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Abstract: A selective noble-metal-free molecular catalyst has emerged as a fruitful approach in the
quest for designing efficient and stable catalytic materials for CO2 reduction. In this work, we report
that a sodium pectate complex of copper (PG-NaCu) proved to be highly active in the electrocatalytic
conversion of CO2 to CH4 in water. Stability and selectivity of conversion of CO2 to CH4 as a product
at a glassy carbon electrode were discovered. The copper complex PG-NaCu was synthesized and
characterized by physicochemical methods. The electrochemical CO2 reduction reaction (CO2RR)
proceeds at −1.5 V vs. Ag/AgCl at ~10 mA/cm2 current densities in the presence of the catalyst. The
current density decreases by less than 20% within 12 h of electrolysis (the main decrease occurs in the
first 3 h of electrolysis in the presence of CO2). This copper pectate complex (PG-NaCu) combines
the advantages of heterogeneous and homogeneous catalysts, the stability of heterogeneous solid
materials and the performance (high activity and selectivity) of molecular catalysts.

Keywords: pectate complex; copper; carbon dioxide reduction; electrocatalysis; methane

1. Introduction

The selectivity and the yields of products of the electrochemical CO2 reduction reaction
(CO2RR) at room temperature, as shown by many studies, strongly depend on the material
of the working electrode, on which the target reaction takes place, and the solvent used [1,2].
The main disadvantages of these heterogeneous electrochemical processes are the need to
apply a relatively high potential (~−1.90 V vs. the standard hydrogen electrode (SHE)) and
a low current density response. However, in an aqueous medium, the equilibrium potential
of the CO2RR is much more positive. For example, the standard electrode potential for
the reaction:

CO2 + H2O + 2e− → HCOO− + OH− (1)

is −0.43 V vs. SHE at pH 7.0 [3].
However, CO2 reduction in water can be difficult (overpotential is more than 1 V in

many cases) and the actual electrode potentials are overwhelmingly much more negative
than the equilibrium potential [4]. The reason for this phenomenon is that the reaction
proceeds through the formation of an intermediate—the radical anion CO2

− at an extremely
negative potential. These problems can be eliminated by using efficient, cheap, selective
and stable catalysts, which are constantly being searched for by researchers. Most of the
products that can be obtained through the catalytic electrochemical reduction of CO2 in
water in the presence of catalysts can be seen in Figure 1.

Molecules 2021, 26, 5524. https://doi.org/10.3390/molecules26185524 https://www.mdpi.com/journal/molecules

https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0003-4714-4143
https://orcid.org/0000-0002-3918-7031
https://orcid.org/0000-0001-9497-4006
https://doi.org/10.3390/molecules26185524
https://doi.org/10.3390/molecules26185524
https://doi.org/10.3390/molecules26185524
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/molecules26185524
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules26185524?type=check_update&version=2


Molecules 2021, 26, 5524 2 of 13

Molecules 2021, 26, x FOR PEER REVIEW 2 of 14 
 

 

of the products that can be obtained through the catalytic electrochemical reduction of 
CO2 in water in the presence of catalysts can be seen in Figure 1. 

 
Figure 1. Main possible products of catalytic electrochemical reduction of CO2 in an aquatic envi-
ronment. 

Researchers have studied a fairly large number of metal complexes that are catalysts 
for the electrochemical reduction of CO2 [5–8]. Several well-known water-soluble com-
plexes can be listed: Mn polypyridyl complex [9], rhenium tricarbonyl complex with hy-
droxymethyl groups [10], 1,10-phenanthroline-copper complex [11], iron tetraphenylpor-
phyrin functionalized with trimethylammonium groups [12], nickel cyclam complex [13], 
iridium pincer complex [14]. However, most catalytically active complexes dissolve only 
in organic solvents. It leads to the need to add proton donors at a low concentration (3–
5% usually). In turn, water itself is a source of protons, moreover, it is the cheapest and 
most readily available solvent. 

