 2 or chromone-3-carboxylic acid 3 (0.1 mmol, 1 equivalent),
THF (0.2 mL), N-methyl morpholine (0.17 mmol, 1.7 equivalent), and pyridylacetic acid
hydrochloride 1 or 6 (0.15 mmol, 1.5 equivalent) was added. The reaction mixture was
stirred at room temperature and monitored by 1H NMR spectroscopy. After the complete
consumption of the carboxylic acid 2a or 3a, the mixture was directly subjected to FC on
silica gel (n-hexane:ethyl acetate 3:1 or 2:1) to afford the pure products 4, 5 or 7.

The ultrasound variant of the reaction proceeded under the same reaction conditions,
however without a stirring bar and with the shorter reaction time of 1.5 h.

4-[(Pyridin-2-yl)methyl]-3,4-dihydro-2H-1-benzopyran-2-one (4a) pure product was iso-
lated by flash chromatography on silica gel (n-hexane:ethyl acetate—3:1) as colorless oil in
over 98% yield following the regular procedure and 59% yield following the ultrasound
procedure. 1H NMR (700 MHz, Chloroform-d) δ 8.60 (ddd, J = 4.8, 1.8, 0.9 Hz, 1H), 7.57 (td,
J = 7.6, 1.8 Hz, 1H), 7.27–7.23 (m, 1H), 7.17 (ddd, J = 7.5, 4.9, 1.1 Hz, 1H), 7.07 (d, J = 8.0 Hz,
1H), 7.06–7.02 (m, 2H), 6.96 (d, J = 7.7 Hz, 1H), 3.68 (dddd, J = 8.8, 6.9, 5.9, 3.7 Hz, 1H), 3.11
(dd, J = 13.8, 6.9 Hz, 1H), 2.94 (dd, J = 13.8, 8.8 Hz, 1H), 2.79 (dd, J = 16.0, 5.9 Hz, 1H), 2.73
(dd, J = 16.0, 3.7 Hz, 1H). 13C NMR (176 MHz, Chloroform-d) δ 168.1, 157.9, 151.5, 149.8,
136.7, 128.6, 127.8, 126.2, 124.5, 124.3, 122.0, 117.2, 43.2, 35.4, 34.2.

7-Methoxy-4-[(pyridin-2-yl)methyl]-3,4-dihydro-2H-1-benzopyran-2-one (4b) pure product
was isolated by flash chromatography on silica gel (n-hexane:ethyl acetate—3:1) as colorless
oil in 33% yield. 1H NMR (700 MHz, Chloroform-d) δ 8.59 (ddd, J = 4.9, 1.8, 0.9 Hz, 1H),
7.57 (td, J = 7.6, 1.8 Hz, 1H), 7.16 (ddd, J = 7.5, 4.9, 1.1 Hz, 1H), 6.95 (dt, J = 7.7, 1.0 Hz,
1H), 6.90 (d, J = 8.5 Hz, 1H), 6.62 (d, J = 2.5 Hz, 1H), 6.58 (dd, J = 8.4, 2.6 Hz, 1H), 3.78
(s, 3H), 3.60 (dddd, J = 8.6, 7.0, 6.0, 3.8 Hz, 1H), 3.07 (dd, J = 13.7, 7.0 Hz, 1H), 2.91 (dd,
J = 13.7, 8.6 Hz, 1H), 2.77 (dd, J = 15.9, 6.0 Hz, 1H), 2.71 (dd, J = 15.9, 3.8 Hz, 1H). 13C NMR
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(176 MHz, Chloroform-d) δ 168.2, 159.9, 158.1, 152.3, 149.8, 136.7, 128.4, 124.4, 122.0, 118.0,
110.6, 102.8, 55.7, 43.6, 34.8, 34.5.

