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Abstract: Ethoxycarbonyl cyanohydrins and O-acyl cyanohydrins are examples of O-protected
cyanohydrins in which the protecting group presents an electrophilic center, contributing to addi-
tional reaction pathways. The first section of this review describes recent advances on the synthesis of
O-ethoxycarbonyl and O-acyl protected cyanohydrins. Reactions using KCN or alkyl cyanoformates
as the cyanide ion source are described, as well as organic and transition metal catalysis used in
their preparation, including asymmetric cyanation. In a second part, transformations, and synthetic
applications of O-ethoxycarbonyl/acyl cyanohydrins are presented. A variety of structures has been
obtained starting from such protected cyanohydrins and, in particular, the synthesis of oxazoles,
1,4-diketones, 1,3-diketones, 2-vinyl-2-cyclopentenones through various methods are discussed.
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1. Introduction

Cyanohydrins and O-protected cyanohydrins are versatile building blocks in the
preparation of important organic compounds including α-amino aldehydes, α-hydroxy
acids, α-amino alcohols, and in the total synthesis of natural products and biologically
active compounds [1,2]. A variety of methods for the asymmetric cyanation of aldehydes
in the synthesis of cyanohydrins have been developed. Because of a reversible reaction in
basic conditions, cyanohydrins are unstable, thus O-protected cyanohydrins are preferred
(Scheme 1) [3]. In this case, intermediate B arising from the reversible addition of the
cyanide ion to the aldehyde is trapped in an irreversible step to afford the O-protected
cyanohydrin D (Scheme 2).
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Synthetic methodology to prepare cyanohydrins with protecting groups commonly
used in organic chemistry, such as tetrahydropyranyl (I, THP) [4,5], trimethylsilyl (II, TMS)
and 1-ethoxyethyl (III, EE) [6–8] have been described (Scheme 3). Such protected cyanohy-
drins can function as pronucleophiles in nucleophilic substitutions [9] and nucleophilic
additions [10]. Ethoxycarbonyl cyanohydrins IV and O-acyl cyanohydrins V are examples
of O-protected cyanohydrins in which the protecting group presents an electrophilic center.
This structural characteristic imparts additional reaction pathways besides the observed
in protected cyanohydrins with groups like TMS or THP. During the past years, reviews
have discussed the preparation and synthetic applications of cyanohydrins [11–18]. In the
reported studies, much effort has been brought on the asymmetric cyanation of aldehydes,
either using transition-metal catalysts with chiral ligands or chiral organocatalysts. Addi-
tionally, the search for green alternatives of cyanide source has attracted much attention. In
this review, we wish to focus on recent reports on the preparation and synthetic applica-
tions of O-protected cyanohydrins in which the protecting group is an alkoxycarbonyl or
acyl moiety. Such derivatives present much interest due to the additional reactivity they
impart to the cyanohydrin. The participation of these protected cyanohydrin in synthesis
is also reviewed.
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2. Synthesis of O-Protected Cyanohydrins
2.1. Synthesis of Ethoxycarbonyl Cyanohydrins

Ethyl carbonates of cyanohydrins from aromatic aldehydes have been synthetized in
water, using NaCN as the cyanide source and ethyl chloroformate as the ethylcarboxy group
source. Surfactants are used to facilitate the incorporation of the organic reagents into the
aqueous media, as shown in Scheme 4. After screening studies with 4-methylbenzaldehyde,
dodecyltrimethyl ammonium chloride (DTMAC) has been chosen as the most efficient
surfactant. Table 1 summarizes the scope of the method. High yields of products are
obtained for electron-withdrawing groups (entries 2, 3, 7, 8, 12) and electron-donating
groups (entries 4–6, 9–11) in substituted benzaldehydes. Heterocyclic benzaldehydes
(entries 13, 14) also give high yields. Easy scale up of the reaction to multigrams, short
reaction times, mild reaction conditions and facile isolation of the products characterized
this synthetic methodology [19].
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Table 1. Cyanocarbonation of aldehydes a [19].
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a Reaction conditions: aldehyde (30 mmol), ethyl chloroformate (36 mmol), and DTAC (5 mol %) in H2O (1 mL) were stirred at 4 ◦C and
NaCN (36 mmol) in H2O (1 mL) were added to the reaction mixture. b Isolated yields. c The aldehyde was dissolved in 3 mL of THF.

N-methyl-N′-alkyl imidazolium salts as ionic liquids have been employed in the
cyanoethoxycarbonylation of aldehydes [20]. Optimization studies of the reaction between
benzaldehyde and ethyl cyanoformate in the presence of an imidazolium salt as a catalyst
at room temperature showed that C-5 alkyl chain length with Br− ion as counterion
in solvent-free conditions can produce high yields of O-ethoxycarbonyl mandelonitrile.
Table 2 shows the scope of the method. Both electron-donating groups (entries 2–6) and
electron-withdrawing groups (entries 7–9) in substituted benzaldehydes give excellent
yields. Steric hindrance (entries 2 and 5) appears not to influence the reaction. With p-
tertbutylbenzaldehyde, the yield lowers to 91% (entry 11), while α, β-unsaturated (entry 10)
and aliphatic aldehydes (entries 12 and 13) also produce yields higher than 90%.
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When PF6− counterion is used the reaction does not take place. Additional experiments 
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a 0.5 g (2.3 mmol) of ionic liquid, 0.625, mmol of aldehydes and 1.2 mmol of ethylcyanoformate were stirred for 2 h at room temperature.
b Conversion determined by GC. c Isolated yields.

Kinetic and mechanistic studies in the formation of ethyl carbonates of cyanohydrins
by ethyl cyanoformate addition to aldehydes catalyzed by amines have established the
mechanism of the reaction (Scheme 5) [21]. A 13C NMR study of the reaction shows that the
Br− counterion interacts with ethyl cyanoformate to form the acylbromide and generates
CN−, which adds to the carbonyl activated by the imidazolium cation (Scheme 6). When
PF6

− counterion is used the reaction does not take place. Additional experiments showed
the reusability of the catalyst up to eight catalytic runs without depletion of the yield of
the reaction.
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It has been determined that the reaction between benzaldehyde and ethyl cyanofor-
mate catalyzed by amines follows the mechanism shown in Scheme 7 [21]. The first step is
the irreversible slow hydrolysis of ethyl cyanoformate by adventitious water to generate
the cyanide ion. The tertiary amines in this step serve as a Brønsted base, forming hydrogen
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bonding with a molecule of water. Kinetic studies confirm this step as rate determining in
which no aldehyde is involved. The following step is the reversible nucleophilic addition
of the cyanide ion to benzaldehyde to produce the cyanohydrin alkoxide E, which, by a
reversible protonation from the ammonium ion, generates the cyanohydrin F. Finally, in
an irreversible step, the cyanohydrin carbonate G is formed by reaction of F with ethyl
cyanoformate. The established dependence between the catalytic activity of the amines
and their pKaH is in accordance with this mechanism. This fact implies that amines like
amidines or guanines with higher pKaH would be more convenient.

DMPA was used as an organic catalyst for the cyanoethoxycarbonylation of aromatic
and aliphatic aldehydes to produce, in solvent-free conditions at room temperature, high
yields of O-ethoxycarbonyl cyanohydrins [22]. This protocol shows advantages as simple
reaction conditions, easy product isolation and environmentally friendly. The scope of the
method is shown in Table 3.

When pyridine or 2,6-dimethylpyridine were used as catalyst instead of DMAP,
the reaction does not proceed with benzaldehyde and ethylcyanoformate, while with
triethylamine the product was obtained in 92% yield after 120 min. These results imply
the intervention of a tertiary amine as a catalyst. The mechanism involves the formation
of complex H from the reaction of DMAP with ethyl cyanoformate, followed by addition
of CN− to the aldehyde to give compound I which decomposes into the product and
regenerates DMAP (Scheme 8).
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Table 3. Cyanoethoxycarbonilation of aldehydes catalyzed by DMAP under solvent free conditions a [22].
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a All reactions were carried out using aldehyde (1 mmol), ethylcyanoformate (1.5 mmol), in the presence of 10 mol % DMAP at room
temperature. b Isolated yields.

With lower concentrations of DMAP and acetonitrile as solvent, O-ethoxycarbonyl
cyanohydrins have been synthetized from aldehydes and ketones [23]. Table 4 shows
the results. With aliphatic aldehydes (entries 1–3), a concentration of 1 mol % of DMAP
was used to obtain good to high yields of ethyl carbonates of cyanohydrins. Aromatic
aldehydes (entries 4–10) are less reactive and require a concentration of 5 mol % of DMAP.

