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Abstract: Aurora-A kinase, a key mitosis regulator, is expressed in a cell cycle-dependent manner
and has an essential role in maintaining chromosomal stability and the normal progression of the cell
through mitosis. Aurora-A kinase is overexpressed in many malignant solid tumors, such as breast,
ovarian, colon, and pancreatic cancers. Thus, inhibiting Aurora-A kinase activity is a promising
approach for cancer treatment. Here, new triazole derivatives were designed as bioisosteric analogues
of the known inhibitor JNJ-7706621. The new compounds showed interesting inhibitory activity
against Aurora-A kinase, as attested by IC50s in the low to submicromolar range.
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1. Introduction

Most types of cancers are characterized by genomic instability, which can range from
subtle DNA sequence changes to gene amplification, chromosome translocations, and
alterations in chromosome numbers [1,2]. Chromosome changes are generally referred to
by the general term chromosomal instability. Chromosome stability depends on Aurora-
A kinase, a member of the serine/threonine kinase family and a key mitosis regulator.
Aurora-A kinase is expressed in a cell cycle-dependent manner and has an essential role
in maintaining chromosomal stability and the normal progression of the cell through
mitosis [3]. Aurora-A kinase is overexpressed in many malignant solid tumors, such as
breast, ovarian, colon, and pancreatic cancers [4]. For this reason, inhibiting Aurora-A
kinase activity is a promising approach for cancer treatment [5]. One compound, JNJ-
7706621 (Figure 1), is an inhibitor of aurora kinases and of cyclin-dependent kinases [6].
JNJ-7706621 has shown potent antiproliferative activity in various cancerous cell lines
and was several folds less potent at inhibiting normal cell growth [7]. Furthermore,
it significantly reduced the tumor size in an A375 melanoma human tumor xenograft
model [7]. Recently, NJ-7706621 promoted the reversal of resistance to CD37-targeted
radioimmunotherapy in DLBC lymphoma cell lines [8]. In the present study, we report
the synthesis of JNJ-7706621 analogues (1). These derivatives were designed using an
isosteric approach where the amide bond of JNJ-7706621 is replaced by a sulfonamide
function (Figure 1). The sulfonamide group was chosen in this study as it is considered
highly druggable thanks to its improved stability to hydrolysis and hydrogen bonding
potential [9].
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Figure 1. Chemical structure of JNJ-7706621 and its designed bioisosteric analogues (1).
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2. Results and Discussion
2.1. Chemistry

The compounds (1a–d) were obtained as shown in Figure 2. Briefly, the known triazole
derivative (5) was synthesized as previously described [10], with slight modifications. First,
4-aminobenzensulfonamide (2) was heated in a sealed tube with diphenyl cyanocarbon-
imidate (3) at 90 ◦C to give intermediate (4). The latter was then cyclized by treatment
with hydrazine to yield derivative 1H [1,2,4] triazole-3,5-diamine (5). Finally, the desired
analogues were obtained by nucleophilic substitution of the corresponding phenylsulfonyl
chlorides by the triazole derivative (5) using pyridine as a solvent.
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Figure 2. Chemical synthesis of compounds 1a–d. Reagents and conditions: (a) iPrOH, heated in a sealed tube at 90 ◦C, 3 h.
(b) NH2NH2, THF, RT, 12 h. (c) Pyridine, substituted sulfonyl chlorides, RT, overnight.

2.2. Biological Evaluation

The inhibition of Aurora-A kinase activity by the designed compounds (Table 1) was
evaluated by a method that involved the chelation-enhanced fluorescence mechanism
(ChEF-based assay, PhosphoSens®) [11]. Compounds 1a–c inhibited the kinase activity of
Aurora-A kinase with submicromolar IC50s. However, the derivatives 1a–c were tenfold
less active compared to the reference compound JNJ-7706621. The electron-donating nature
of the phenyl substituents does not seem to have an important effect on the inhibitory
activity, since no significant difference was noted between non-substituted (1a), difluoro
(1b), and methyl derivatives (1c). Nevertheless, the bulky trifluoromethyl group seems to
cause unfavorable steric interactions.