6-Methoxy-4-[(pyridin-2-yl)methyl]-3,4-dihydro-2H-1-benzopyran-2-one (4c) pure product
was isolated by flash chromatography on silica gel (n-hexane:ethyl acetate—3:1) as colorless
oil in 76% yield following the regular procedure and 69% yield following the ultrasound
procedure. 1H NMR (700 MHz, Chloroform-d) δ 8.60 (ddd, J = 4.9, 1.8, 0.9 Hz, 1H), 7.59
(td, J = 7.6, 1.8 Hz, 1H), 7.18 (ddd, J = 7.5, 4.9, 1.1 Hz, 1H), 7.00 (d, J = 8.9 Hz, 1H), 6.98 (dt,
J = 7.8, 1.0 Hz, 1H), 6.78 (dd, J = 8.9, 3.0 Hz, 1H), 6.55 (d, J = 3.0 Hz, 1H), 3.70 (s, 3H), 3.63
(dddd, J = 8.8, 6.9, 5.9, 3.6 Hz, 1H), 3.10 (dd, J = 13.7, 6.9 Hz, 1H), 2.93 (dd, J = 13.7, 8.8 Hz,
1H), 2.76 (dd, J = 16.0, 5.9 Hz, 1H), 2.70 (dd, J = 16.0, 3.6 Hz, 1H). 13C NMR (176 MHz,
Chloroform-d) δ 168.3, 158.0, 156.2, 149.8, 145.4, 136.7, 127.0, 124.4, 122.0, 118.0, 114.1, 112.5,
55.7, 43.1, 35.7, 34.1.

6-Nitro-4-[(pyridin-2-yl)methyl]-3,4-dihydro-2H-1-benzopyran-2-one (4d) pure product
was isolated by flash chromatography on silica gel (n-hexane:ethyl acetate—2:1) as colorless
oil in 73% yield. 1H NMR (700 MHz, Chloroform-d) δ 8.60 (d, J = 4.2 Hz, 1H), 8.14 (dd,
J = 8.9, 2.7 Hz, 1H), 7.97 (d, J = 2.6 Hz, 1H), 7.60 (td, J = 7.6, 1.8 Hz, 1H), 7.21 (dd, J = 7.1,
5.2 Hz, 1H), 7.18 (d, J = 8.9 Hz, 1H), 6.99 (d, J = 7.7 Hz, 1H), 3.84 (dddd, J = 8.3, 7.1, 5.6,
4.3 Hz, 1H), 3.14 (dd, J = 14.0, 7.0 Hz, 1H), 3.01 (dd, J = 14.0, 8.3 Hz, 1H), 2.88–2.81 (m, 2H).
13C NMR (176 MHz, Chloroform-d) δ 166.2, 156.8, 155.9, 149.8, 144.2, 137.1, 127.2, 124.6,
124.2, 124.0, 122.5, 118.1, 42.6, 35.1, 33.6.

6-Fluoro-4-[(pyridin-2-yl)methyl]-3,4-dihydro-2H-1-benzopyran-2-one (4e) pure product
was isolated by flash chromatography on silica gel (hexane:ethyl acetate—3:1) as colorless
oil in over 95% yield. 1H NMR (700 MHz, Chloroform-d) δ 8.59 (ddd, J = 4.9, 1.8, 0.9 Hz,
1H), 7.58 (td, J = 7.6, 1.8 Hz, 1H), 7.18 (ddd, J = 7.5, 4.9, 1.1 Hz, 1H), 7.02 (dd, J = 8.9,
4.6 Hz, 1H), 6.97 (d, J = 7.7 Hz, 1H), 6.93 (ddd, J = 8.8, 8.0, 3.0 Hz, 1H), 6.73 (dd, J = 8.4,
3.0 Hz, 1H), 3.67 (dddd, J = 8.6, 7.0, 5.8, 4.0 Hz, 1H), 3.09 (dd, J = 13.8, 7.0 Hz, 1H), 2.93 (dd,
J = 13.9, 8.6 Hz, 1H), 2.76 (dd, J = 16.1, 5.8 Hz, 1H), 2.72 (dd, J = 16.1, 4.0 Hz, 1H). 13C NMR
(176 MHz, Chloroform-d) δ 167.7, 159.1 (d, J = 244.1 Hz), 157.5, 149.8, 147.5 (d, J = 2.5 Hz),
136.8, 127.9 (d, J = 7.8 Hz), 124.3, 122.2, 118.5 (d, J = 8.4 Hz), 115.3 (d, J = 23.6 Hz), 114.4 (d,
J = 24.0 Hz), 42.8, 35.3, 33.9.