With ketones, in absence of solvent, a DMAP concentration of 10 mol % was necessary
to obtain good yields of the protected cyanohydrins (Table 5). When the reaction was
carried out using cyclopentanone in acetonitrile (entry 1) the yield of the product was only
20%. Steric effects (entry 6) are present and lower the yield, and low reactive acetophenone
gives only 30% of product (entry 4). Pyridine and N,N-dimethylaniline were unreactive
under these conditions.
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a Unless otherwise noted, reactions were carried out by addition of ethyl cyanoformate (0.55 mol) to a solution of ketone (0.5 mmol) and
DMAP (10 mol %) without solvent at room temperature. b Isolated yields. c The reaction was conducted in acetonitrile (1 mL).

2.2. Synthesis of O-Acyl Cyanohydrins

O-acetyl cyanohydrins are synthetized from aldehydes in one step via the formation of
O-silyl cyanohydrins in the presence of acetic anhydride and ionic liquids. No activator or
Lewis catalyst is required as shown in Scheme 9. By screening various imidalozium based
ionic liquids with benzaldehyde, [bmin]BF4 was found to give the highest yields [24].

Table 6 summarizes the results with a range of aldehydes. In general, good to high
yields of products are obtained under mild reaction conditions, only p-cyanobenzaldehyde
(entry 5) and 2-thiophenecarbaldehyde (entry 9) give yields lower than 80%.
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Table 6. One-pot synthesis of O-acetyl cyanohydrins from aldehydes via O-silylcyanohydrins in [bmim]BF4
a [24].
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2.3. Synthesis of O-Aroyl Cyanohydrins

Aroyl chlorides can serve as starting materials in the synthesis of O-aroyl cyanohydrins
using potassium cyanoferrate(II) as a cyanide source in the presence of a promoter of
the reaction [26]. Several Lewis nucleophiles were tested as promoters. When pyridine
and triethylamine were used, no reaction was observed, with triphenylphosphine and
tributylphosphines in THF yields of 40 and 88% of the cyanohydrin esters were obtained
respectively. Table 8 summarizes the scope of this method. Aroyl chlorides bearing electron-
withdrawing substituents (entries 2–6) afford yields higher than 80%, while aroyl chlorides
with electron-donating substituents (entries 7–9) give slighter lower yields. With 2-furoyl
chloride (entry 10) the corresponding cyanohydrin ester was obtained in 78% yield.

Table 8. Synthesis of cyanohydrin esters from aroyl chlorides a [26].

Molecules 2021, 26, x FOR PEER REVIEW 21 of 77 
 

 

9 

  
38 

3 95 

10 

 
 

53 

3 91 

a Reagents and conditions: aldehyde (1 mmol), TMSCN (1.2 mmol), B(C6F5)3 (1 mol %) and Ac2O (2 mmol) were employed 

at r.t. b Isolated yields. c Benzoyl chloride was used instead of Ac2O. 

2.3. Synthesis of O-Aroyl Cyanohydrins 

Aroyl chlorides can serve as starting materials in the synthesis of O-aroyl cyanohy-

drins using potassium cyanoferrate(II) as a cyanide source in the presence of a promoter 

of the reaction [26]. Several Lewis nucleophiles were tested as promoters. When pyridine 

and triethylamine were used, no reaction was observed, with triphenylphosphine and 
tributylphosphines in THF yields of 40 and 88% of the cyanohydrin esters were obtained 

respectively. Table 8 summarizes the scope of this method. Aroyl chlorides bearing elec-

tron-withdrawing substituents (entries 2–6) afford yields higher than 80%, while aroyl 

chlorides with electron-donating substituents (entries 7–9) give slighter lower yields. With 

2-furoyl chloride (entry 10) the corresponding cyanohydrin ester was obtained in 78% 

yield. 

Table 8. Synthesis of cyanohydrin esters from aroyl chlorides a [26]. 

 

Entry Aroyl Chloride Product Yield (%) b 

1 

 
 

48 

88 

2 

 
 

54 

80 

3 

 
 

55 

82 

Entry Aroyl Chloride Product Yield (%) b

1

Molecules 2021, 26, x FOR PEER REVIEW 21 of 77 
 

 

9 

  
38 

3 95 

10 

 
 

53 

3 91 

a Reagents and conditions: aldehyde (1 mmol), TMSCN (1.2 mmol), B(C6F5)3 (1 mol %) and Ac2O (2 mmol) were employed 

at r.t. b Isolated yields. c Benzoyl chloride was used instead of Ac2O. 

2.3. Synthesis of O-Aroyl Cyanohydrins 

Aroyl chlorides can serve as starting materials in the synthesis of O-aroyl cyanohy-

drins using potassium cyanoferrate(II) as a cyanide source in the presence of a promoter 

of the reaction [26]. Several Lewis nucleophiles were tested as promoters. When pyridine 

and triethylamine were used, no reaction was observed, with triphenylphosphine and 
tributylphosphines in THF yields of 40 and 88% of the cyanohydrin esters were obtained 

respectively. Table 8 summarizes the scope of this method. Aroyl chlorides bearing elec-

tron-withdrawing substituents (entries 2–6) afford yields higher than 80%, while aroyl 

chlorides with electron-donating substituents (entries 7–9) give slighter lower yields. With 

2-furoyl chloride (entry 10) the corresponding cyanohydrin ester was obtained in 78% 

yield. 

Table 8. Synthesis of cyanohydrin esters from aroyl chlorides a [26]. 

 

Entry Aroyl Chloride Product Yield (%) b 

1 

 
 

48 

88 

2 

 
 

54 

80 

3 

 
 

55 

82 

Molecules 2021, 26, x FOR PEER REVIEW 21 of 77 
 

 

9 

  
38 

3 95 

10 

 
 

53 

3 91 

a Reagents and conditions: aldehyde (1 mmol), TMSCN (1.2 mmol), B(C6F5)3 (1 mol %) and Ac2O (2 mmol) were employed 

at r.t. b Isolated yields. c Benzoyl chloride was used instead of Ac2O. 

2.3. Synthesis of O-Aroyl Cyanohydrins 

Aroyl chlorides can serve as starting materials in the synthesis of O-aroyl cyanohy-

drins using potassium cyanoferrate(II) as a cyanide source in the presence of a promoter 

of the reaction [26]. Several Lewis nucleophiles were tested as promoters. When pyridine 

and triethylamine were used, no reaction was observed, with triphenylphosphine and 
tributylphosphines in THF yields of 40 and 88% of the cyanohydrin esters were obtained 

respectively. Table 8 summarizes the scope of this method. Aroyl chlorides bearing elec-

tron-withdrawing substituents (entries 2–6) afford yields higher than 80%, while aroyl 

chlorides with electron-donating substituents (entries 7–9) give slighter lower yields. With 

2-furoyl chloride (entry 10) the corresponding cyanohydrin ester was obtained in 78% 

yield. 

Table 8. Synthesis of cyanohydrin esters from aroyl chlorides a [26]. 

 

Entry Aroyl Chloride Product Yield (%) b 

1 

 
 

48 

88 

2 

 
 

54 

80 

3 

 
 

55 

82 

48

88

2

Molecules 2021, 26, x FOR PEER REVIEW 21 of 77 
 

 

9 

  
38 

3 95 

10 

 
 

53 

3 91 

a Reagents and conditions: aldehyde (1 mmol), TMSCN (1.2 mmol), B(C6F5)3 (1 mol %) and Ac2O (2 mmol) were employed 

at r.t. b Isolated yields. c Benzoyl chloride was used instead of Ac2O. 

2.3. Synthesis of O-Aroyl Cyanohydrins 

Aroyl chlorides can serve as starting materials in the synthesis of O-aroyl cyanohy-

drins using potassium cyanoferrate(II) as a cyanide source in the presence of a promoter 

of the reaction [26]. Several Lewis nucleophiles were tested as promoters. When pyridine 

and triethylamine were used, no reaction was observed, with triphenylphosphine and 
tributylphosphines in THF yields of 40 and 88% of the cyanohydrin esters were obtained 

respectively. Table 8 summarizes the scope of this method. Aroyl chlorides bearing elec-

tron-withdrawing substituents (entries 2–6) afford yields higher than 80%, while aroyl 

chlorides with electron-donating substituents (entries 7–9) give slighter lower yields. With 

2-furoyl chloride (entry 10) the corresponding cyanohydrin ester was obtained in 78% 

yield. 

