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Abstract: The genus Citrus contains a vast range of antioxidant metabolites, dietary metabolites, and
antioxidant polyphenols that protect plants from unfavorable environmental conditions, enhance
their tolerance to abiotic and biotic stresses, and possess multiple health-promoting effects in humans.
This review summarizes various antioxidant metabolites such as organic acids, amino acids, alkaloids,
fatty acids, carotenoids, ascorbic acid, tocopherols, terpenoids, hydroxycinnamic acids, flavonoids,
and anthocyanins that are distributed in different citrus species. Among these antioxidant metabolites,
flavonoids are abundantly present in primitive, wild, and cultivated citrus species and possess the
highest antioxidant activity. We demonstrate that the primitive and wild citrus species (e.g., Atalantia
buxifolia and C. latipes) have a high level of antioxidant metabolites and are tolerant to various
abiotic and biotic stresses compared with cultivated citrus species (e.g., C. sinensis and C. reticulata).
Additionally, we highlight the potential usage of citrus wastes (rag, seeds, fruit peels, etc.) and the
health-promoting properties of citrus metabolites. Furthermore, we summarize the genes that are
involved in the biosynthesis of antioxidant metabolites in different citrus species. We speculate that
the genome-engineering technologies should be used to confirm the functions of candidate genes that
are responsible for the accumulation of antioxidant metabolites, which will serve as an alternative
tool to breed citrus cultivars with increased antioxidant metabolites.

Keywords: citrus; antioxidant metabolites; flavonoids; stress tolerance

1. Introduction

Citrus fruits are cultivated in more than 140 countries worldwide [1], of which China,
Brazil, India, and the United States are major citrus-producing countries [1]; the global
production statistics of citrus fruits are shown in Supplementary Figure S1. The Citrus
genus belongs to the Rutaceae family that produces fruits of various sizes and shapes (from
oblong to round). Some common citrus species are orange, mandarin, grapefruit, lemon,
citron, and lime [2]. The citrus fruit provides abundant nutrition elements and dietary
metabolites, including sugars, organic acids (e.g., citric acid), volatiles, amino acids, fibers,
macro- and micro-nutrients, and vitamins B6, as well as an ample quantity of vitamin
C [1,3]. Moreover, citrus fruits possess a variety of secondary metabolites such as alkaloids,
limonoids, flavonoids, anthocyanins (color pigments), carotenoids, coumarins, phenol
acids, and essential oils. These secondary metabolites have significant antioxidant and
antimicrobial properties and are involved in UV photoprotection, internal regulation of
plant cell physiology, reproduction, and signaling [4,5].
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Consuming citrus fruits has been shown to have health-promoting effects on hu-
mans due to the antioxidant, anti-inflammatory, anti-cancer, cardiovascular protective,
and neuroprotective properties of secondary metabolites in citrus fruits [6]. Moreover,
citrus fruits are extensively used in the beverage, cosmetic, food, and pharmaceutical
industries including medicines, spices, chemoprophylactic drugs, additives, etc. [7,8]. Also,
the peels and fruits (mature and immature) of some citrus species, such as C. reticulata
Blanco, C. sinensis, C. medica L., C. wilsonii Tanaka, and C. saurantium L., are widely used in
traditional herbal medicine to cure cough, indigestion, muscle pain, ringworm infections,
and skin inflammation, as well as to lower blood pressure [8,9].

Antioxidant compounds prevent, inhibit, or delay the process of oxidation [10,11].
Oxidation is a process by which free radicals are produced, thus leading to a series of
chemical reactions that may directly or indirectly damage the cellular components (DNA,
proteins, etc.) [12,13]. Citrus produces an ample quantity of endogenous antioxidants such
as flavonoids, carotenoids, ascorbic acid (vitamin C), and tocopherols (vitamin E) that
prevent the process of oxidation [12]. These antioxidants detoxify or reduce the negative
effects of reactive oxygen species (ROS), thus protecting the cellular components from ROS
damage. About two-thirds of the world’s plant species possess significant antioxidant
potentials and show promising medicinal value [14].