Thus, it is important to look for complexes with catalytically active metal centers, but 
soluble in water. Sodium pectate has the ability to coordinate various metal centers [15–
20]. Electrochemical and electrocatalytic properties of sodium pectate complexes are very 
interesting but have not been studied absolutely. Ligands in such complexes are obtained 
from pectin, a cheap and readily available natural polysaccharide. In addition, polysac-
charides themselves exhibit a catalytic effect in the hydrogen evolution reaction in some 
cases, as has recently been found out [21–24]. This article is devoted to the sodium pectate 
complex with copper and its catalytic activity in the CO2RR. We discovered that this wa-
ter-soluble catalyst (PG-NaCu) is highly active in the CO2RR and selectively converts CO2 
to CH4 as product in water solutions. 

It is well known that copper electrodes, as well as nanostructured copper and copper 
oxides, promote the electrocatalytic conversion of CO2 to deep reduced products such as 
methane, ethylene, and ethanol [1,25–27]. However, there are a number of examples of the 
electrocatalytic conversion of CO2 to CH4, C2H4, C2O4 on single copper ions [28–32]. The 
most common mechanism of such deep reduction of CO2 can be noted. In all cases, Cu(I) 
is the catalytically active site. CO2 molecule binds to copper and accepts an electron and a 
proton with the forming of COOH (Cu(I) becomes Cu(II)). Next, sequential transfer of 
seven electrons and protons leads to the formation of methane and two water molecules 
(through the CO and CHO intermediates) [29]. Cu(II) is then reduced back to Cu(I). An 
interesting effect was observed in one of the works [28], when the distance between Cu 

Figure 1. Main possible products of catalytic electrochemical reduction of CO2 in an aquatic environment.

Researchers have studied a fairly large number of metal complexes that are cata-
lysts for the electrochemical reduction of CO2 [5–8]. Several well-known water-soluble
complexes can be listed: Mn polypyridyl complex [9], rhenium tricarbonyl complex with
hydroxymethyl groups [10], 1,10-phenanthroline-copper complex [11], iron tetraphenylpor-
phyrin functionalized with trimethylammonium groups [12], nickel cyclam complex [13],
iridium pincer complex [14]. However, most catalytically active complexes dissolve only
in organic solvents. It leads to the need to add proton donors at a low concentration (3–5%
usually). In turn, water itself is a source of protons, moreover, it is the cheapest and most
readily available solvent.

Thus, it is important to look for complexes with catalytically active metal centers, but
soluble in water. Sodium pectate has the ability to coordinate various metal centers [15–20].
Electrochemical and electrocatalytic properties of sodium pectate complexes are very inter-
esting but have not been studied absolutely. Ligands in such complexes are obtained from
pectin, a cheap and readily available natural polysaccharide. In addition, polysaccharides
themselves exhibit a catalytic effect in the hydrogen evolution reaction in some cases, as
has recently been found out [21–24]. This article is devoted to the sodium pectate complex
with copper and its catalytic activity in the CO2RR. We discovered that this water-soluble
catalyst (PG-NaCu) is highly active in the CO2RR and selectively converts CO2 to CH4 as
product in water solutions.

It is well known that copper electrodes, as well as nanostructured copper and copper
oxides, promote the electrocatalytic conversion of CO2 to deep reduced products such as
methane, ethylene, and ethanol [1,25–27]. However, there are a number of examples of the
electrocatalytic conversion of CO2 to CH4, C2H4, C2O4 on single copper ions [28–32]. The
most common mechanism of such deep reduction of CO2 can be noted. In all cases, Cu(I)
is the catalytically active site. CO2 molecule binds to copper and accepts an electron and
a proton with the forming of COOH (Cu(I) becomes Cu(II)). Next, sequential transfer of
seven electrons and protons leads to the formation of methane and two water molecules
(through the CO and CHO intermediates) [29]. Cu(II) is then reduced back to Cu(I). An
interesting effect was observed in one of the works [28], when the distance between Cu
centers has a significant impact on a final product of CO2RR. If copper ions are distant from
each other, CH4 is formed. When a pair of copper centers are located close, each of them
binds one CO2 molecule with the further formation of C2H4. The formation of C2O4 in the
presence of a dinuclear Cu(I) complex occurs by a similar principle in another article [30].
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2. Results and Discussion
2.1. Synthesis of the Sodium Pectate Complex with Copper

Synthesis of the complex was carried out according to the already known method
refs. [15,19,20]. Pectin was dissolved in 1.5 L of water (55 ◦C), then 0.1 N NaOH solution
was added to the pectin, increasing the pH to 9, and then the solution was left for 2 h at
55 ◦C. Then, a solution of CuSO4 with 0.016 mol/L concentration was added to the sodium
pectate (PG-Na) solution. In 20–30 min, the target product was precipitated with double
volume of ethanol, centrifuged and dried.