Table 8. Synthesis of cyanohydrin esters from aroyl chlorides a [26]. 

 

Entry Aroyl Chloride Product Yield (%) b 

1 

 
 

48 

88 

2 

 
 

54 

80 

3 

 
 

55 

82 

Molecules 2021, 26, x FOR PEER REVIEW 21 of 77 
 

 

9 

  
38 

3 95 

10 

 
 

53 

3 91 

a Reagents and conditions: aldehyde (1 mmol), TMSCN (1.2 mmol), B(C6F5)3 (1 mol %) and Ac2O (2 mmol) were employed 

at r.t. b Isolated yields. c Benzoyl chloride was used instead of Ac2O. 

2.3. Synthesis of O-Aroyl Cyanohydrins 

Aroyl chlorides can serve as starting materials in the synthesis of O-aroyl cyanohy-

drins using potassium cyanoferrate(II) as a cyanide source in the presence of a promoter 

of the reaction [26]. Several Lewis nucleophiles were tested as promoters. When pyridine 

and triethylamine were used, no reaction was observed, with triphenylphosphine and 
tributylphosphines in THF yields of 40 and 88% of the cyanohydrin esters were obtained 

respectively. Table 8 summarizes the scope of this method. Aroyl chlorides bearing elec-

tron-withdrawing substituents (entries 2–6) afford yields higher than 80%, while aroyl 

chlorides with electron-donating substituents (entries 7–9) give slighter lower yields. With 

2-furoyl chloride (entry 10) the corresponding cyanohydrin ester was obtained in 78% 

yield. 

Table 8. Synthesis of cyanohydrin esters from aroyl chlorides a [26]. 

 

Entry Aroyl Chloride Product Yield (%) b 

1 

 
 

48 

88 

2 

 
 

54 

80 

3 

 
 

55 

82 

54

80

3

Molecules 2021, 26, x FOR PEER REVIEW 21 of 77 
 

 

9 

  
38 

3 95 

10 

 
 

53 

3 91 

a Reagents and conditions: aldehyde (1 mmol), TMSCN (1.2 mmol), B(C6F5)3 (1 mol %) and Ac2O (2 mmol) were employed 

at r.t. b Isolated yields. c Benzoyl chloride was used instead of Ac2O. 

2.3. Synthesis of O-Aroyl Cyanohydrins 

Aroyl chlorides can serve as starting materials in the synthesis of O-aroyl cyanohy-

drins using potassium cyanoferrate(II) as a cyanide source in the presence of a promoter 

of the reaction [26]. Several Lewis nucleophiles were tested as promoters. When pyridine 

and triethylamine were used, no reaction was observed, with triphenylphosphine and 
tributylphosphines in THF yields of 40 and 88% of the cyanohydrin esters were obtained 

respectively. Table 8 summarizes the scope of this method. Aroyl chlorides bearing elec-

tron-withdrawing substituents (entries 2–6) afford yields higher than 80%, while aroyl 

chlorides with electron-donating substituents (entries 7–9) give slighter lower yields. With 

2-furoyl chloride (entry 10) the corresponding cyanohydrin ester was obtained in 78% 

yield. 

Table 8. Synthesis of cyanohydrin esters from aroyl chlorides a [26]. 

 

Entry Aroyl Chloride Product Yield (%) b 

1 

 
 

48 

88 

2 

 
 

54 

80 

3 

 
 

55 

82 

Molecules 2021, 26, x FOR PEER REVIEW 21 of 77 
 

 

9 

  
38 

3 95 

10 

 
 

53 

3 91 

a Reagents and conditions: aldehyde (1 mmol), TMSCN (1.2 mmol), B(C6F5)3 (1 mol %) and Ac2O (2 mmol) were employed 

at r.t. b Isolated yields. c Benzoyl chloride was used instead of Ac2O. 

2.3. Synthesis of O-Aroyl Cyanohydrins 

Aroyl chlorides can serve as starting materials in the synthesis of O-aroyl cyanohy-

drins using potassium cyanoferrate(II) as a cyanide source in the presence of a promoter 

of the reaction [26]. Several Lewis nucleophiles were tested as promoters. When pyridine 

and triethylamine were used, no reaction was observed, with triphenylphosphine and 
tributylphosphines in THF yields of 40 and 88% of the cyanohydrin esters were obtained 

respectively. Table 8 summarizes the scope of this method. Aroyl chlorides bearing elec-

tron-withdrawing substituents (entries 2–6) afford yields higher than 80%, while aroyl 

chlorides with electron-donating substituents (entries 7–9) give slighter lower yields. With 

2-furoyl chloride (entry 10) the corresponding cyanohydrin ester was obtained in 78% 

yield. 

Table 8. Synthesis of cyanohydrin esters from aroyl chlorides a [26]. 

 

Entry Aroyl Chloride Product Yield (%) b 

1 

 
 

48 

88 

2 

 
 

54 

80 

3 

 
 

55 

82 

55

82

4

Molecules 2021, 26, x FOR PEER REVIEW 22 of 77 
 

 

4 

 
 

56 

86 

5 

 
 

57 

82 

6 

 
 

58 

87 

7 

 
 

59 

79 

8 

 
 

60 

75 

9 

  
46 

73 

10 

 
 

61 

78 

a All reactions were carried out first using benzoyl chloride (10 mmol) and K4[Fe(CN)6] (2.5 mmol) at 160 °C, then at re-

fluxing conditions after addition of nBu3P (10 mmol) and THF (10 mL). b Isolated yields. 

The proposed mechanism (Scheme 10) involves various steps in one pot. First, the 

formation of the aroylcyanide from the reaction between 0.5 mol of K4[Fe(CN)6] and the 

aroyl chloride. In a second reaction, the aroyl cyanide thus formed reacts with the tribu-
tylphosphine to produce intermediate J, whichreacts with a second molecule of aroylcya-

nide to form K. Intramolecular donation of a hydride from one butyl group of the phos-

phine to the C bonded to the CN group affords, after hydrolysis from the atmosphere 

moisture, the cyanohydrin ester. 

Molecules 2021, 26, x FOR PEER REVIEW 22 of 77 
 

 

4 

 
 

56 

86 

5 

 
 

57 

82 

6 

 
 

58 

87 

7 

 
 

59 

79 

8 

 
 

60 

75 

9 

  
46 

73 

10 

 
 

61 

78 

a All reactions were carried out first using benzoyl chloride (10 mmol) and K4[Fe(CN)6] (2.5 mmol) at 160 °C, then at re-

fluxing conditions after addition of nBu3P (10 mmol) and THF (10 mL). b Isolated yields. 

The proposed mechanism (Scheme 10) involves various steps in one pot. First, the 

formation of the aroylcyanide from the reaction between 0.5 mol of K4[Fe(CN)6] and the 

aroyl chloride. In a second reaction, the aroyl cyanide thus formed reacts with the tribu-
tylphosphine to produce intermediate J, whichreacts with a second molecule of aroylcya-

nide to form K. Intramolecular donation of a hydride from one butyl group of the phos-

phine to the C bonded to the CN group affords, after hydrolysis from the atmosphere 

moisture, the cyanohydrin ester. 

56

86

5

Molecules 2021, 26, x FOR PEER REVIEW 22 of 77 
 

 

4 

 
 

56 

86 

5 

 
 

57 

82 

6 

 
 

58 

87 

7 

 
 

59 

79 

8 

 
 

60 

75 

9 

  
46 

73 

10 

 
 

61 

78 

a All reactions were carried out first using benzoyl chloride (10 mmol) and K4[Fe(CN)6] (2.5 mmol) at 160 °C, then at re-

fluxing conditions after addition of nBu3P (10 mmol) and THF (10 mL). b Isolated yields. 

The proposed mechanism (Scheme 10) involves various steps in one pot. First, the 

formation of the aroylcyanide from the reaction between 0.5 mol of K4[Fe(CN)6] and the 

aroyl chloride. In a second reaction, the aroyl cyanide thus formed reacts with the tribu-
tylphosphine to produce intermediate J, whichreacts with a second molecule of aroylcya-

nide to form K. Intramolecular donation of a hydride from one butyl group of the phos-

phine to the C bonded to the CN group affords, after hydrolysis from the atmosphere 

moisture, the cyanohydrin ester. 