Citrus species possess diverse and uneven levels of metabolites [12]. Some primitive
and wild citrus species (e.g., Atalantia buxifolia and C. latipes) have high levels of metabolites
(particularly phenolics and flavonoids) and are tolerant to various abiotic and biotic stresses,
whereas the cultivated citrus species (e.g., C. sinensis and Cleopatra mandarin) containing
less total metabolites are susceptible to abiotic and abiotic stresses [13,15]. The leaves,
fruit juice, and phloem sap of cultivated citrus species showed a rapid increment in the
antioxidant flavonoid and volatile compounds in response to biotic stress [16]. Some
promising flavonoids were increased after abiotic or biotic stress including flavanone
(e.g., hesperidin and naringenin), flavonol (e.g., quercetin), and some flavones [17]. These
flavonoids have significant antioxidant and antimicrobial activities [18].

The genomic diversity and dissimilar levels of metabolites among Citrus species
provide a promising opportunity to breed citrus cultivars with increased contents of
metabolites [15,19]. However, the biosynthetic mechanisms of these antioxidant metabolites
(e.g., flavonoids) in citrus are scarcely understood [1]. This review summarizes the genes
that are involved in the biosynthesis of antioxidant metabolites, and their distribution in
primitive, wild, and cultivated citrus. We deliberate the role of antioxidant metabolites
in neutralizing ROS to enhance stress tolerance in citrus. Additionally, we highlight the
antioxidant properties and therapeutic applications of citrus metabolites and discuss the
potential usage of citrus wastes.

2. Importance of Antioxidants

Antioxidants are chemical compounds that prevent, delay, or inhibit the process of
oxidation of DNA, lipids, membranes, and proteins, thus directly protecting the cellular
components from oxidative damage [20]. Antioxidants create a fine balance between
the production and scavenging of ROS (Figure 1A–C). Plants have to face lower to serve
degrees of oxidative stress during their life cycle and the availability of high antioxidant
potential will be vital for their survival [21]. Generally, stress condition increases the
rate of chemical reactions, thus triggering the production of free radicals (e.g., ROS) that
cause serve oxidation of cellular components and eventually lead to cell death [10,21].
To overcome this situation, plants produce different kinds of metabolites that possess
strong antioxidant activity, timely quenching free radicals and enabling crop plants to
tolerate or acclimatize the stress conditions [10]. Trolox equivalent antioxidant capacity,
2,2-diphenyl-1-picrylhydrazyl, and ferric reducing antioxidant power are common antiox-
idant assays [22] that have been widely used to evaluate the antioxidant activity and
capacity of citrus fruits [23].
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Figure 1. The role of antioxidant metabolites and reactive oxygen species (ROS) in normal and oxidative stress conditions.
(a) High levels of antioxidant metabolites such as flavonoids can protect cellular organelles. (b) Under mild stress condition,
the moderate level of antioxidant metabolites can detoxify ROS, which can maintain the balance between the production
and scavenging of ROS. (c) Under high oxidative stress, the level of ROS is increased while that of antioxidant metabolites is
reduced, which damages the membranes, DNA, proteins, and other cellular organelles, finally leading to cell death.

The metabolic antioxidants have received a great deal of attention. Human beings
also suffer from oxidative stress, which is a key causal factor of the progression and
development of life-threatening sicknesses, including mental stress, muscle fatigue, and
cardiovascular and neurodegenerative diseases [24]. Taken exogenous antioxidants from
vegetables, fruits, citrus juice, etc. as supplementation of food will not only detoxify free
radicals but also boost our body’s antioxidant defense system [25]. It has been proven to be
a promising way to counteract the detrimental effects of ROS induced by oxidative stress.

3. The Producing Sites and Scavenging of ROS

Mitochondria and chloroplasts are involved in maintaining an appropriate equilib-
rium among energy-linked functions and the production of ROS [26–28]. The matrix and
membrane of the peroxisome, photosystems I and II (PS I and PS II) of the chloroplasts,
ubiquinone, and complex I and complex III of the mitochondrial electron transport chain
(ETC) are major ROS producing sites [29]. The peroxisomes produce nitric oxide (NO•),
hydrogen peroxide (H2O2), and superoxide radicals (O2

•−) (Table 1 and Figure 2); they
also possess antioxidant enzymes such as catalase (CAT) and flavin oxidases [28]. Electron
slippage occurs at PS I and PS II (in chloroplasts), the membrane of the peroxisome, and mi-
tochondrial ETC (Table 1 and Figure 2). These electrons produce superoxide radicals (O2