2.3. Molecular Modeling

To obtain a better understanding of the differences in Aurora-A kinase inhibition
by JNJ-7706621 versus its sulfonamide analogues, the compounds were docked in silico
to the enzyme active site. All the compounds showed close affinity scores compared
to JNJ-7706621, < −8.0 kcal/mol. Commensurate with JNJ-7706621, 1b interacted with
key amino acids of ATP binding site, Val-147, Lys-141, Glu 260, Leu 263, and Leu-139).
Nevertheless, 1b showed only one H-bond, with Ala-213, in contrast to JNJ-7706621 which
displayed two H-bonds with Ala-213 and with Glu-211, both of which were reported as
essential for optimal anti-Aurora-A kinase activity [12], Figure 3A,B. Moreover, the bulky
trifluoromethyl groups of 1d changed the orientation of the external acidic sulfonamide
away from the hinge region, affecting its interaction with Ala-213 and with Glu-211,
Figure 3C.
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Table 1. Inhibitory activity of the developed compounds against Aurora-A kinase.
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Compound X R IC50 (µM) 1

JNJ-7706621 CO 2,6-difluoro 0.016 ± 0.00
1a SO2 H 0.13 ± 0.06
1b SO2 2,6-difluoro 0.21 ± 0.02
1c SO2 4-Me 0.23 ± 0.02
1d SO2 2,6-ditrifluoromethyl 1.78 ± 0.34

1 Data are presented as Mean ± SEM of 3 independent experiments.
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3. Materials and Methods

General method for the synthesis of compounds (1a–d):

The corresponding benzenesulfonyl chloride (3.75 mmol) was added dropwise to a
suspension of 4-((3-amino-1H-1,2,4-triazol-5-yl)amino)benzenesulfonamide (5) (3.75 mmol)
in anhydrous pyridine (3 mL). The reaction was stirred at RT overnight. The compounds
were then purified either by flash chromatography or by recrystallization from a suitable
solvent system.
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4-((5-amino-1-(phenylsulfonyl)-1H-1,2,4-triazol-3-yl)amino) benzenesulfonamide (1a):
column chromatography, Silica Gel, Hexane-EtOAc (30:70). Yield: 34%. white solid
(MP: 229–231 ◦C). 1H NMR (300 MHz, DMSO-d6): 9.70 (s, 1H), 7.99 (d, J = 8.3 Hz, 2H), 7.78
(s, 1H), 7.69 (d, J = 8.6 Hz, 4H), 7.60–7.46 (m, 3H), 7.15 (s, 2H). 13C NMR (75 MHz, DMSO-
d6): 159.77, 157.88, 143.97, 136.32, 135.68, 135.44, 130.19, 127.88, 127.24, 116.39. LC/MS
(ESI+) m/z [M + 1] calculated: 395.06, found: 395.44. Elemental analysis, calculated (%): C,
42.63; H, 3.58; N, 21.31; S, 16.26, found (%): C, 43.01; H, 3.56; N, 21.12; S, 15.98.

4-((5-amino-1-((2,6-difluorophenyl)sulfonyl)-1H-1,2,4-triazol-3-yl)amino)
benzenesulfonamide (1b): column chromatography, Silica Gel, Hexane-EtOAc (30:70).
Yield: 18.6%. White solid (MP: 224–226 ◦C). 1H NMR (300 MHz, DMSO-d6): 10.97 (s, 1H),
7.87 (d, J = 8.3 Hz, 2H), 7.73 (d, J = 8.3 Hz, 2H), 7.58 (d, J = 8.3 Hz, 2H), 7.52–7.39 (m, 1H),
7.08 (s, 2H), 5.63 (s, 2H). 13 C NMR (75 MHz, DMSO-d6): 159.87, 159.46 (d, J = 255.8 Hz),
157.75, 157.47, 143.92, 138.78, 135.81, 127.14, 116.36, 114.50, 114.20. LC/MS (ESI+) m/z
[M + 1] calculated: 431.04, found: 431.46. Elemental analysis, calculated (%): C, 39.07; H,
2.81; F, 8.83; N, 19.53; S, 14.90, found (%): C,39.42; H, 2.76; N, 19.13; S, 14.51; F, 8.54.

