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Abstract: This communication reports a novel synthesis route for the preparation of monofunctional-
ized β-cyclodextrin in a single stage. The approach involves only the in-situ protection of secondary
hydroxyl groups as an excellent alternative to the classical procedure involving a series of five steps
of protection and deprotection of hydroxyl groups (both primary and secondary ones) belonging to
β-cyclodextrin.

Keywords: cyclodextrin; selective primary side substitution; copper complex; control of the reactivity;
one-pot reaction

1. Introduction and Current Status of the Subject

Cyclodextrin (CD) research has increased exponentially during the last fifty years.
Currently, the number of derivatives for all three natural CDs is in the range of several
thousands. Due to this wide variety of derivatives, one can wonder how these functional
groups affect the general properties of CDs and what specific site should be changed for
a particular application; for example, whether an increased water solubility or greater
stability of the guest in the CD cavity is desired. The answer was partially given by
Wenz [1], when through isothermal titration microcalorimetry, he established the binding
constants of 4-tert-butylbenzoate and adamantane-1-carboxylate with all methylated β-
cyclodextrin derivatives. These results reveal that by blocking the primary hydroxyl side
of β-cyclodextrin (β-CD), there is not only the benefit of increased water solubility, that
all methylated derivatives display, but the maximum binding constant for the inclusion
complexes in this series of methylated β-CDs can also be obtained. Although a complete
change of all 21 hydroxy groups is relatively easy to perform in one step and the yield
is quantitative, as demonstrated for per-O-methylated cyclodextrins using Haworth [2]
and Irvine–Purdie methylation [3,4] or per-O-(2-hydroxypropyl) cyclodextrins [5], selec-
tive primary side derivatization is still in the early development stages, with one notable
exception being the modified Appel reaction [6]. This reaction is used as the first step
to synthesize per-6-halogeno-per-6-deoxy cyclodextrins, the γ-cyclodextrin variant being
the precursor for octakis[6-(2-carboxyethylthio)-6-deoxy]-γ-cyclodextrin sodium salt also
known as Sugammadex [7], one of the most successful cyclodextrin derivatives. The suc-
cess of Sugammadex to selectively remove only the general anesthetic, and thus being the
first selective relaxant binding agent, it gives some hints about the increased practicality of
primary-side-substituted cyclodextrins as a more potent guest carrier. Another path for the
primary side substitution is carried out using the classical organic chemistry protocols of
protecting groups and numerous steps until the final desired product is obtained. These
protocols employ the use of tert-butyldimethylsilyl chloride for primary side protection
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followed by a wide variety of secondary side protection (methylation, acetylation, ben-
zylation, etc.) [8] with subsequently improved variants [9] and a relatively recent work
by the cyclodextrin specialized laboratory CycloLab [10]. Moreover, even though highly
efficient steps are now available, the multiple-step reactions needed to achieve the result
bring down the total yield of the reaction to a reported value ranging between 40% and
70% [9,10]. All the above-mentioned syntheses, summarized in Figure 1 offer good but
expensive commercial products.
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One workaround employed in the industry is the use of cheap randomly substituted
cyclodextrins. Their synthesis is almost always comprised of one step, followed by a
simple purification workup. The drawback for these types of syntheses is the resulted
mix of isomers characterized by an average degree of substitution (DS) following the
normal Gaussian distribution. If the manufacturer does not follow good manufacturing
practices, this normally distributed abundance of isomers can be affected, and for the same
DS, one can have differently shaped distributions [11], affecting the reproducibility of
proprieties of the end product. One of the easiest isomers to produce, and at the same
time most studied, is the randomly substituted β-CD. For example, the phase-transfer
catalysis method of methylation with dimethyl sulfate which produces a DS of 12.4÷13.2
is called RAMEB [12]. A similar DS was obtained using CH3I [13], CH3Cl [14] or dimethyl
carbonate, although the last reaction was performed in dimethylformamide solvent [15].
The influence of different reaction times and several strong bases on the DS and substi-
tution pattern was investigated [16–18]. One of the earliest uses of copper chelates as
temporary protection for selective acylation of aminoglycoside antibiotics was reported
by Hanessian in 1978 [19]. Although pure cyclodextrins metal complexes are said to have
only a few applications in Bellia’s extensive review [20], in the same year, Masurier et al.
used a copper(II)-β-cyclodextrin complex to synthesize 3-O-substituted β-cyclodextrin
derivatives [21]. A sandwich copper-β-cyclodextrin was used to direct the tosylation only
to primary hydroxyls groups, avoiding secondary side products [22]. With these sandwich-
type complexes, the CDs are forming dimeric structures in which the secondary hydroxyl
groups are coupled together by a ring of metal ions [23,24]. This complex is formed in one
step and requires a basic medium to be stable, which is needed for the methylation reaction.
The coordination of copper(II) ions, as proven by X-ray diffraction crystallography, is
square-planar, with both secondary hydroxy groups of each glucose unit involved in the
coordination. Herein, this study aims to provide a novel chemical shortcut of the classical
procedure involving a series of five steps for the protection and deprotection of hydroxyl
groups (both primary and secondary) belonging to β-cyclodextrin in a single stage, consist-
ing of only in situ protection of secondary hydroxyl groups. This new synthesis route is
exploiting the well-known ability of cyclodextrins to form coordination compounds with
metals. In this respect, the copper(II) ion was chosen due to its dsp2 hybridization (by
combining a 3dx