6-Chloro-4-[(pyridin-2-yl)methyl]-3,4-dihydro-2H-1-benzopyran-2-one (4f) pure product
was isolated by flash chromatography on silica gel (n-hexane:ethyl acetate—2:1) as colorless
oil in 90% yield following the regular procedure and 79% yield following the ultrasound
procedure. 1H NMR (700 MHz, Chloroform-d) δ 8.60 (ddd, J = 4.9, 1.8, 0.9 Hz, 1H), 7.60 (td,
J = 7.6, 1.8 Hz, 1H), 7.22 (dd, J = 8.6, 2.5 Hz, 1H), 7.19 (ddd, J = 7.5, 4.8, 1.1 Hz, 1H), 7.03
(d, J = 2.5 Hz, 1H), 7.01 (d, J = 8.6 Hz, 1H), 6.97 (dt, J = 7.7, 1.0 Hz, 1H), 3.67 (dddd, J = 8.7,
6.8, 5.8, 4.0 Hz, 1H), 3.10 (dd, J = 13.9, 6.8 Hz, 1H), 2.93 (dd, J = 13.9, 8.7 Hz, 1H), 2.77 (dd,
J = 16.1, 5.8 Hz, 1H), 2.73 (dd, J = 16.1, 4.0 Hz, 1H). 13C NMR (176 MHz, Chloroform-d) δ
167.4, 157.5, 150.1, 149.8, 136.8, 129.6, 128.7, 127.9, 127.8, 124.3, 122.2, 118.6, 42.9, 35.3, 33.8.

6-Bromo-4-[(pyridin-2-yl)methyl]-3,4-dihydro-2H-1-benzopyran-2-one (4g) pure product
was isolated by flash chromatography on silica gel (n-hexane:ethyl acetate—3:1) as colorless
oil in 78% yield. 1H NMR (700 MHz, Chloroform-d) δ 8.59 (ddd, J = 4.9, 1.8, 0.9 Hz, 1H),
7.59 (td, J = 7.6, 1.8 Hz, 1H), 7.36 (dd, J = 8.6, 2.4 Hz, 1H), 7.18 (ddd, J = 7.6, 4.9, 1.1 Hz, 1H),
7.17 (d, J = 2.3 Hz, 1H), 6.97 (d, J = 7.7 Hz, 1H), 6.94 (d, J = 8.6 Hz, 1H), 3.66 (dddd, J = 8.8,
6.8, 5.8, 4.0 Hz, 1H), 3.09 (dd, J = 13.8, 6.8 Hz, 1H), 2.92 (dd, J = 13.9, 8.8 Hz, 1H), 2.76 (dd,
J = 16.1, 5.8 Hz, 1H), 2.72 (dd, J = 16.1, 4.0 Hz, 1H). 13C NMR (176 MHz, Chloroform-d) δ
167.4, 157.4, 150.6, 149.9, 136.8, 131.6, 130.7, 128.3, 124.3, 122.2, 119.0, 117.1, 42.9, 35.2, 33.8.