−•)
by reacting with molecular oxygen, then O2

−• is consequently converted to hydroperoxyl
radical (HO2

•), and finally to H2O2 [10]. In addition, reactive nitrogen species (RNS)
are the second type of free radicals that include peroxynitrite (ONOO-) and nitric oxide
radical (NO•), which are also formed in different cellular organelles such as peroxisomes,
chloroplasts, and mitochondria [30]. Moreover, reactive sulfur species (RSS) are the third
type of free radicals that are generated by the reaction between thiols and ROS [29]. These
free radicals are produced and quenched by antioxidants; however, the unfavorable envi-
ronmental conditions can trigger the production of free radicals by distorting the normal
cellular homeostasis (ROS production/scavenging balance) and cause serve damage to
cellular biomolecules (Figure 1C).
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Table 1. Chemical reaction of enzymatic and metabolic antioxidants with reactive oxygen species (ROS).

ROS Reacts with Enzymatic Scavenging
System

Metabolic
Antioxidants

Reaction with ROS to
Enhance Stress

Tolerance

Superoxide (O•−2)
Fe–S proteins

dismutate to H2O2
SOD EC 1.15.1.1 Proline/Glycine

betaine
Helps in enhancing

stress tolerance

Hydrogen peroxide
(H2O2)

Proteins,
heme-proteins, and

DNA

CAT EC 1.11.1.6
GPX EC 1.11.1.9
GST EC 2.5.1.18

APX EC 1.11.1.11

Amino acids,
carotenoids,

α-tocopherol/ascorbic
acid, and glutathione

Hunts ROS

Singlet oxygen (1O2)
Oxidized lipids,

G-residues of DNA,
and proteins

-
Carotenoids and

α-tocopherol (vitamin
E)

Neutralizes free
radicals and protects
the photosynthetic

apparatus from ROS

Hydroxyl radical
(OH•)

DNA, RNA, lipids, and
proteins -

Flavonoids, sugars,
proline

Ascorbate.

Helps in maintaining
cell homeostasis

Other reactive radicals - POD EC 1.11.1.x
GR EC 1.6.4.2

Fatty acids/organic
acids and polyphenols

(flavonoids)

Protect cells from
negative effects of ROS

by trapping free
radicals

APX, ascorbate peroxidase; SOD, superoxide dismutase; GPX, glutathione peroxidase; GST, glutathione S-transferases; POD, peroxidase;
GR, glutathione reductase; CAT, catalase.
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Plants possess a variety of enzymatic and metabolic antioxidant defense mechanisms
to reduce the harmful effects of free radicals [31]. The enzymatic antioxidant defense
system includes superoxide dismutase (SOD), peroxidase (POD), CAT, glutathione peroxi-



Molecules 2021, 26, 5801 5 of 18

dase (GPX), ascorbate peroxidase (APX), glutathione reductase (GR), and glutathione S-
transferases (GST) [10]. The metabolic antioxidant defense system includes low-molecular-
weight molecules such as ascorbic acid, fatty acids, proline, carotenoids, amino acids,
phenolic acids, flavonoids, and anthocyanins (color pigments), as well as high-molecular-
weight secondary metabolites such as tannins [32]. These metabolic antioxidants are
biosynthesized by plants due to two main reasons: firstly, the genetic makeup of plant
species facilitates them to synthesize metabolic antioxidants; secondly, the biosynthesis
of antioxidant metabolites enables plants to respond to unfavorable environmental con-
ditions [32]. The biological activities of enzymatic and metabolic antioxidants and their
reaction with ROS are summarized in Table 1.

4. Diversity of Antioxidant Metabolites in Citrus

Citrus species contain a variety of antioxidant metabolites, which are divided into
primary (e.g., fatty acids, amino acids, and organic acids) and secondary metabolites (e.g.,
phenolics, flavonoids, carotenoids, limonoids, and alkaloids) (Table 1 and Figure 2). The
details of each class of citrus metabolites are discussed below.

4.1. Antioxidant Volatiles and Fatty Acids

Volatile compounds possess moderate to high antioxidant activities in citrus plants [33].
Most of the volatile compounds are extracted from the citrus fruit peels and they possess an-
tioxidant, antimicrobial, antioxidative, and cytotoxic properties [34]. Some common volatile
compounds reported in different citrus species are α-pinene, β-pinene, sabinene, myrcene,
p-cymene, α-terpinene, terpinolene, linalool, neryl acetate, geranyl acetate, caryophyllene,
terpinene-4-ol, β-elemene, neral, nerol, α-farnesene, β-farnesene, α-terpineol, geraniol,
thujene, α-phellandrene, β-phellandrene, octanal, limonene, decanal, citronellal, heptanal,
nonanal, valencene, ethyl heptanoate, geranyl acetone, hexyl acetate, ethyl nonanoate, ethyl
octanoate, undecanal, citronellol, ethanol, styrene, geranial, thymol, sativene, β-santalene,
and β-selinene [35–38].