2
-y

2 orbital with one 4s and two 4p orbitals, respectively) and its proper
ionic radius which facilitates coordination in a square planar geometry with two secondary
hydroxyl groups of a glucopyranose unit of a cyclodextrin on one side of the plane and
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two other similar groups of another cyclodextrin molecule oriented on the other side of the
plane. The result is a sandwich structure with copper(II) ions in the middle, coordinating
and blocking the reactivity of these functional groups. The coordination complex stability
is enhanced when pH becomes increasingly alkaline, favoring a Haworth-type methylation
by using dimethyl sulfate as an alkylating agent. The chemical reactions associated with
this protection procedure are schematically illustrated in Figure 2.
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Figure 2. Proposed protection mechanism.

The main advantages of this new approach consist of shortening the number of
purification steps—from five in the classical case to one in the proposed reaction route.
Additionally, the synthesis takes place in water at room temperature by using only two
reagents, with a practical and effective possibility regarding cupric ion recovery. In compar-
ison with the classical route where a variety of solvents, reagents, catalysts and protective
atmosphere is required with a non-negligible increase in the final price of the selectively
methylated excipient at position O (6), the method proposed in this study has a huge
advantage because of its simplicity and effectiveness. Furthermore, when comparing the
proposed chemical synthesis with that of randomly methylated β-cyclodextrin (RAMEB), a
single compulsory reagent is needed. This first step of complexation before methylation
can guide the alkylation on the primary hydroxyl groups. Indeed, the reaction must be con-
ducted with care to avoid overmethylation of the final compound if the reaction conditions
are too energetic.

As far as the deprotection step is concerned, it is the same as the one used in the
classical RAMEB synthesis. In addition, the neutralization of alkaline solution leads to a
precipitate of cupric oxide which may be easily separated and removed from the reaction
mixture via filtration.

In addition to the syntheses intended to optimize the ratio of β-CD:Me2SO4 to obtain
heptakis(6-O-methyl)-β-cyclodextrin (MβCD) and to prove the ability to protect secondary
hydroxyl groups by forming the coordination complex β-CD2Cu7(OH)14, several control
syntheses (without cupric sulfate) were carried out to obtain RAMEB with different degrees
of methylation. Comparative analyses of NMR spectra recorded for the fully methylated
compound heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin (TRIMEB) were performed to moni-
tor the synthesized products.

2. Results and Discussion

MβCD synthesis, presented in Figure 3, was performed with a 76% yield by using a
novel chemical shortcut of the classical procedure involving a series of five steps for the
protection and deprotection of hydroxyl groups (both primary and secondary) belonging to
β-cyclodextrin in a single stage consisting of only in-situ protection of secondary hydroxyl
groups. The results show that the new fabrication route is feasible and can evolve, after
optimization to a revolutionary economical solution for replacing the classic five-step
method.
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To prove the above, comparative analyses of NMR spectra recorded for the fully methy-
lated compound heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin (TRIMEB) were performed to
monitor the synthesized products.

The 1H-NMR and 13C-NMR chemical shifts for β-CD and methylated β-CD in DMSO-
d6 as well as for the used references are presented in Tables 1 and 2.

Table 1. 1H-NMR chemical shifts for β-CD and methylated β-CD in DMSO-d6.

2-OH 3-OH H1 6-OH 3-O-Me 2-O-Me 6-O-Me

β-CD 5.73 5.69 4.80 4.51 - - -
MβCD 5.82 5.76 4.77 4.51 - - 3.24

MβCD [9] 5.80 5.72 4.77 - 3.59 * 3.47 * 3.24
Reference sample 5.83 5.74 4.77 4.46 3.69 3.40 3.23

TRIMEB - - 5.04 - 3.50 3.38 3.23
TRIMEB [25] - - 5.08 - 3.64 3.50 3.32
DIMEB [25] - N/S 4.95 - - 3.6 3.4

* signals from the same reference but for heptakis(2,3-di-O-methyl)-β-cyclodextrin.

Table 2. 13C-NMR chemical shifts for β-CD and methylated β-CD in DMSO-d6.

C1 C4 C3 C2 C5 C6 Me3 Me2 Me6

β-CD 102.14 81.73 73.27 72.58 72.24 60.15 - - -
MβCD 102.24 82.26 73.06 72.44 70.31 70.94 - - 52.87

MβCD [9] 97.5 77.6 68.3 67.6 65.6 66.2 61.3 * 58.6 * 53.3
Reference sample 102.30 82.27 73.10 72.37 70.40 70.99 63.44 59.30 58.15

TRIMEB [25] 98.4 79.7 82.4 81.6 70.5 71.0 60.9 58.0 58.4
DIMEB [25] 101.3 82.1 73.1 83.6 70.9 71.4 - 60.3 58.7

* signals from the same reference but for heptakis(2,3-di-O-methyl)-β-cyclodextrin.