Molecules 2021, 26, x FOR PEER REVIEW 22 of 77 
 

 

4 

 
 

56 

86 

5 

 
 

57 

82 

6 

 
 

58 

87 

7 

 
 

59 

79 

8 

 
 

60 

75 

9 

  
46 

73 

10 

 
 

61 

78 

a All reactions were carried out first using benzoyl chloride (10 mmol) and K4[Fe(CN)6] (2.5 mmol) at 160 °C, then at re-

fluxing conditions after addition of nBu3P (10 mmol) and THF (10 mL). b Isolated yields. 

The proposed mechanism (Scheme 10) involves various steps in one pot. First, the 

formation of the aroylcyanide from the reaction between 0.5 mol of K4[Fe(CN)6] and the 

aroyl chloride. In a second reaction, the aroyl cyanide thus formed reacts with the tribu-
tylphosphine to produce intermediate J, whichreacts with a second molecule of aroylcya-

nide to form K. Intramolecular donation of a hydride from one butyl group of the phos-

phine to the C bonded to the CN group affords, after hydrolysis from the atmosphere 

moisture, the cyanohydrin ester. 

57

82

6

Molecules 2021, 26, x FOR PEER REVIEW 22 of 77 
 

 

4 

 
 

56 

86 

5 

 
 

57 

82 

6 

 
 

58 

87 

7 

 
 

59 

79 

8 

 
 

60 

75 

9 

  
46 

73 

10 

 
 

61 

78 

a All reactions were carried out first using benzoyl chloride (10 mmol) and K4[Fe(CN)6] (2.5 mmol) at 160 °C, then at re-

fluxing conditions after addition of nBu3P (10 mmol) and THF (10 mL). b Isolated yields. 

The proposed mechanism (Scheme 10) involves various steps in one pot. First, the 

formation of the aroylcyanide from the reaction between 0.5 mol of K4[Fe(CN)6] and the 

aroyl chloride. In a second reaction, the aroyl cyanide thus formed reacts with the tribu-
tylphosphine to produce intermediate J, whichreacts with a second molecule of aroylcya-

nide to form K. Intramolecular donation of a hydride from one butyl group of the phos-

phine to the C bonded to the CN group affords, after hydrolysis from the atmosphere 

moisture, the cyanohydrin ester. 

Molecules 2021, 26, x FOR PEER REVIEW 22 of 77 
 

 

4 

 
 

56 

86 

5 

 
 

57 

82 

6 

 
 

58 

87 

7 

 
 

59 

79 

8 

 
 

60 

75 

9 

  
46 

73 

10 

 
 

61 

78 

a All reactions were carried out first using benzoyl chloride (10 mmol) and K4[Fe(CN)6] (2.5 mmol) at 160 °C, then at re-

fluxing conditions after addition of nBu3P (10 mmol) and THF (10 mL). b Isolated yields. 

The proposed mechanism (Scheme 10) involves various steps in one pot. First, the 

formation of the aroylcyanide from the reaction between 0.5 mol of K4[Fe(CN)6] and the 

aroyl chloride. In a second reaction, the aroyl cyanide thus formed reacts with the tribu-
tylphosphine to produce intermediate J, whichreacts with a second molecule of aroylcya-

nide to form K. Intramolecular donation of a hydride from one butyl group of the phos-

phine to the C bonded to the CN group affords, after hydrolysis from the atmosphere 

moisture, the cyanohydrin ester. 

58

87



Molecules 2021, 26, 4691 24 of 89

Table 8. Cont.

Molecules 2021, 26, x FOR PEER REVIEW 21 of 77 
 

 

9 

  
38 

3 95 

10 

 
 

53 

3 91 

a Reagents and conditions: aldehyde (1 mmol), TMSCN (1.2 mmol), B(C6F5)3 (1 mol %) and Ac2O (2 mmol) were employed 

at r.t. b Isolated yields. c Benzoyl chloride was used instead of Ac2O. 

2.3. Synthesis of O-Aroyl Cyanohydrins 

Aroyl chlorides can serve as starting materials in the synthesis of O-aroyl cyanohy-

drins using potassium cyanoferrate(II) as a cyanide source in the presence of a promoter 

of the reaction [26]. Several Lewis nucleophiles were tested as promoters. When pyridine 

and triethylamine were used, no reaction was observed, with triphenylphosphine and 
tributylphosphines in THF yields of 40 and 88% of the cyanohydrin esters were obtained 

respectively. Table 8 summarizes the scope of this method. Aroyl chlorides bearing elec-

tron-withdrawing substituents (entries 2–6) afford yields higher than 80%, while aroyl 

chlorides with electron-donating substituents (entries 7–9) give slighter lower yields. With 

2-furoyl chloride (entry 10) the corresponding cyanohydrin ester was obtained in 78% 

yield. 

Table 8. Synthesis of cyanohydrin esters from aroyl chlorides a [26]. 

 

Entry Aroyl Chloride Product Yield (%) b 

1 

 
 

48 

88 

2 

 
 

54 

80 

3 

 
 

55 

82 

Entry Aroyl Chloride Product Yield (%) b

7

Molecules 2021, 26, x FOR PEER REVIEW 22 of 77 
 

 

4 

 
 

56 

86 

5 

 
 

57 

82 

6 

 
 

58 

87 

7 

 
 

59 

79 

8 

 
 

60 

75 

9 

  
46 

73 

10 

 
 

61 

78 

a All reactions were carried out first using benzoyl chloride (10 mmol) and K4[Fe(CN)6] (2.5 mmol) at 160 °C, then at re-

fluxing conditions after addition of nBu3P (10 mmol) and THF (10 mL). b Isolated yields. 

The proposed mechanism (Scheme 10) involves various steps in one pot. First, the 

formation of the aroylcyanide from the reaction between 0.5 mol of K4[Fe(CN)6] and the 

aroyl chloride. In a second reaction, the aroyl cyanide thus formed reacts with the tribu-
tylphosphine to produce intermediate J, whichreacts with a second molecule of aroylcya-

nide to form K. Intramolecular donation of a hydride from one butyl group of the phos-

phine to the C bonded to the CN group affords, after hydrolysis from the atmosphere 

moisture, the cyanohydrin ester. 

Molecules 2021, 26, x FOR PEER REVIEW 22 of 77 
 

 

4 

 
 

56 

86 

5 

 
 

57 

82 

6 

 
 

58 

87 

7 

 
 

59 

79 

8 

 
 

60 

75 

9 

  
46 

73 

10 

 
 

61 

78 

a All reactions were carried out first using benzoyl chloride (10 mmol) and K4[Fe(CN)6] (2.5 mmol) at 160 °C, then at re-

fluxing conditions after addition of nBu3P (10 mmol) and THF (10 mL). b Isolated yields. 

The proposed mechanism (Scheme 10) involves various steps in one pot. First, the 

formation of the aroylcyanide from the reaction between 0.5 mol of K4[Fe(CN)6] and the 

aroyl chloride. In a second reaction, the aroyl cyanide thus formed reacts with the tribu-
tylphosphine to produce intermediate J, whichreacts with a second molecule of aroylcya-

nide to form K. Intramolecular donation of a hydride from one butyl group of the phos-

phine to the C bonded to the CN group affords, after hydrolysis from the atmosphere 

moisture, the cyanohydrin ester. 

59

79

8

Molecules 2021, 26, x FOR PEER REVIEW 22 of 77 
 

 

4 

 
 

56 

86 

5 

 
 

57 

82 

6 

 
 

58 

87 

7 

 
 

59 

79 

8 

 
 

60 

75 

9 

  
46 

73 

10 

 
 

61 

78 

a All reactions were carried out first using benzoyl chloride (10 mmol) and K4[Fe(CN)6] (2.5 mmol) at 160 °C, then at re-

fluxing conditions after addition of nBu3P (10 mmol) and THF (10 mL). b Isolated yields. 

The proposed mechanism (Scheme 10) involves various steps in one pot. First, the 

formation of the aroylcyanide from the reaction between 0.5 mol of K4[Fe(CN)6] and the 

aroyl chloride. In a second reaction, the aroyl cyanide thus formed reacts with the tribu-
tylphosphine to produce intermediate J, whichreacts with a second molecule of aroylcya-

nide to form K. Intramolecular donation of a hydride from one butyl group of the phos-

phine to the C bonded to the CN group affords, after hydrolysis from the atmosphere 

moisture, the cyanohydrin ester. 