6-Methyl-4-[(pyridin-2-yl)methyl]-3,4-dihydro-2H-1-benzopyran-2-one (4h) pure product
was isolated by flash chromatography on silica gel (n-hexane:ethyl acetate—3:1) as colorless
oil in 90% yield. 1H NMR (700 MHz, Chloroform-d) δ 8.60 (d, J = 4.5 Hz, 1H), 7.58 (td,
J = 7.6, 1.7 Hz, 1H), 7.17 (dd, J = 7.3, 5.0 Hz, 1H), 7.04 (dd, J = 7.2, 1.5 Hz 1H), 6.97 (d,
J = 7.7 Hz, 1H), 6.95 (d, J = 8.2 Hz, 1H), 6.85 (s, 1H), 3.60 (dddd, J = 9.1, 6.1, 5.9, 3.7 Hz,
1H), 3.10 (dd, J = 13.7, 6.5 Hz, 1H), 2.89 (dd, J = 13.7, 9.1 Hz, 1H), 2.74 (dd, J = 16.0, 5.9 Hz,
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1H), 2.69 (dd, J = 16.0, 3.7 Hz, 1H), 2.25 (s, 3H). 13C NMR (176 MHz, Chloroform-d) δ 168.4,
158.1, 149.8, 149.4, 136.6, 134.1, 129.1, 128.2, 125.9, 124.4, 122.0, 116.9, 43.3, 35.4, 34.1, 20.8.

8-Chloro-4-[(pyridin-2-yl)methyl]-3,4-dihydro-2H-1-benzopyran-2-one (4i) pure product
was isolated by flash chromatography on silica gel (n-hexane:ethyl acetate—2:1) as colorless
oil in 85% yield. 1H NMR (700 MHz, Chloroform-d) δ 8.60 (ddd, J = 4.8, 1.8, 0.9 Hz, 1H),
7.58 (td, J = 7.6, 1.8 Hz, 1H), 7.32 (dd, J = 7.9, 1.6 Hz, 1H), 7.18 (ddd, J = 7.5, 4.9, 1.1 Hz, 1H),
6.98–6.95 (m, 2H), 6.92 (ddd, J = 7.6, 1.6, 0.6 Hz, 1H), 3.72 (dddd, J = 8.7, 7.0, 5.7, 3.7 Hz,
1H), 3.09 (dd, J = 13.8, 7.0 Hz, 1H), 2.95 (dd, J = 13.8, 8.7 Hz, 1H), 2.80 (dd, J = 16.0, 5.7 Hz,
1H), 2.76 (dd, J = 16.0, 3.7 Hz, 1H). 13C NMR (176 MHz, Chloroform-d) δ 166.8, 157.6, 149.8,
147.4, 136.8, 129.4, 128.1, 126.2, 124.8, 124.4, 122.2, 122.1, 43.0, 35.7, 33.9.

6,8-Dichloro-4-[(pyridin-2-yl)methyl]-3,4-dihydro-2H-1-benzopyran-2-one (4j) pure prod-
uct was isolated by flash chromatography on silica gel (n-hexane:ethyl acetate—2:1) as
colorless oil in 47% yield. 1H NMR (700 MHz, Chloroform-d) δ 8.60 (ddd, J = 4.8, 1.7, 0.9 Hz,
1H), 7.61 (td, J = 7.6, 1.8 Hz, 1H), 7.33 (d, J = 2.4 Hz, 1H), 7.20 (ddd, J = 7.5, 4.9, 1.0 Hz, 1H),
6.98 (d, J = 7.7 Hz, 1H), 6.93 (dd, J = 2.4, 0.6 Hz, 1H), 3.71 (dddd, J = 8.7, 6.9, 5.3, 4.1 Hz,
1H), 3.08 (dd, J = 13.9, 6.9 Hz, 1H), 2.94 (dd, J = 13.9, 8.7 Hz, 1H), 2.81–2.74 (m, 1H). 13C
NMR (176 MHz, Chloroform-d) δ 166.1, 157.1, 149.9, 146.3, 136.9, 129.5, 129.2, 129.2, 126.3,
124.3, 123.1, 122.3, 42.7, 35.6, 33.6.