Citric acid and malic acid are commonly found in citrus fruits, whereas oxalic acid,
tartaric acid, benzoic acid, succinic acid, and malonic acid are present in traces [39].
α-Linolenic acid (an essential fatty acid) and α-lipoic acid (a well-known antioxidant)
are two key molecules biosynthesized by citrus plants. α-Lipoic acid helps to neutralize
free radicals, and α-linolenic acid is the precursor of many lipids and is essential for good
health. Furthermore, organic acids are present in different citrus species such as orange,
mandarin, lemon, lime, grapefruit, and tangerine. Organic acids have moderate antioxidant
activity and are very useful due to their bioactivity and sensory properties [40].

4.2. Antioxidant Alkaloids, Coumarins, and Limonoids

Bioactive alkaloids are abundantly present in different citrus species and possess
significant antioxidant activities. Alkaloids are indirectly involved in the growth, repro-
duction, and metabolism of citrus plants [41,42], of which C. aurantium contains higher
levels of antioxidant alkaloids than other Citrus species [43]. Some commonly reported
alkaloids in citrus plants are (±)octopamine, tyramine, N-methyltyramine, hordenine,
N-methylnicotinic acid, and (±)synephrine [41,42]. Synephrine is most dominant among
the alkaloids found in citrus species. The synephrine alkaloid is present in more than 85% of
the total protoalkaloid content found in citrus [43]. Also, higher levels of N-methyltyramine
compound have been observed in citrus species than those of hordenine, octopamine, and
tyramine [42].

High concentrations of coumarins are usually found in the peels of Citrus species [44].
Coumarin compounds such as transferrin, limettin, auraptene, isomeranzin, umbelliferone,
herniarin, psoralen, bergamottin, ecxybergamottin, 5-hydroxyfurocoumarin, bergapten, os-
thol, and 8-geranyloxypsoralen have been reported in different Citrus species [45]. Among
various groups of coumarins, auraptene (7-geranyloxycoumarin) is the key coumarin
that is found plentifully in Citrus species. Coumarins from Citrus species have shown
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anti-inflammatory, antibacterial, and antioxidant activities [44]. Previous studies have
suggested that di-hydroxy-coumarins possess better antioxidant activity compared with
mono-hydroxy-coumarins [46]. In the coumarin skeleton, the position of OH groups near
C6 and C7 plays an important role in the bioactivities of coumarins [47].

Limonoids are mainly found in the forms of glucosides, A-ring lactones, and agly-
cones [48]. Limonoids are highly oxygenated triterpenoids that are precursors of limonoid
glucosides and aglycones [49]. Limonin (from the limonoid group) is prominently found
in the Meliaceae and Rutaceae families [48]. Citrus species also contain several limonoid
compounds such as limonin, nomilin, obacunone, obacunone acetate, deacetyl-nomilin,
deoxylimonin, methyldeacetylnomilinate, ichangin, ichangensin, calamine, nomilin gluco-
side, limonin glucoside, nomilinic acid glucoside, and citriolide-A [50]. Among different
detected limonoids, limonin and limonin glucoside are measured in high concentrations in
Citrus species [49]. Some limonoids showed better antioxidant activities than vitamin C.
Limonin, obacunone, deacetylation millington acid, and millington acid are four limonin
glycosides that possess the strongest free radical quenching activity compared with other
limonoids. The millington acid shows resilient free radical scavenging activity whereas
limonin exhibits the lowest antioxidant activity [51]. The genes involved in the biosynthesis
of different metabolites in citrus are documented in Table 2.