For research, we obtained the PG-NaCu complex by using a 20% replacement of
sodium ions in sodium pectate with copper ions. The replacement rate was selected in
such a way as to both maximize the number of Cu centers and ensure water solubility of
the complex. The obtained compound PG-NaCu is amorphous powder. Synthesis and the
simplified structure of the complex of sodium pectate with copper is shown in Figure 2.
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2.2. Electrocatalytic CO2RR Tests Using the PG-NaCu Catalyst

We used an electrolysis cell with a large volume of the above-solution space so that
it was possible to take samples of the gases formed and carry out their qualitative and
quantitative analysis. The area of the working electrode was 1 cm2. Sodium phosphate
buffer Na2HPO4/NaH2PO4 was used as a supporting electrolyte. The electrolysis was
carried out at a potential of−1.5 V for 12.5 h in homogeneous conditions and CO2 saturated
water (the first hour of electrolysis with water saturation with argon).

Figure 3a shows the result of determining the catalytic CO2RR products in the presence
of the PG-NaCu complex after different electrolysis times. The calculations of Faraday
efficiency were carried out using the values of the concentration of the products found in
the selected gas samples and the amount of charge passed through the cell.

FE =
Qt

Q f
× 100% (2)

Q f =
∫ t1

t0

Idt (3)

Qt = neNAν = nFν (4)
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where n is the number of electrons in an electrochemical reaction. For example:

CO2 + 2e− + 2H+ → CO + H2O (5)

CO2 + 8e− + 8H+ → CH4 + 2H2O (6)
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Ag/AgCl) in homogeneous conditions with the PG-NaCu complex in Ar (the first hour) and CO2 saturated water.

It was found that methane (19.1–20.0%) is the main product of the CO2 reduction
reaction catalyzed by PG-NaCu. Ethane was also detected (1.2–2.5%). Ethene, propane,
and CO are present in insignificant amounts (less than 1% in total). No traces of alcohols
(CH3OH, C2H5OH) were found. Hydrogen is also released in large quantities at this
potential (76–79%).

The detected products are in agreement with the literature examples of the catalytic
CO2RR on single copper ions [28–32]. As shown below in Sections 2.7 and 2.8, Cu(II) in the
sodium pectate complex is reduced to Cu(I) acting as a single catalytic site. Apparently, the
long distance between Cu centers plays a decisive role in the predominance of C1 product
over C2 and C3 products.

Figure 3b shows the chronoamperometry data during electrolysis and the amount of
charge passed through the cell. The highest current density after saturation of the solution
with carbon dioxide reaches 10.6 mA/cm2. Further, within 12.5 h the current density
decreases by less than 20% (moreover, the main decrease occurs in the first 3 h of electrolysis
in the presence of CO2), which characterizes good catalytic stability of the PG-NaCu
complex. Such current density is quite high for molecular CO2RR electrocatalysts [33],
and especially for water-soluble electrocatalysts [9–11]. The latter are characterized by
current densities of a few mA/cm2 or less at close potentials. It should be noted that the
immobilization of water-soluble complexes on carbon nanotubes or graphene makes it
possible to increase the current density, but it cannot be attributed to the homogeneous
catalysis. CO2RR catalysts based on metallic copper and copper oxides can exhibit much
higher catalytic activity with a current density in the range of 100–400 mA/cm2 [25,34].
Having discovered such intriguing properties of the complex, we decided to study it in
more detail.

2.3. Infrared Spectroscopy

When the Cu pectin metal complex was obtained, the state of carboxyl groups was
monitored by infrared (IR) spectroscopy in the range of stretching vibrations of the COO−

group (1600–1800 cm−1) [35–37]. The presence of absorption bands in the IR spectrum
of citrus pectin in the range of 1700–1750 cm−1, related to the stretching vibrations of
carbonyls of carboxyl and ester groups, as well as the presence of characteristic absorption
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bands in the range of 950–1200 cm−1, related to the vibrations of the pyranose ring, confirms
the belonging to pectin substances.