Molecules 2021, 26, x FOR PEER REVIEW 22 of 77 
 

 

4 

 
 

56 

86 

5 

 
 

57 

82 

6 

 
 

58 

87 

7 

 
 

59 

79 

8 

 
 

60 

75 

9 

  
46 

73 

10 

 
 

61 

78 

a All reactions were carried out first using benzoyl chloride (10 mmol) and K4[Fe(CN)6] (2.5 mmol) at 160 °C, then at re-

fluxing conditions after addition of nBu3P (10 mmol) and THF (10 mL). b Isolated yields. 

The proposed mechanism (Scheme 10) involves various steps in one pot. First, the 

formation of the aroylcyanide from the reaction between 0.5 mol of K4[Fe(CN)6] and the 

aroyl chloride. In a second reaction, the aroyl cyanide thus formed reacts with the tribu-
tylphosphine to produce intermediate J, whichreacts with a second molecule of aroylcya-

nide to form K. Intramolecular donation of a hydride from one butyl group of the phos-

phine to the C bonded to the CN group affords, after hydrolysis from the atmosphere 

moisture, the cyanohydrin ester. 

60

75

9

Molecules 2021, 26, x FOR PEER REVIEW 22 of 77 
 

 

4 

 
 

56 

86 

5 

 
 

57 

82 

6 

 
 

58 

87 

7 

 
 

59 

79 

8 

 
 

60 

75 

9 

  
46 

73 

10 

 
 

61 

78 

a All reactions were carried out first using benzoyl chloride (10 mmol) and K4[Fe(CN)6] (2.5 mmol) at 160 °C, then at re-

fluxing conditions after addition of nBu3P (10 mmol) and THF (10 mL). b Isolated yields. 

The proposed mechanism (Scheme 10) involves various steps in one pot. First, the 

formation of the aroylcyanide from the reaction between 0.5 mol of K4[Fe(CN)6] and the 

aroyl chloride. In a second reaction, the aroyl cyanide thus formed reacts with the tribu-
tylphosphine to produce intermediate J, whichreacts with a second molecule of aroylcya-

nide to form K. Intramolecular donation of a hydride from one butyl group of the phos-

phine to the C bonded to the CN group affords, after hydrolysis from the atmosphere 

moisture, the cyanohydrin ester. 

Molecules 2021, 26, x FOR PEER REVIEW 22 of 77 
 

 

4 

 
 

56 

86 

5 

 
 

57 

82 

6 

 
 

58 

87 

7 

 
 

59 

79 

8 

 
 

60 

75 

9 

  
46 

73 

10 

 
 

61 

78 

a All reactions were carried out first using benzoyl chloride (10 mmol) and K4[Fe(CN)6] (2.5 mmol) at 160 °C, then at re-

fluxing conditions after addition of nBu3P (10 mmol) and THF (10 mL). b Isolated yields. 

The proposed mechanism (Scheme 10) involves various steps in one pot. First, the 

formation of the aroylcyanide from the reaction between 0.5 mol of K4[Fe(CN)6] and the 

aroyl chloride. In a second reaction, the aroyl cyanide thus formed reacts with the tribu-
tylphosphine to produce intermediate J, whichreacts with a second molecule of aroylcya-

nide to form K. Intramolecular donation of a hydride from one butyl group of the phos-

phine to the C bonded to the CN group affords, after hydrolysis from the atmosphere 

moisture, the cyanohydrin ester. 

46

73

10

Molecules 2021, 26, x FOR PEER REVIEW 22 of 77 
 

 

4 

 
 

56 

86 

5 

 
 

57 

82 

6 

 
 

58 

87 

7 

 
 

59 

79 

8 

 
 

60 

75 

9 

  
46 

73 

10 

 
 

61 

78 

a All reactions were carried out first using benzoyl chloride (10 mmol) and K4[Fe(CN)6] (2.5 mmol) at 160 °C, then at re-

fluxing conditions after addition of nBu3P (10 mmol) and THF (10 mL). b Isolated yields. 

The proposed mechanism (Scheme 10) involves various steps in one pot. First, the 

formation of the aroylcyanide from the reaction between 0.5 mol of K4[Fe(CN)6] and the 

aroyl chloride. In a second reaction, the aroyl cyanide thus formed reacts with the tribu-
tylphosphine to produce intermediate J, whichreacts with a second molecule of aroylcya-

nide to form K. Intramolecular donation of a hydride from one butyl group of the phos-

phine to the C bonded to the CN group affords, after hydrolysis from the atmosphere 

moisture, the cyanohydrin ester. 

Molecules 2021, 26, x FOR PEER REVIEW 22 of 77 
 

 

4 

 
 

56 

86 

5 

 
 

57 

82 

6 

 
 

58 

87 

7 

 
 

59 

79 

8 

 
 

60 

75 

9 

  
46 

73 

10 

 
 

61 

78 

a All reactions were carried out first using benzoyl chloride (10 mmol) and K4[Fe(CN)6] (2.5 mmol) at 160 °C, then at re-

fluxing conditions after addition of nBu3P (10 mmol) and THF (10 mL). b Isolated yields. 

The proposed mechanism (Scheme 10) involves various steps in one pot. First, the 

formation of the aroylcyanide from the reaction between 0.5 mol of K4[Fe(CN)6] and the 

aroyl chloride. In a second reaction, the aroyl cyanide thus formed reacts with the tribu-
tylphosphine to produce intermediate J, whichreacts with a second molecule of aroylcya-

nide to form K. Intramolecular donation of a hydride from one butyl group of the phos-

phine to the C bonded to the CN group affords, after hydrolysis from the atmosphere 

moisture, the cyanohydrin ester. 

61

78

a All reactions were carried out first using benzoyl chloride (10 mmol) and K4[Fe(CN)6] (2.5 mmol) at 160 ◦C, then at refluxing conditions
after addition of nBu3P (10 mmol) and THF (10 mL). b Isolated yields.

The proposed mechanism (Scheme 10) involves various steps in one pot. First, the for-
mation of the aroylcyanide from the reaction between 0.5 mol of K4[Fe(CN)6] and the aroyl
chloride. In a second reaction, the aroyl cyanide thus formed reacts with the tributylphos-
phine to produce intermediate J, whichreacts with a second molecule of aroylcyanide to
form K. Intramolecular donation of a hydride from one butyl group of the phosphine to
the C bonded to the CN group affords, after hydrolysis from the atmosphere moisture, the
cyanohydrin ester.
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2.4. Asymmetric Cyanation
2.4.1. Synthesis of O-Acyl Cyanohydrins

Asymmetric synthesis of O-acetyl cyanohydrins has been developed by a cooperative
thiourea- Brønsted acid catalytic system [27]. Screening studies revealed that thiourea
derivative VI (Scheme 11), with benzoic acid was the optimum selection. NMR and
computational studies revealed that the function of the benzoic acid is to fix, via hydrogen
bonding, the conformation of flexible thiourea by forming a bifunctional thiourea/benzoic
acid complex. The asymmetric step involves the formation of the O-silyl cyanohydrin which
is hydrolyzed with HCl and acetylated by Ac2O. Moderate to good yields of asymmetric
cyanohydrins are obtained with moderate to low ee (Table 9).
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Table 9. Asymmetric cyanosilylation of aldehydes catalyzed by a thiourea derivative and conversion to O-
acetylcyanohydrins a [27].
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2.4.2. Synthesis of O-Methoxycarbonyl Cyanohydrins

Chiral protected cyanohydrins have also been obtained by the use of transition-metal
complexes as catalysts in the asymmetric cyanation of aldehydes [28]. Chiral macrocyclic
V(V)-salen complexes VII and VIII have been used as catalysts with KCN/NaCN and
aldehydes in the preparation of chiral O-ethoxycarbonyl and O-acetyl protected cyanohy-
drins (Scheme 12). From studies with mononuclear Ti-salen complexes acting as bimetallic
species, it was envisioned that in bimetallic V(V)-salen complexes, one V can activate the
cyano group and a second V activates the aldehyde. Complex VIII exhibits two salen
units linked by a polyether chain in which the crown ether-like chains function as trapping
centers for K+/Na+ ions and activating KCN/NaCN.
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Complexes VII and VIII catalyze the asymmetric cyanation of both aromatic and
aliphatic aldehydes in the presence of KCN and acetic anhydride. Table 10 summarizes
the scope of this method. In general, substituted aromatic aldehydes with both electron-
donating and withdrawing groups gave the O-acetyl cyanohydrin with good to excellent ee.