4-((5-amino-1-tosyl-1H-1,2,4-triazol-3-yl)amino)benzenesulfonamide (1c): column
chromatography, Silica Gel, CH2Cl2 (100%). Yield: 3.4%. White solid 1H NMR (300 MHz,
DMSO-d6): 9.68 (s, 1H), 7.86 (d, J = 9.0 Hz, 2H), 7.77 (d, J = 8.2 Hz, 2H), 7.56 (m, 6H), 7.13 (s,
2H), 6.10 (s, 2H), 2.36 (s, 3H). 13C NMR (75 MHz, DMSO-d6) δ 159.70, 157.87, 146.35, 143.99,
135.63, 133.39, 130.60, 127.91, 127.23, 116.35, 21.58. LC/MS (ESI+) m/z [M + 1] calculated:
409.08, found: 409.47. Elemental analysis, calculated (%): C, 44.11; H, 3.95; N, 20.58; S,
15.70., found (%): C, 44.17; H, 3.89; N, 20.29; S, 15.55.

4-((5-amino-1-((3,5-bis(trifluoromethyl)phenyl)sulfonyl)-1H-1,2,4-triazol-3-yl)amino)
benzenesulfonamide (1d): recrystallized from acetone. Yield: 36.97%. White solid (MP:
241.6–243 ◦C). 1H NMR (300 MHz, DMSO-d6): 9.78 (s, 1H), 8.59 (d, J = 9.2 Hz, 2H), 7.67
(d, J = 8.9 Hz, 2H), 7.53 (d, J = 8.9 Hz, 1H), 7.16 (s, 2H). 13C NMR (75 MHz, DMSO-d6) δ
160.41, 158.00, 143.67, 138.30, 136.10, 132.36, 131.91, 127.19, 124.55 (q, J = 255.8 HZ), 116.5.
LC/MS (ESI+) m/z [M + 1] calculated: 530.04, found: 531.51 elemental analysis, calculated
(%): C, 36.23; H, 2.28; F, 21.49; N, 15.84; S, 12.09, found (%): C, 36.29; H, 2.14; F, 21.40; N,
15.97; S, 11.97.

Biochemical assay:

JNJ-7706621and compounds 1a–c were prepared as a 5× stock solution in DMSO.
The compounds were then tested in a 10-dose IC50 mode, with 3-fold serial dilutions at a
starting concentration of 100 µM. The assay kinase buffer was used to dilute the Aurora-A
kinase to a final concentration of 1.25 nM. The assay reaction was initiated by the addition
of freshly prepared master mix to all wells (reaction, control, and blank) to achieve the
following final concentrations: 1.25 nM Aurora-A kinase, 10 µM CSox-peptide substrate,
15 µM ATP, and 1 mM DTT in a final reaction volume of 50 µL per well. The reaction wells
were mixed, and the relative fluorescence unit (RFU) data were collected every 3 min for
30 min at 30 ◦C. The used λEx/Em of the chelated Mg2+ with the Sox was 360/485 nm.

Molecular docking:

In this study, Aurora-A kinase co-crystallized with 4-fluoro-N-(3-(5-(morpholinomethyl)-
1H-benzo[d]imidazol-2-yl)-1I-pyrazole-4-yl) benzamide (PDB ID 2W1C) was used. This
pyrazole-benzimidazole derivative displayed the main binding interactions with the ATP-
pocket required to design a classical Aurora-A kinase inhibitor. The re-docking studies
were performed for the crystal structure 2W1C as a validation method. AutoDock tools [13]
were used to process the enzyme. PyRx [14] was used to perform the docking. Discovery
Studio Visualizer [15] was used to visualize and access the docking results.

4. Conclusions

This work reported the development of new triazole derivatives as Aurora-A kinase
inhibitors. The new compounds displayed important inhibitory activity, as attested by
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their IC50s in the low to submicromolar range. These new derivatives represent promising
inhibitors that can be considered for further investigations.
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