In the IR spectrum of sodium pectate (PG-Na) (Figure S1), there is an absorption
band in the region of stretching vibrations of the ionic form ν(COO−) at 1610 cm−1 and
there is no absorption band of stretching vibrations ν(C = O) of carboxyl or ester groups at
1745–1750 cm−1.

Similarly, the IR spectra of the pectin metal complex PG-NaCu (Figure 4) have char-
acteristic absorption bands of the COO− group. The main characteristic band positions
(cm−1) for PG-Na and PG-NaCu are shown in Table S1.
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2.4. Inductively Coupled Plasma Atomic Emission Spectroscopy

The study of the elemental composition of the complex showed that the expected
metals content corresponded to the experimental one. The found relative molar content of
sodium and copper ions in the PG-NaCu sample was 4.10/1.

2.5. Thermal Analysis

The study of the obtained complex was continued using the combined methods of
thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). As the
temperature rises, in the DSC curve for PG-NaCu shown in Figure 5, an endothermic peak
can be observed at T ≈ 67 ◦C. In this case, the weight loss of the sample on the TGA curve
was almost 11%. With a further increase in temperature, a peak of the exothermic process
is already observed. The temperature of this peak is ≈247 ◦C, and the corresponding
weight loss is already as much as 39%. The enthalpy of reaction, found by integrating the
exothermic peak on the DSC curve, was 184 J/g. By analogy with the data obtained for
some sodium polygalacturonates and their metal complexes [38–40], it can be concluded
that the first endothermic peak corresponds to the loss of water by the PG-NaCu sample,
and the second exothermic peak is associated with the decarboxylation of the sample and
the release of carbon dioxide. All process parameters for PG-Na can be seen in Figure
S2. The fundamental difference of PG-Na from the complex is that the sample almost
completely loses its mass at a temperature of 1000 ◦C, while in the case of the copper
compound at the same temperature, 14% of the mass remains.
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2.6. Electron Spin Resonance Spectroscopy

The electron spin resonance (ESR) spectrum of the PG-NaCu powder at a temperature
of 150 K was obtained and subsequently simulated (Figure 6) to understand the coordina-
tion environment of the paramagnetic low-spin Cu (II) 3d9 ions in the PG-NaCu complex.
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The parameters obtained from the simulation are shown below:

g1 = 2.395; aCu = 122 G; ∆H = 80 G
g2 = 2.096; ∆H = 130 G
g3 = 2.073; ∆H = 40 G.

The g-factors for the complex are close in their values to the g-factors of the known
coordination complexes of Cu(II) with organic acids, in particular, copper citrate [15,41],
for which the first coordination sphere of the metal has the structure of a tetragonally
distorted octahedron.
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2.7. Electrochemistry in Homogeneous Conditions (PG-NaCu in Water Solution)

We attempted to carry out both homogeneous and heterogeneous electrocatalysis
with the complex. As mentioned in the introduction, the potential of the CO2RR in an
aqueous medium is much less negative than in organic solvents. However, many molecular
catalysts for the CO2 reduction reaction are water insoluble. Therefore, researchers often
use mixtures of organic solvents with water to carry out homogeneous catalysis [42].
From this point of view, sodium pectate complexes are very convenient, since they are
water soluble.