Table 10. Asymmetric acetylcyanation of aldehydes catalyzed by vanadium (V) complexes a [27].
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2.4.3. Synthesis of O-Ethoxycarbonyl Cyanohydrins

Subsequent application of the method with catalyst VII for the ethyl cyanoformylation
of aldehydes uses 2,6-lutidine as a co-catalyst. A variety of aromatic and aliphatic aldehydes
afford the desired products in good to excellent yields and ee higher than 85%. Table 11
summarizes the results.
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Table 11. Substrate scope of the asymmetric catalytic formation of cyanohydrin carbonates with complex VII in the presence
of lutidine a [28].
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vent, concentration of the aldehyde and reaction temperature, the optimized reaction con-

ditions were established. With ligand IX and Ti(OiPr)4, the reaction proceeded with high 

yields and good enantioselectivity. Table 12 shows the scope of the reaction. Both electron-

donating and electron-withdrawing substituted benzaldehydes give high yields of prod-
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A bifunctional Ti/Schiff base ligands from cinchona alkaloids and salicylaldehyde
derivatives have been developed as catalysts in the enantioselective cyanoformylation
of aldehydes with NCCOOEt (Scheme 13) [29]. After screening the effect of the ligands,
solvent, concentration of the aldehyde and reaction temperature, the optimized reaction
conditions were established. With ligand IX and Ti(OiPr)4, the reaction proceeded with
high yields and good enantioselectivity. Table 12 shows the scope of the reaction. Both
electron-donating and electron-withdrawing substituted benzaldehydes give high yields
of product with good enantiomeric excesses.
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Al-F-salen complex X (Scheme 14) has been developed to increase the reactivity
and enantioselectivity of the cyanation of aldehydes with ethyl cyanoformate to form O-
ethoxycarbonylcyanohydrins. The incorporation of an aprotic onium moiety (ammonium
ion) to the complex in addition to the Al-F Lewis acidic center converts X in a bifunctional
cooperative catalyst. With these characteristics of the catalyst, the cyanation reaction is
facilitated by a nucleophilic attack of a loosely bounded cyanide anion with the ammonium
center to the carbonyl of the aldehyde activated by the Al center [30].

Table 13 summarizes the results with various aldehydes. A catalytic amount of KCN
is necessary for the reaction to take place. Electron-donating and electron-withdrawing
substituted benzaldehydes produce the cyanohydrins with high yields (entries 2–7 and 14–
18). With 4-tBu groups a moderate yield is obtained (entry 8). Cinnamaldehydes (entries 20
and 21) react with high yields, as well as aliphatic aldehydes (entries 24–28). The method
presents high enantioselectivities and TONs of up to 104.
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3. Synthetic Applications
3.1. Synthesis of Substituted Cyclohexenes and Cyclopentenes

Ethyl carbonates of cyanohydrins function as pronucleophiles with an additional elec-
trophilic center located at the carbonyl group of the carbonate ester. These characteristics
make them capable to participate in multiple steps reactions like domino reactions [31]. For
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instance, a one-pot Michael addition of anions of ethyl carbonates of cyanohydrins to con-
jugated 2-cycloalkenones followed by an intramolecular Claisen-type condensation have
been reported (Scheme 15). Table 15 summarizes the scope of the reaction. Ethyl carbonates
of cyanohydrins from aromatic aldehydes are obtained in overall good yields. Carbonates
of cyanohydrins from benzaldehyde and substituted benzaldehydes (entries 1–4) give
yields ≥ 69% and carbonates of cyanohydrins from heterocyclic aldehydes (entries 5 and 6)
give lower yields when reacting with 2-cyclohexenone. The reaction is sensitive to the
steric nature of the cycloalkenone, thus 4,4-dimethyl-2-cyclohexenone does not react under
such conditions. When 2-cyclopentenone was used (entry 8) the corresponding substituted
cylopentene 130 was prepared in good yield.
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Table 15. Cont.

Entry Cyanohydrin Product Yield
(%) b

2
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Table 15. Cont.

Entry Cyanohydrin Product Yield
(%) b
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Scheme 16 illustrates a plausible mechanism for the reaction of ethylcarbonate of man-
delonitrile 1 and 2-cyclohexenone. The first step involves the formation of the anion L of the
carbonate of cyanohydrin, which react through a Michael addition with 2-cyclohexenone to
produce M. An intramolecular attack of the enolate in M to the carbonyl group generates
N which, after elimination of −CN, forms the cycloalkanone O. A second equivalent of
(TMS)2NLi produces the enolate P which is finally trapped with acetic anhydride to give
the desired product.
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3.2. Synthesis of 4-Heteroaryloxazoles

Trisubstituted oxazoles derivatives are synthetized via a Pd-catalyzed direct C-H
addition of electron rich aromatic heterocycles to O-acylcyanohydrins derived from alde-
hydes [32]. Optimal reactions conditions include Pd(TFA)2 with bipyridine (bpy) as ligand,
trifluoroacetic acid (TFA) and N-methylacetamide (NMA) as solvent. Scheme 17 summa-
rizes the scope of the method with indole derivatives as the heterocycle. Good yields of
oxazole derivatives are obtained independently of the electronic nature of the substituents
(entries 136–138). Both N-H and N-R indoles give the desired products in around 80% yield
(entries 131–133). However, when R = Ac no reaction takes place (entry 134).

With pyrrole, thiophene and furane derivatives in place of indoles, the reaction affords
lower yields of the corresponding oxazoles (Scheme 18) [32].

This method can also be applied to oxazole substituted heterocycles to produce
bis-oxazole derivatives in moderate yields. Scheme 19 shows the results when oxazole
substituted pyrrole, thiophene and furane are used.
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3.3. Synthesis of 2-Aminocyclopentanones and 2-Amino-4-Azacyclopentanones

Derivatives of 2-aminocyclopentanones and 2-amino-4-azacyclopentanones are ob-
tained through the Pd-catalyzed C-H addition of aromatic heterocycles to the cyano group
of O-acyl cyanohydrins of cyclobutanone and 3-azacyclobutanone (Scheme 20). The use
of Pd(OAc)2 with bpy as ligand in NMA at 80 ◦C are the optimal reaction conditions for
this method. N-alkyl substituted indoles (179 and 180) give high yields of products, while
no reaction is observed for N-unsubstituted indole (181) and when R = Ac (entry 182).
O-Benzoyl and O-substituted benzoyl protecting cyclobutanone cyanohydrins afford the
product in high yields (183–199). The electronic nature of the substituent has no significant
influence on the yield of the reaction (184–186). With bulky alkyl groups (201 and 202) no
reaction takes place [33].
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3.4. Synthesis of Cinnamic Esters

Ortho functionalization of O-acetyl cyanohydrins from substituted benzaldehydes has
been achieved by a Pd-catalyzed C-H olefination. Optimal reaction conditions involve
Pd(OAc)2, N-acetyl glycine (Ac-Gly-OH) as ligand and AgCO3 as oxidant in hexafluo-
roisopropanol (HFIP). Scheme 21 shows the scope of the reaction. The O-acetyl cyanohy-
drins derived from ortho-substituted benzaldehydes affords monoolefination with ethyl
acrylate and the reaction functions well independently of the electronic nature of the
substituent (206–212). Mixtures of regioisomers are obtained with preponderance of the
ortho-olefination. When ortho-unsubstituted benzaldehyde is the source of the cyanohydrin
mono- and di-olefination substitutions take place in variable ratio (213–217) [34].

3.5. Synthesis of 4-Amino-2(5H)-Furanones

4-Amino-2(5H)-furanones are obtained by intramolecular addition of zincates to nitrile
group by treatment of O-(α-bromoacyl)cyanohydrins. Table 16 shows the scope of the
reaction. Highly enantiomerically enriched O-(α-bromoacyl)cyanohydrins were used and
the reaction proceeds with no or little racemization. Both electron rich and electron deficient
substituted (entries 2 and 3) cyanohydrins give good yields of the product [35].
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was cooled to −78 ◦C and NH4Cl (aq. sat.) was added. b Isolated yields. c Enantiomeric ratio determined by chiral GC or HPCL.

3.6. Synthesis of Substituted 2-Vinyl-2-Cyclopentenones

Highly substituted 2-vinyl-2-cyclopentenones are prepared by a one-pot tandem
reaction initiated by a sulfa-Michael addition reaction (SMA) followed by a sequence of
two intramolecular aldol reactions and terminating with a dehydroxilation step. Sodium
thiophenolate is used as the sulfur nucleophile and DBU as the base. Scheme 22 summarizes
the scope of the reaction [36].