The reference sample shows more or less the same substitution degree: in both 1H
and 13C-NMR spectra, the signals for all three methylated positions, 2, 3 and 6 O-Me, are
present. In the case of 1H-NMR for β-CD and methylated β-CD in DMSO-d6, the signals for
3-O-Me and 2-O-Me are missing. The reference sample, due to the mixture of methylated
cyclodextrin, has multiple signals present in 13C-NMR spectra. The NMR recorded spectra
for products and reference samples are presented in Supporting Information Figures S3–S8,
S10, S11 and S13. MS analysis identified the [M + Na]+ adduct ions as normal isomer
distributions for the sample methylated in the presence of Cu2+ ions. Complete MS results
are presented in the Supporting Information Figures S9 and S12.

3. Materials and Methods

Reagents: β-cyclodextrin (≥95.0%, Wacker Chemie AG, Munich, Germany) was
vacuum-dried before use, copper sulfate (for analysis, >99%, Chemical Company SA, Iasi,
Romania), sodium hydroxide (reagent grade, ≥98%, pellets, Sigma-Aldrich/Merck KGaA,
Darmstadt, Germany), dimethyl sulfate (puriss. p.a., ≥99.8%, Sigma-Aldrich/Merck
KGaA, Darmstadt, Germany), N,N-dimethylformamide (Reagent Plus, ≥99%, Sigma-
Aldrich/Merck KGaA, Darmstadt, Germany), ammonia (for analysis, min. 25%, Chemical
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Company SA, Iasi, Romania), acetone (for analysis, >99%, Chemical Company SA, Iasi,
Romania), ethanol (for analysis, >96%, Chemical Company SA, Iasi, Romania), chloroform
(for analysis, >98.5%, Chemical Company SA, Iasi, Romania).

The syntheses were performed as follows:
Heptakis(6-O-methyl)-β-cyclodextrin synthesis (MβCD) was performed using 1mmol

(1.135 g) β-CD and 4 mmol CuSO4 (0.9987 g) dissolved in 100 mL H2O. To this solution,
we added 50 mL of cold concentrated NaOH solution to reach 30% in the final volume.
To this dark blue solution, 8 mL of Me2SO4 was slowly added dropwise from a dropping
funnel. The reaction was continuously stirred for another 24 h. At the end of the reaction
time, the mixture was neutralized, and the precipitate was filtered on a G4 sintered glass
funnel and washed with 3 × 15 mL H2O. The solution was then concentrated to the
minimum amount of water and the final product was solvent-extracted with 3 × 150 mL
CHCl3. The yield of 76% is strongly linked to the efficiency of this extraction so it might be
improved, given the quantitative theoretical yield of this methylation reaction. RAMEB
(reference sample) was synthesized using the same quantities and procedures as described
above, but without adding copper sulfate to the reaction mixture, resulting in an 85% yield.
Heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin synthesis (TRIMEB) was performed using
5 mmol (5.675 g) β-CD dissolved in 150 mL of dry DMF. To this solution, we added 21 g of
NaOH (1.25 equivalent) and after partial dissolution, 40 mL of Me2SO4 (1.25 equivalent)
was slowly added dropwise from a dropping funnel. The reaction was continuously stirred
for 48 h. At the end of the reaction time, we decomposed the excess dimethyl sulfate with
50 mL NH4OH, and after 4 h, the solvent and water were removed in the vacuum. A
continuous solid–liquid extraction with chloroform was used to obtain the product with a
90% yield.

The NMR experiments were carried out on a Bruker Avance III 500 MHz spectrometer
operating at 500 MHz for 1H and 125 MHz for 13C. Chemical shifts (δ) were reported
in parts per million (ppm) using the solvent peak as the internal reference (DMSO-d6:
2.50 ppm). NMR data were processed and analyzed using BrukerTopSpin3.2. software. All
NMR experiments were performed according to the scientific literature and can be found
in the Supplementary Material.

Matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spec-
trometry experiments were carried out on Shimadzu AXIMA Performance and operated in
high-resolution reflectron mode using α-Cyano-4-hydroxycinnamic acid as the matrix.

4. Conclusions

This study provides a novel chemical shortcut of the classical procedure involving
a series of five steps of protection and deprotection for hydroxyl groups (both primary
and secondary) belonging to β-cyclodextrin in a single stage consisting of only the in situ
protection of secondary hydroxyl groups. A yield of 76% for MβCD, strongly linked to
the efficiency of the extraction, was obtained. It might be improved, given the quantitative
theoretical yield of this methylation reaction. RAMEB (reference sample) synthesized using
the same reaction conditions resulted in an 85% yield. TRIMEB synthesis was performed
with a 90% yield. These results show that the proposed fabrication route is feasible and can
evolve, after optimization to a revolutionary economical solution for replacing the five-step
classic method.

Supplementary Materials: The following are available online, Figures S1–S13: NMR and MALDI-
TOF Spectra.
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