1-[(Pyridin-2-yl)methyl]-1H,2H,3H-naphtho[2,1-b]pyran-3-one (4k) pure product was
isolated by flash chromatography on silica gel (n-hexane:ethyl acetate—3:1) as colorless oil
in 81% yield. 1H NMR (700 MHz, Chloroform-d) δ 8.65 (ddd, J = 4.8, 1.8, 0.9 Hz, 1H), 8.00
(d, J = 8.4 Hz, 1H), 7.84 (d, J = 8.1 Hz, 1H), 7.79 (d, J = 8.8 Hz, 1H), 7.55–7.50 (m, 2H), 7.45
(ddd, J = 8.0, 6.8, 1.1 Hz, 1H), 7.26 (d, J = 8.8 Hz, 1H), 7.17 (ddd, J = 7.5, 4.9, 0.9 Hz, 1H),
6.97 (d, J = 7.7 Hz, 1H), 4.33 (dddd, J = 10.1, 6.3, 5.1, 1.8 Hz, 1H), 3.24 (dd, J = 14.0, 5.1 Hz,
1H), 2.92 (dd, J = 14.1, 10.1 Hz, 1H), 2.88 (dd, J = 16.1, 1.8 Hz, 1H), 2.81 (ddd, J = 16.1, 6.3,
0.8 Hz, 1H). 13C NMR (176 MHz, Chloroform-d) δ 168.1, 158.0, 149.9, 149.2, 136.7, 131.1,
130.7, 129.4, 128.8, 127.4, 125.3, 124.5, 122.9, 122.0, 119.6, 117.6, 42.1, 33.3, 31.9.

2-[(Pyridin-2-yl)methyl]-3,4-dihydro-2H-1-benzopyran-4-one (5a) pure product was iso-
lated by flash chromatography on silica gel (n-hexane:ethyl acetate—3:1) as yellow oil
in 70% yield following the regular procedure and in 65% yield following the ultrasound
procedure. 1H NMR (700 MHz, Chloroform-d) δ 8.56 (ddd, J = 4.9, 1.8, 0.9 Hz, 1H), 7.88
(ddd, J = 7.8, 1.8, 0.4 Hz, 1H), 7.65 (td, J = 7.7, 1.8 Hz, 1H), 7.45 (ddd, J = 8.4, 7.2, 1.8 Hz,
1H), 7.28–7.25 (m, 1H), 7.19 (ddd, J = 7.5, 4.9, 1.1 Hz, 1H), 7.00 (ddd, J = 7.9, 7.2, 1.1 Hz,
1H), 6.93 (ddd, J = 8.4, 1.0, 0.4 Hz, 1H), 4.96 (dddd, J = 9.7, 7.0, 6.0, 5.7 Hz, 1H), 3.39 (dd,
J = 13.9, 7.0 Hz, 1H), 3.20 (dd, J = 13.9, 6.0 Hz, 1H), 2.79–2.73 (m, 2H). 13C NMR (176 MHz,
Chloroform-d) δ 192.2, 161.5, 156.8, 149.7, 136.6, 136.1, 127.1, 124.4, 122.1, 121.5, 121.2, 118.1,
77.5, 43.5, 42.7.

6-Methyl-2-[(pyridin-2-yl)methyl]-3,4-dihydro-2H-1-benzopyran-4-one (5b) pure product
was isolated by flash chromatography on silica gel (n-hexane:ethyl acetate—3:1) as yellow
oil in 53% yield. 1H NMR (700 MHz, Chloroform-d) δ 8.56 (dd, J = 4.8, 1.7 Hz, 1H), 7.68–7.62
(m, 2H), 7.27–7.25 (m, 2H), 7.18 (ddd, J = 7.6, 4.9, 1.2 Hz, 1H), 6.83 (d, J = 8.5 Hz, 1H), 4.91
(ddt, J = 9.2, 7.0, 6.1 Hz, 1H), 3.37 (dd, J = 13.9, 7.0 Hz, 1H), 3.18 (dd, J = 13.9, 6.0 Hz, 1H),
2.76–2.70 (m, 2H), 2.29 (s, 3H). 13C NMR (176 MHz, Chloroform-d) δ 192.5, 159.6, 157.0,
149.7, 137.2, 136.6, 130.9, 126.7, 124.4, 122.0, 120.8, 117.9, 77.4, 43.6, 42.7, 20.5.