First of all, we will focus on the results with the PG-NaCu complex in homogeneous
conditions. The Eonset potential of hydrogen evolution from water at glassy carbon electrode
(GCE) in the absence of the complex is −1.55 V vs. Ag/AgCl both in a solution saturated
with argon and in a solution saturated with carbon dioxide (black curve in Figure 7a).
The Eonset of the same reaction in the presence of the copper complex is already −1.25 V
vs. Ag/AgCl (red curve in Figure 7a), i.e., the decrease in overvoltage of this reaction
takes place. When the solution is bubbled with carbon dioxide, an even greater shift of the
potential Eonset occurs, but in this case, one deals with the potential of the multielectron
reaction of CO2 reduction, which is realized at slightly lower negative potentials than the
reaction of hydrogen evolution. The Eonset of this reaction reaches −1.05 V vs. Ag/AgCl
(blue curve in Figure 7a). It should be noted that the current observed at potentials
more negative than the Eonset potential in the presence of carbon dioxide are an integral
characteristic of two simultaneously occurring and competing processes—the reaction of
CO2 reduction and hydrogen evolution.
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Figure 7. (a) CVs recorded at a glassy carbon electrode (GCE) in the presence of the PG-NaCu complex when bubbling
argon (red curve) or carbon dioxide (blue curve) through the H2O solution, 0.1 V/s. Black line is background in the absence
of PG-NaCu, (b) CV recorded at a glassy carbon electrode (GCE) in the presence of the PG-NaCu complex when bubbling
argon through the H2O solution, 0.1 V/s.

Figure 7a shows the sharp increase in reduction current after Eonset in cyclic voltammo-
grams (CVs), but no peaks of the complex reduction are observed. In fact, a quasi-reversible
peak is observed at potentials close to 0 V (Figure 7b), but its current is almost a thousand
times less than the current at −1.5 V. The low value of the peak current is explained by
the slow diffusion of the PG-NaCu molecules to the working electrode due to their large
size and high molecular weight. Such a system can be called pseudo-homogeneous, and it
combines the advantages of homogeneous and heterogeneous systems. On the one hand,
these complexes are quite stable and have many relatively closely spaced copper centers
within one molecule, on the other hand, they provide catalytic activity and selectivity in-
herent in molecular catalysts. As can be seen from the CV, a reduction peak potential of the
complex PG-NaCu under homogeneous conditions in water is only −0.2 V vs. Ag/AgCl.
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Reduction peaks with this potential are typical for the Cu(II)/Cu(I) redox pair. For example,
a water-soluble 1,10-phenanthroline-Cu complex (it is an electrocatalyst for the CO2RR
too) has a reduction Cu(II)/Cu(I) peak with a potential of +0.53 V vs. RHE [11]. Using the
equation for electrode potentials converting:

E (vs. Ag/AgCl) = E (vs. RHE) − 0.197 − 0.059 (pH) (7)

We can calculate the potential Ephen-Cu (vs. Ag/AgCl) = −0.08 V, which is close to the
PG-NaCu reduction peak potential. The solution saturation with carbon dioxide does not
lead to any shift in the potential of the peak.

The reduction of copper complexes can sometimes lead to the electrodeposition of
metallic Cu (0) or copper oxides on electrodes [43]. There are many examples of both
molecular copper catalysts for the CO2 reduction [44–46] and CO2 reduction catalysts
based on metallic copper or copper oxides [25–27]. We assert that in the case of the PG-
NaCu complex and at potentials more positive than −1.5 V (vs. Ag/AgCl), there is no
deposition of copper or copper oxide on the glassy carbon electrode. There is some evidence
for this.

− Firstly, we do not observe any adsorption peaks on the cyclic voltammograms, which
would indicate copper electrodeposition on the electrode.

− Secondly, we carried out a study of the electrode surface before electrolysis, after
30 min and after 12.5 h of electrolysis in the presence of PG-NaCu (Figure S4) using
scanning electron microscopy. The electrode was gently washed with deionized
water after electrolysis to remove electrolyte residues and only then microscopy
was performed. In cases before electrolysis and after 30 min of electrolysis, the
surface turned out to be identical without any particles or films. In the case of 12.5 h
electrolysis, the presence of a very small number of nanoparticles on the electrode
was found. Moreover, energy-dispersive X-ray spectroscopy showed no copper on
the electrode surface in all the cases (in the case of 12.5 h of electrolysis, the amount of
copper may have been below the sensitivity threshold) (Figure S5).

− Thirdly, we observe a similar catalytic activity of the copper complex under heteroge-
neous conditions (as will be shown below), where the formation of copper or copper
oxide particles or films is unlikely.