3.7. Synthesis of O-Acylcyanohydrins from O-(α-Bromoacyl)Cyanohydrins

O-acylcyanohydrins with acyl groups larger than acetyl (entries 1–9 in Table 17) can
be obtained from O-(α-bromoacyl)cyanohydrins by a Pd-catalyzed C-C cross-coupling re-
action with boronic acids (Suzuki reaction). Optimal reaction conditions involve Pd(OAc)2,
P(o-tol)3 as ligand in toluene at 60 ◦C. Table 17 summarizes the results when enantiomer-
ically pure cyanohydrins from benzaldehyde or 3-chlorobenzaldehyde are used. Both
electron-withdrawing and electron-donating substituted phenylboronic acid give high
yields of the desired products with almost no racemization [37].
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Table 17. Substrate scope for the cross-coupling of the O-(α-bromoacyl)cyanohydrin with boronic acids a [37].
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a Reaction conditions: A solution of α-bromo acyl cyanohydrin (1 eq.) in toluene was added to a mixture of arylboronic acid (1.5 eq.),
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The O-acylated cyanohydrins can give N-acylated β-amino alcohols in moderate
yields by a catalytic hydrogenation with Raney-Ni (258 and 259 in Scheme 23).
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3.8. Synthesis of Substituted Cyclopropylamines and 1,4-Diketones

O-Ethoxycarbonyl cyanohydrin (R = OEt) and O-acetyl cyanohydrin (R = CH3) of
formaldehyde react with EtMgBr/Ti(OiPr)4 to give substituted cyclopropylamines 260 and
1,4-diketones 261 (Scheme 24) [38,39].
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Scheme 24. Titanium mediated addition of EtMgBr to O-protected cyanohydrins of formaldehyde [38].

Ethylmagnesium bromide reacts with titanium(IV)isopropoxide to form diisopropoxylti-
tanacyclopropane A1 which isomer is the reactive π-alkene complex A2 (Scheme 25).
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Scheme 25. Formation of π-alkene titanium complex from ethylmagnesium bromide.

Table 18 shows the scope of the reaction with various O-aroyl and O-acyl cyanohydrins.
In general, Et2O favors the formation of the diketone 261 (entries 1–10, 12–32), whereas
THF increases the formation of the cyclopropane 260 maintaining the diketone 261 as the
main product. When R = OEt (entry 33), no formation of 261 was observed. The yields of
the products are moderate to good.
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3.8. Synthesis of Substituted Cyclopropylamines and 1,4-Diketones 

O-Ethoxycarbonyl cyanohydrin (R = OEt) and O-acetyl cyanohydrin (R = CH3) of for-
maldehyde react with EtMgBr/Ti(OiPr)4 to give substituted cyclopropylamines 260 and 

1,4-diketones 261 (Scheme 24) [38,39]. 

 

Scheme 24. Titanium mediated addition of EtMgBr to O-protected cyanohydrins of formaldehyde 

[38]. 

Ethylmagnesium bromide reacts with titanium(IV)isopropoxide to form diiso-
propoxyltitanacyclopropane A1 which isomer is the reactive π-alkene complex A2 

(Scheme 25).  

 

Scheme 25. Formation of π-alkene titanium complex from ethylmagnesium bromide. 

Table 18 shows the scope of the reaction with various O-aroyl and O-acyl cyanohy-
drins. In general, Et2O favors the formation of the diketone 261 (entries 1–10, 12–32), 

whereas THF increases the formation of the cyclopropane 260 maintaining the diketone 

261 as the main product. When R = OEt (entry 33), no formation of 261 was observed. The 

yields of the products are moderate to good.  

Table 18. Titanium-mediated addition of EtMgBr to nitriles a [39]. 
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3.8. Synthesis of Substituted Cyclopropylamines and 1,4-Diketones 

O-Ethoxycarbonyl cyanohydrin (R = OEt) and O-acetyl cyanohydrin (R = CH3) of for-
maldehyde react with EtMgBr/Ti(OiPr)4 to give substituted cyclopropylamines 260 and 

1,4-diketones 261 (Scheme 24) [38,39]. 

 

Scheme 24. Titanium mediated addition of EtMgBr to O-protected cyanohydrins of formaldehyde 

[38]. 

Ethylmagnesium bromide reacts with titanium(IV)isopropoxide to form diiso-
propoxyltitanacyclopropane A1 which isomer is the reactive π-alkene complex A2 

(Scheme 25).  

 

Scheme 25. Formation of π-alkene titanium complex from ethylmagnesium bromide. 

Table 18 shows the scope of the reaction with various O-aroyl and O-acyl cyanohy-
drins. In general, Et2O favors the formation of the diketone 261 (entries 1–10, 12–32), 

whereas THF increases the formation of the cyclopropane 260 maintaining the diketone 

261 as the main product. When R = OEt (entry 33), no formation of 261 was observed. The 

yields of the products are moderate to good.  

Table 18. Titanium-mediated addition of EtMgBr to nitriles a [39]. 

 

Entry Substract Solvent 
260/261  

Ratio a 
260 261 (Yield %) b 

1 

 

Et2O 14:86 

 
260a 

 
261a (69) 
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THF 37:63 

 
260a 

 
261a (45) 

Entry Substract Solvent 260/261
Ratio a 260 261 (Yield %) b
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Scheme 24. Titanium mediated addition of EtMgBr to O-protected cyanohydrins of formaldehyde 
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Scheme 25. Formation of π-alkene titanium complex from ethylmagnesium bromide. 
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a Reaction conditions: To a solution of the nitrile (1 mmol) and Ti(OiPr)4 (1.1 mmol) in Et2O or THF (10 mL) was added 

dropwise at 0 °C a solution of EtMgBr (ca 1 M in Et2O, 2.1 mmol) and stirred for 2 h. The 260/261 ratio was determined by 
1H NMR spectroscopic analysis of the crude material. b Isolated yields after purification by chromatography. c Only the 

formation of isopropyl picolinate was observed. d Compound 260x was contaminated with traces of an aromatic com-

pound. e 6-oxa-4-azaspiro[2 .4]heptan-5-one (262; 30%) was obtained together with 260y (31%). 

3.9. Synthesis of α,α-Disubstituted α-Amino-acids 

Symmetrical α,α-disubstituted α-amino-acids 264 are prepared by oxidation of N-

acyl amino alcohols 263 obtained by a double addition of Grignard reagents to acylcyano-

hydrins of formaldehyde (Scheme 26) [40]. 

 

Scheme 26. Preparation of N-acyl disubstituted amino acids through addition of Grignard reagents followed by oxidation 

[40]. 

Table 19 summarizes the scope of the reaction of the addition of Grignard reagent to 

acylcyanohydrins. In this reaction, two products can be formed depending on the relative 

reactivity of the cyano or ester moiety towards the Grignard reagent. The amino alcohols 

263 is favored when the Grignard reagent adds preferentially to the nitrile group, while 

the tertiary alcohol 265 is produced when the Grignard derivatives adds to the ester 

group. Electron-donating groups can deactivate the ester moiety towards addition (entries 

3, 5, 6) and steric hindrance of the ester group (entry 7) favors the tertiary alcohol. The 

solvent plays a crucial role. For instance, in THF, the amino alcohol is produced in prefer-

ence over the tertiary alcohol (entry 1) but in diethylether, the tertiary alcohol is obtained 

preferentially (entry 2). 
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Table 19 summarizes the scope of the reaction of the addition of Grignard reagent
to acylcyanohydrins. In this reaction, two products can be formed depending on the
relative reactivity of the cyano or ester moiety towards the Grignard reagent. The amino
alcohols 263 is favored when the Grignard reagent adds preferentially to the nitrile group,
while the tertiary alcohol 265 is produced when the Grignard derivatives adds to the
ester group. Electron-donating groups can deactivate the ester moiety towards addition
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(entries 3, 5, 6) and steric hindrance of the ester group (entry 7) favors the tertiary alcohol.
The solvent plays a crucial role. For instance, in THF, the amino alcohol is produced in
preference over the tertiary alcohol (entry 1) but in diethylether, the tertiary alcohol is
obtained preferentially (entry 2).