7-Methyl-2-[(pyridin-2-yl)methyl]-3,4-dihydro-2H-1-benzopyran-4-one (5c) pure product
was isolated by flash chromatography on silica gel (n-hexane:ethyl acetate—3:1) as yellow
oil in 54% yield. 1H NMR (700 MHz, Chloroform-d) δ 8.56 (ddd, J = 4.9, 1.8, 0.9 Hz, 1H),
7.76 (d, J = 8.0 Hz, 1H), 7.65 (td, J = 7.7, 1.8 Hz, 1H), 7.26 (d, J = 7.8 Hz, 1H), 7.18 (ddd,
J = 7.5, 4.9, 1.1 Hz, 1H), 6.81 (ddd, J = 8.0, 1.5, 0.6 Hz, 1H), 6.73 (bs, 1H), 4.92 (dtd, J = 8.1,
7.1, 6.0 Hz, 1H), 3.36 (dd, J = 13.9, 7.1 Hz, 1H), 3.18 (dd, J = 13.9, 5.9 Hz, 1H), 2.75–2.67
(m, 2H), 2.33 (s, 3H). 13C NMR (176 MHz, Chloroform-d) δ 191.9, 161.6, 157.0, 149.7, 147.6,
136.6, 127.0, 124.4, 122.9, 122.0, 119.0, 118.1, 77.5, 43.6, 42.6, 22.0.

6-Fluoro-2-[(pyridin-2-yl)methyl]-3,4-dihydro-2H-1-benzopyran-4-one (5d) pure product
was isolated by flash chromatography on silica gel (n-hexane:ethyl acetate—3:1) as colorless
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oil in 74%. 1H NMR (700 MHz, Chloroform-d) δ 8.55 (ddd, J = 4.9, 1.7, 0.9 Hz, 1H), 7.66
(td, J = 7.7, 1.8 Hz, 1H), 7.51 (dd, J = 8.2, 3.2 Hz, 1H), 7.25 (d, J = 7.0 Hz, 1H), 7.19 (ddd,
J = 7.5, 4.9, 1.1 Hz, 1H), 7.16 (ddd, J = 9.0, 7.7, 3.2 Hz, 1H), 6.90 (dd, J = 9.1, 4.2 Hz, 1H), 4.93
(dddd, J = 11.6, 6.9, 6.0, 3.9 Hz, 1H), 3.37 (dd, J = 14.0, 6.9 Hz, 1H), 3.19 (dd, J = 14.0, 6.0
Hz, 1H), 2.77 (dd, J = 16.9, 3.9 Hz, 1H), 2.73 (dd, J = 16.9, 11.7 Hz, 1H). 13C NMR (176 MHz,
Chloroform-d) δ 191.4 (d, J = 1.6 Hz), 157.8 (d, J = 1.6 Hz), 157.3 (d, J = 241.1 Hz), 156.6,
149.7, 136.7, 124.3, 123.6 (d, J = 24.8 Hz), 122.1, 121.6 (d, J = 6.5 Hz), 119.7 (d, J = 9.5 Hz),
112.0 (d, J = 23.5 Hz), 77.7, 43.4, 42.4.