2.8. Electrochemistry in Heterogeneous Conditions (PG-NaCu in Solid Composite of Carbon Paste
Electrode)

Next, we investigated the electrochemical properties of the sodium pectate complex
with Cu in heterogeneous conditions. A carbon-paste electrode based on an ionic gel (tri(tert-
butyl)(dodecyl)phosphonium tetrafluoroborate) was used. The advantages of this electrode
are high electrical conductivity and a wide electrochemical window (5.6 V). This is one
of the largest electrochemical windows for ionic liquids, while the paste shows sufficient
stability over time and reproducibility of recorded electrochemical signals. The electrode
makes it possible to determine the current-voltage characteristics of redox-active insoluble
and soluble compounds, which was demonstrated for an insoluble compound poly-tris(µ2-
1,1′-ferrocenediyl-phenylhydrophosphinato-phenylphosphinato)-iron(III) [47,48]. A glassy
carbon electrode with a composite deposited on it mixed with a complex was placed in an
electrochemical cell, where water was used as solvent.

In the CV diagram, during the reduction in water, a quasi-reversible peak is observed
corresponding to the transition of Cu(II) to Cu(I) with a peak potential of only −0.25 V vs.
Ag/AgCl (red curve in Figure 8). In general, we observe a result similar to the homogeneous
case with a slight difference in the potentials of the reduction and reoxidation peaks. The
peak currents are higher than in homogeneous conditions, which is explained by the large
number of the PG-NaCu molecules in the paste.
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It should be noted that the potential value of the hydrogen evolution reaction shifts
to the positive region when a copper complex is added into the carbon paste. The Eonset
potential of water reduction without the use of PG-NaCu is −1.60 V, the Cu complex shifts
the Eonset potential by 350 mV (−1.25 V). It is worth noting here that in homogeneous
conditions, we obtained a close value for the Eonset.

When an aqueous solution is saturated with carbon dioxide, the Eonset becomes equal
to−1.15 V (blue curve in Figure 8) and corresponds to the initial potential of carbon dioxide
reduction, and at a potential of −1.50 V, the current density exceeds 14 mA/cm2, while the
amount of PG-NaCu in the electrode is only 0.1 µg of the substance. There is also a slight
shift in the Cu(II)/Cu(I) reduction peak towards negative potentials.

3. Materials and Methods
3.1. Synthesis of the Sodium Pectate Complex with Copper

We used citrus pectin of the “Classic C-401” brand produced by Herbstreith and Fox
(Turnstraße 37, Neuenbürg/Württ, D-75305, Germany) as an organic matrix for copper ions
introduction. The measured molecular weight of the citrus pectin is 17.6 kDa. CuSO4·5H2O,
NaOH and other reagents with a purity of more than 99.9% were used for the synthesis.

3.2. Fourier-Transform Infrared Spectroscopy

IR spectra were recorded on IR-Fourier spectrophotometer IRS-113 (Bruker, 40 Man-
ning Road, Billerica, MA 01821, USA) with 1 cm−1 resolution in the range 400–4000 cm−1,
the substance being pressed with KBr in tablets.

3.3. Inductively Coupled Plasma Optical Emission Spectroscopy

In total, 10 mg of the complex powder was placed in 20 mL of a 0.2 molar solution
of HNO3 to prepare extracts of the complexes. Na and Cu concentrations were identified
in the complex extract using simultaneous inductively coupled plasma optical emission
spectrometer (ICP-OES) model iCAP 6300 DUO by Thermo Fisher Scientific Company
(168 Third Avenue, Waltham, MA 02451, USA) equipped with a CID detector. Together,
the radial and axial view configurations enable optimal peak height measurements with
suppressed spectral noises [49]. The concentration of Na and Cu ions was determined,
respectively, by the spectral lines 588.995 and 324.754 nm. We used Sc as internal standard
(10 ppm in the sample), and all the standards were by the Perkin Elmer corporation.
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3.4. Thermal Analysis

The thermal decomposition of PG-Na and PG-NaCu was studied by simultaneous
thermal analysis (thermogravimetry/differential scanning calorimetry, TG/DSC) in which
the variation of the sample mass as a function of temperature and the corresponding heats
are recorded. We used a combined TGA/DSC/DTA analyzer SDT Q600 (TA Instruments,
USA). The samples (about 12 mg) were placed in corundum crucibles and heated to 1000 ◦C
together with an empty crucible as the reference. The TG/DSC measurements were carried
out at a heating rate of 5 K/min in a nitrogen flow of 100 mL/min.