Table 19. Addition of EtMgBr to acyl cyanohydrins a [40].
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a Reaction conditions: To a solution of the appropriate carboxylic acid (40 mmol) in CH2Cl2 (40 mL) cooled to 0 ◦C was added Et3N
(80 mmol) and the mixture was stirred at room temperature for 10 min Chloroacetonitrile (60 mmol) was added. The mixture was stirred at
room temperature. overnight. Isolated yields. b Ratio determined by 1H-NMR of the crude material. c Et2O used instead of THF. d Only
3-(2-methoxyphenyl)pentan-3-ol (265f) was obtained. e Reaction maintained at 0 ◦C for 30 min.

Table 20 summarizes the results of the addition of Grignard reagents to
O-1-naphtyloylcyanohydrin of formaldehyde. Alkyl (entries 1–4), aryl (entries 5–7) and
substituted allyl Grignard compounds react in good yields.
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a Reaction conditions: To a solution of cyanohydrin (5 mmol) in THF (25 mL) under N2 atmosphere and cooled to 0 ◦C was added dropwise
the appropriate Grignard reagent (11 mmol). The reaction mixture was stirred for 30 min at 0 ◦C. Isolated yields. b Et2O used instead
of THF.

3.10. Synthesis of 2-Hydroxy-2-Cyclopentenones

2-Hydroxy-2-cyclopentenones 268 (Table 21) are obtained by reaction of cyanohydrin
derivatives with titanacyclopropane in Et2O which favors the formation of diketone 267,
which in a further step reacts with a base to produce the cyclopentenone 268 via an
intramolecular cyclization. These two transformations can be carried out in one pot by
adding to the reaction mixture of the first transformation a degassed NaOH aqueous
solution without isolation of the diketone. Table 21 summarizes the results. With the one
step method the cyclopentenones 268 are obtained in higher yields than with the two steps
method (entries 1–4). Substituted aromatic cyanohydrins (entries 2–4) give better yields
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the aliphatic cyanohydrins (entries 5–8). Low yield of cyclopentenone is obtained from the
cyanohydrin from phenylpropargyl aldehyde (21%, entry 9) [41].

Table 21. Two steps versus one step reaction to prepare 3-substituted-2-hydroxy-2-cyclopentenones [41].
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a One-pot procedure: after the addition of EtMgBr to a solution of 1 mmol of cyanohydrin and Ti(OiPr)4 in Et2O, the mixture was stirred
for 1 h at room temperature.. A freshly prepared and degassed 3M aqueous NaOH solution was added, and vigorous stirring maintained
for 3 h. b Reaction undertaken on 12 mmol of cyanohydrin.

3.11. Synthesis of Highly Functionalized Acyclic Ketones

Highly functionalized acyclic ketones (269) have been prepared by Lewis base cat-
alyzed acylcyanation of activated alkenes. Optimal reactions conditions employ 20 mol %
of PPhEt2 as the Lewis base catalyst in DMF in the presence of molecular sieves. The
results are summarized in Scheme 27. Good yields of ketones are obtained regardless of
the electronic nature of the substituted phenyl ring [42].

3.12. Synthesis of Substituted 1,3-Diketones

Substituted 1,3-diketones 270 are synthetized by DBU as a Lewis base in a rearrange-
ment of allylic O-acylcyanohydrins from allylic aromatic ketones. Table 22 shows the
scope of this method with O-aromatic acylated cyanohydrins. Moderate to good yields
are obtained. In all cases where diastereomeric isomers are possible, the diastereoisomeric
ratio (dr) is approximately 1:1 [43].

Good yields of 1,3-diketones are obtained by this method when O-aliphatic acylated
cyanohydrins are used. Table 23 shows the scope of this method. With ethyl carbonate
of cyanohydrin (R1 = EtO) no reaction is observed (entry 3). No diastereoselectivity is
observed in this reaction (dr = 1:1 in most cases).
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Table 23. Rearrangements of O-aliphatic acylated cyanohydrins a [43].

Entry Substrate Product Time
(h)

Yield
(%) b dr c

1
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Table 23. Cont.

Entry Substrate Product Time
(h)

Yield
(%) b dr c

7
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a Reactions were performed with alkene (0.2 mmol) and DBU (120 mol %) in CH3CN. b Isolated yields. c Determined by 1H NMR analysis
of crude product. d No desired product was detected.

3.13. Synthesis of 2,4,5-Trisubstituted Oxazoles by Palladium Catalyzed C-H Activation

2,4,5-trisubstituted oxazoles can be obtained in one pot by a palladium catalyzed C-H
activation of arenes followed by carbopalladation and an annulation sequence (Scheme 28).
Optimal results are found with Pd(acac)2 with TFA in DMSO and no oxidant is necessary.
As shown in Scheme 29, O-aroylcyanohydrins give high yields of trisubstituted oxazoles
with electron rich 1,3,5-trimethylbenzene. Cyanohydrins from aromatic or aliphatic aldehy-
des behave similarly. The reaction is not sensitive to the electronic nature of the O-aroyl
group (271l–271o). When R2 = 3-pyridyl, the yield lowers to 45% [44].
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Scheme 30 shows the results with other arenes. With benzaldehyde, the yield dropped
to 32%. A more nucleophilic arene like toluene raises the yield to 51% of a mixture of
regioisomers and with 1,2-dimethylbenzene, the yield increases to 65%. These observations
imply that the reaction requires electron-rich arenes. This method is also sensitive to steric
hindrance of the arene even with electron-donating groups (272g, 272h).
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So far, all the methods for the preparation of O-ethoxycarbonyl/acetyl cyanohydrins
discussed employed aldehydes or ketones as the starting material. Additionally, alkyl
halides can be used in the synthesis of cyanohydrins by means of a radical formylation
reaction. A one-pot synthesis of O-ethoxycarbonyl cyanohydrins from alkyl bromides
via radical formylation of the alkyl bromide with CO at high pressure followed by a
nucleophilic addition of cyanide ion has been developed (Scheme 31). AIBN is used to
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induce radical formylation of the alkyl bromide. This method involves two one-carbon
components which increase the carbon chain of the alkyl bromide in two carbon units [45].
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Table 24 shows the scope of the method. The reaction tolerates various functional
groups like Cl (entry 2), ethoxycarbonyl (entry 3) and CN (entry 4), primary bromides
(entries 1–5 and 10), secondary bromides (entries 6–8) and tertiary bromides (entry 9).
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c alkyl bromide (0.03 mmol).

4. Conclusions

The synthetic importance of O-ethoxycarbonyl and acylcyanohydrins continues to
make the discovery of new methods for their preparation a thriving field of research. In
particular, alkalicyanides and alkylcyanoformates are considered major cyanide ion sources.
Surfactants, ionic liquids, organocatalysts, transition-metal catalysts with chiral ligands
are some of the strategies used to develop more specific, efficient, and greener processes.
Taking advantage of the specific reactivity of the protected group, in addition to the intrinsic
reactivity of the cyanohydrin, can allow the preparation of an almost endless variety of
interesting synthons such as highly substituted cyclohexenes, oxazoles, cyclopentenones,
cynamic esteres, furanones, among others. As such, new powerful synthetic methods
and applications of O-ethoxycarbonyl and O-acyl cyanohydrins are likely to arise in the
near future.
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Abbreviations

Ac Acetyl group
Acac Acetylacetonate
AIBN Azobisisobutyronitrile
Ar Aryl group
BMIN 1-Butyl-3-methylimidazolium
bpy 2,2-Bipyridine
Bz Benzyl group
DBU 1,8-Diazabicyclo[5.4.0]undec-7-ene
DCM Dichloromethane
DMAP 4-Dimethylaminopyridine
DMF Dimethylformamide
DMSO Dimethyl sulfoxide
dr diastereomeric ratio
DTAC Dodecyltrimethylammonium chloride
DTMAC 4-[(n-dodecylthio)methyl]-7-(N,N-dimethylamino)-coumarin
EE Ethoxyethyl acetal
ee Enantiomeric excess
er Enantiomeric ratio
GC Gas chromatography
Gly Glycine
HFIP Hexafluoroisopropanol
HPLC High-performance liquid chromatography
Me Methyl
nd not detected
NMA N-Methylaniline
OEt Ethoxy group
OMe Methoxy group
SMA Sulfa Michael Addition
Tf Triflate
TFA Trifluoroacetic acid
THF Tetrahydrofuran
THP Tetrahydropyran
TMS Trimethylsilyl
TMSCN Trimethylsilyl cyanide
TON Turnover number
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