4.3. Antioxidant Carotenoids, Ascorbic Acid, and Tocopherols in Citrus

Carotenoids are isoprenoid-derived biomolecules that are characterized as lipophilic
antioxidants. Carotenoids are abundantly synthesized by plants and are divided into two
sub-groups: carotenes (contain carbon and hydrogen atoms) and xanthophylls (oxygenated
forms of carotenes) [52]. The carotenoid pigments are randomly distributed in various
vegetables and orange-colored fruits such as citrus, apricot, carrot, spinach, mango, sweet
potato, papaya, and squash. In plants, the biosynthetic pathway of carotenoids is phytoene
→ phytofluene→ ζ-carotene→ neurosporene→ lycopene, and lycopene is then converted
to α-carotene and β-carotene [12]. Carotenoids exhibit significant antioxidant activities
and can detoxify/quench considerable amounts of peroxyl radicals and singlet molecular
oxygen [52].

Carotenoids are abundantly found in Citrus species and endow yellow to orange
color to citrus fruits. However, the carotenoid concentration is tissue-specific and varies
from species to species [12]. Many kinds of carotenoids (e.g., violaxanthin, β-cryptoxanthin,
α-carotene, lutein, lycopene, zeaxanthin, antheraxanthin, cryptoxanthin, phytoene,
phytofluene, β-citraurin, β-Carotene, and neoxanthin) have been reported in different
Citrus species including C. aurantifolia, C. aurantium, C. clementina, C. grandis, C. hystrix,
C. limon, C. limonimedica, C. medica, C. reticulata, and C. sinensis [53]. Of these carotenoids,
cryptoxanthin, β-carotene, α-carotene, and zeaxanthin are active quenchers of ROS (particu-
larly singlet molecular oxygen) [52]. Due to higher antioxidant activities, these carotenoids
not only protect plants from abiotic and biotic factors but also prevent humans from a
wide range of chronic diseases [54]. β-Carotene and lycopene are considered provitamin A
carotenoids. In humans, the bioavailability of provitamin A has been extensively studied
and our body converts this provitamin A compound into retinol, which is an active form of
vitamin A [54]. These carotenoids harbor a variety of functions in plants such as protecting
plant cells from oxidative damage during photosynthesis, interacting with pathogens and
pests, serving as the substrate of hormones, endowing plants with different colors to attract
pollinators, being involved in seed dispersal, and participating in plant cross-talk with
symbiotic organisms [12,54]. Recently, some genes were identified to govern carotenoid
biosynthesis in different Citrus species (Table 2).

Ascorbic acid is a powerful water-soluble antioxidant that is synthesized in the mito-
chondrion and then transported through facilitated diffusion or by a proton-electrochemical
gradient to nearby subcellular organelles [29]. Ascorbic acid is the strongest antioxidant
molecule because it can donate electrons to a variety of non-enzymatic and enzymatic
reactions [55]. Ascorbic acid directly quenches the OH• and O2•− ions and is involved in
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the regeneration of oxidized α-tocopherol or carotenoids, thus reducing the damage caused
by the oxidative process (through synergic action by other antioxidants) and providing
protection to the membrane [29,55]. Plant cells maintain a high level of ascorbic acid via
a proficient recycling system, which makes ascorbic acid an appropriate antioxidant [56].
Almost all Citrus species have high levels of ascorbic acid, but the levels vary among
different plant tissues; moreover, high contents of ascorbic acid are found in citrus fruits
juice, photosynthetic cells, and meristems [57]. A high level of ascorbate has been found
in the cytosol, while plastids and the mitochondrion have moderate ascorbate levels and
vacuoles have the lowest ascorbate levels.

Table 2. Genes involved in the biosynthesis of different metabolites in Citrus species.

Serial No. Genes Identified in Common
Name Category Metabolism Involved in References

1 CrMYB68 Citrus reticulata
cv. Suavissima Mandarin R2R3-MYB

transcription factor
Carotenoid
metabolism

α- and
β-branch

carotenoids
[58]

2 UGT708G1 Fortunella
crassifolia Kumquat

UGT-
glucosyltransferase

enzyme

Flavonoid
accumulation

Anthocyanin
biosynthesis [59]

3 UGT708G2 Citrus unshiu Satsuma
mandarin

UGT-
glucosyltransferase

enzyme

flavonoid
accumulation

Anthocyanin
pigments [59]

4 CgMYB58 Citrus maxima Pummelo MYB transcription
factor

Lignin
biosynthesis

Lignin
accumulation

in juice vesicles
[60]

6 Ruby and
Noemi (bHLH)

Citrus sinensis,
Citrus medica,

and their
hybrid

Orange, citron,
and their

hybrid
Transcription factor Color

formation

Flavonoid and
anthocyanin
biosynthesis

[61]