3.5. Electron Spin Resonance

ESR measurements were carried out on an ELEXSYS E500 (Bruker) ESR spectrom-
eter of the X-range. ESR spectra were simulated using the WINEPR SimFonia software
(Bruker) [50,51].

3.6. Electrochemistry

Electrochemical measurements were taken on a BASi Epsilon EClipse electrochem-
ical analyzer (2701 Kent Avenue, West Lafayette, IN 47906, USA). A conventional three-
electrode system [52–54] was used with glassy carbon as the working electrode, the
Ag/AgCl (3 M KCl aqueous solution) electrode as the reference electrode, and a Pt wire
as the counter electrode. The pH of solutions undergoing electrochemical studies was
maintained with 0.1 M sodium phosphate buffer Na2HPO4/NaH2PO4 (pH = 7). It was also
a supporting electrolyte. The complex concentration in the solution for electrochemistry
under homogeneous conditions was 1 mg/L. The gases were supplied to solutions by the
bubbling method. The argon and carbon dioxide purity were higher than 99.99%.

3.7. Scanning Electron Microscopy

Microscopy measurements were carried out on an EVO LS-10 scanning electron
microscope (Carl Zeiss, Carl-Zeiss-Strasse 22, 73447 Oberkochen, Germany) in high vacuum
(HV) mode. SE detector and lanthanum hexaboride cathode were used to obtain surface
images. Chemical analysis of the glass carbon surfaces was done using Energy-Dispersive X-
ray Spectroscopy detector (Oxford instrument, Tubney Woods, OX13 5QX Abingdon, UK).

3.8. Gas Chromatography

Detection and quantification of selected gases (CO and hydrocarbons) were performed
by a Crystal 2000 M gas chromatograph (Chromatek, 94 Stroiteley Str., 424000 Yoshkar-Ola,
Russia), with a 1 mL sample loop. The gas chromatograph was fitted with two columns (5%
NaOH on Al2O3 and CaA zeolites) and two flame ionization detectors (one of which was
fitted with a methanizer). Calibration curves were constructed using certified methane/air
and CO/air calibration gas mixtures. Nitrogen was used as the carrier gas. The temperature
was held at 60 ◦C.

4. Conclusions

Thus, we were the first to propose the use of copper pectin complexes as selective
noble-metal-free electrocatalysts for the conversion of CO2 to methane (yield of CH4 is
20.0%, other C-products are present in minor amounts). In homogeneous conditions this
catalyst works on the verge of heterogeneous and homogeneous catalysis. It can be said
that it is nanoheterogeneous since it combines the advantages of a molecular catalyst,
soluble in water, as well as heterogeneous due to a large molecular weight (it is a natural
polymer). The advantages of the catalyst are its stability, selectivity, the ability to achieve
good operating current densities 10.5 mA/cm2.
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Supplementary Materials: The following are available online, Figure S1: Fourier-transform infrared
spectroscopy spectrum of sodium pectate (PG-Na), Table S1: The main characteristic band positions
(cm−1) for the PG-Na and the PG-NaCu (20%), Figure S2: Thermogravimetry and differential
scanning calorimetry curves for sodium pectate (PG-Na), Figure S3: Temperature dependence of
the electron spin resonance spectrum of the sodium pectate complex with copper, Figure S4: SEM
images of the glass carbon electrode surface before electrolysis (a), after 30 min (b) and after 12.5
h (c, d) of electrolysis at −1.5 V vs. Ag/AgCl in the presence of the PG-NaCu. The electrode was
gently washed with deionized water after electrolysis to remove electrolyte residues and only then
microscopy was performed, Figure S5: Energy-dispersive X-ray spectroscopy of the glass carbon
electrode surface before electrolysis (a) after 30 min (b) and after 12.5 h (c) of electrolysis at −1.5 V vs.
Ag/AgCl in the presence of PG-NaCu. Carbon is detected in all cases. Very weak oxygen peak is
detected in the case of 12.5 h of electrolysis.
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