6-Chloro-2-[(pyridin-2-yl)methyl]-3,4-dihydro-2H-1-benzopyran-4-one (5e) pure product
was isolated by flash chromatography on silica gel (n-hexane:ethyl acetate—2:1) as yellow
oil in 41% yield following the regular procedure. The reaction did not yield the desired
product following the ultrasound procedure. 1H NMR (700 MHz, Chloroform-d) δ 8.56 (d,
J = 5.3 Hz, 1H), 7.82 (d, J = 2.6 Hz, 1H), 7.66 (td, J = 7.7, 1.8 Hz, 1H), 7.38 (dd, J = 8.8, 2.7 Hz,
1H), 7.25 (d, J = 7.0 Hz, 1H), 7.20 (dd, J = 7.8, 4.6 Hz, 1H), 6.89 (d, J = 8.8 Hz, 1H), 4.95
(dddd, J = 11.8, 6.9, 6.0, 3.8 Hz, 1H), 3.37 (dd, J = 14.0, 6.9 Hz, 1H), 3.20 (dd, J = 14.0, 6.1 Hz,
1H), 2.78 (dd, J = 16.9, 3.9 Hz, 1H), 2.74 (dd, J = 16.9, 11.8 Hz, 1H). 13C NMR (176 MHz,
Chloroform-d) δ 191.0, 160.0, 156.6, 149.8, 136.7, 135.9, 127.1, 126.5, 124.3, 122.2, 122.0, 119.9,
77.8, 43.4, 42.4.

4-[(Pyridin-4-yl)methyl]-3,4-dihydro-2H-1-benzopyran-2-one (7) pure product was isolated
by flash chromatography on silica gel (n-hexane:ethyl acetate—3:1) as colorless oil in over
95% yield following the ultrasound procedure. The regular procedure did not yield the
desired product. 1H NMR (700 MHz, Chloroform-d) δ 8.52–8.51 (m, 2H), 7.28 (ddd, J = 8.1,
7.6, 1.6 Hz, 1H), 7.08 (dd, J = 8.1, 1.1 Hz, 1H), 7.04 (td, J = 7.5, 1.2 Hz, 1H), 7.01–6.98 (m, 2H),
6.93 (dd, J = 7.5, 1.6 Hz, 1H), 3.26 (dddd, J = 8.5, 7.4, 5.8, 3.5 Hz, 1H), 2.91 (dd, J = 13.6, 7.4 Hz,
1H), 2.81–2.75 (m, 2H), 2.73 (dd, J = 16.0, 3.5 Hz, 1H). 13C NMR (176 MHz, Chloroform-d) δ
167.5, 151.4, 150.2, 146.9, 129.0, 127.9, 125.1, 124.6, 124.6, 117.4, 40.7, 36.8, 34.2.

2-[(Pyridin-4-yl)methyl]-3,4-dihydro-2H-1-benzopyran-4-one (8) pure product was isolated
by flash chromatography on silica gel (n-hexane:ethyl acetate—3:1) as yellow oil in 23%
yield following the regular procedure and in 75% yield following the ultrasound procedure.
1H NMR (700 MHz, Chloroform-d) δ 8.58–8.52 (m, 2H), 7.86 (ddd, J = 7.8, 1.8, 0.4 Hz,
1H), 7.47 (ddd, J = 8.4, 7.2, 1.8 Hz, 1H), 7.24–7.18 (m, 2H), 7.02 (ddd, J = 7.9, 7.2, 1.1 Hz,
1H), 6.94 (ddd, J = 8.4, 1.0, 0.4 Hz, 1H), 4.71 (dddd, J = 9.6, 7.3, 5.9, 5.2 Hz, 1H), 3.16 (dd,
J = 14.2, 7.4 Hz, 1H), 3.04 (dd, J = 14.2, 5.1 Hz, 1H), 2.74–2.67 (m, 2H). 13C NMR (176 MHz,
Chloroform-d) δ 191.6, 161.2, 150.2 (2C), 145.5, 136.3, 127.2, 125.0 (2C), 121.8, 121.1, 118.1,
77.3, 42.6, 40.6.
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