7 CsMYB3 and
CsRuby1 Citrus sinensis Sweet orange Transcription factor Anthocyanin

biosynthesis

Anthocyanin
pigment

accumulation
[62]

8 CCD4 Citrus reticulata Mandarin and
its hybrids

CAROTENOID
CLEAVAGE

DIOXYGENASE

Carotenoid
metabolism [63]

9 CsMADS6 Citrus sinensis Sweet orange Transcription factor Carotenoid
metabolism

Activating
downstream
carotenoid

genes

[64]

10 CsUGT78D3 Citrus sinensis Sweet orange UDP-glucosyl
transferase enzyme

Enhances
proanthocyani-

dins and
anthocyanins

High light
stress tolerance

by high
anthocyanin

contents

[65]

11 CsCYT75B1 Citrus sinensis Sweet orange Cytochrome P450
75B1 enzyme

Flavonoid
biosynthesis

Drought
tolerance due

to high
flavonoid
content

[19]

12
CWINVs,

VINV, SPS2,
SUT2, VPPs

Citrus sinensis
(HAL)

Orange (Hong
Anliu)

Genes encoding
enzymes Sugar Sugar

accumulation [66]

13 CitLGT Citrus unshiu
Marc.

Satsuma
mandarin

Limonoids
UDP-glucosyl

transferase enzyme

Limonoid
GTase

Converting
limonoid

aglycones to
glucosides

[67]

14 CpGTs Citrus paradisi
cv. Duncan Grapefruit Glucosyltransferases

(GTs)
Color

development
Color

development [68]
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Tocopherols are lipid-soluble antioxidants that are synthesized by all plants. To-
copherols protect cellular components and lipids by quenching and scavenging several
lipid by-products and ROS [69]. In plants, tocopherols have four isomers; one of them is
α-tocopherol, a key antioxidant that represents vitamin E and is located in the thylakoid
membrane and chloroplast envelope [70]. α-Tocopherol has the highest antioxidant activity
and is also involved in membrane rigidity. Previous studies reported that tocopherol
concentrations were increased significantly after water and chilling stresses [69,71], and
tocopherol-deficient plants exhibiting irregular cellular signaling were more prone to ox-
idative stress. In addition, tocopherols have significant health-promoting effects on the
human body due to their antioxidant activities [70,71].

4.4. Antioxidant Amino Acids

Citrus varieties tolerant to Huanglongbing (HLB) disease, such as C. latipes [72] and
orange jasmine (Murraya paniculata) [73], are higher in total antioxidant amino acids. High
levels of antioxidant amino acids protect plant cells from the negative effects of ROS [73].
Citrus varieties tolerant to HLB (e.g., A. buxifolia and M. paniculata) possess considerable
amounts of amino acids such as valine, serine, aspartic acid, threonine, asparagine, and
proline [72]. Particularly, anthranilic acid and gamma-amino-butyric acid is specifically
higher in C. latipes. Furthermore, some semi-tolerant Citrus varieties, such as Volkamer
lemon and Palestine sweet lime, harbor higher levels of amino acids such as asparagine,
phenylalanine, arginine, and threonine; these amino acids are famous due to their an-
tioxidant potential and can protect plant cells from ROS damage [73,74]. Generally, the
primitive (A. buxifolia) and wild citrus (C. latipes) species possess higher levels of antioxi-
dant amino acids compared with the cultivated citrus species (C. sinensis) [72]. The tolerant
citrus germplasms possess a high amount of amino acids, particularly those having high
antioxidant potential such as lysine, tyrosine, phenylalanine, tryptophan, and asparagine.
Moreover, these amino acids have been demonstrated to be associated with plant defense
against several abiotic and biotic stresses [73]. Interestingly, the cultivated Citrus species
such as C. sinensis and C. reticulata have lower levels of antioxidant amino acids; however,
they biosynthesize antioxidant amino acids (e.g., lysine, tyrosine, phenylalanine, and tryp-
tophan) under abiotic or biotic stress, indicating these amino acids may contribute to stress
resistance of cultivated Citrus species [73]. The average amount of bioactive metabolites
and antioxidant capacity of different citrus varieties are presented in Table 3.

In Citrus species, higher levels of antioxidant amino acids such as phenylalanine,
tyrosine, and tryptophan are positively associated with stress tolerance [72]. Most of the
secondary metabolites and derivatives of hydroxycinnamic acids (phenolic compounds)
such as flavonoids are derived from phenylalanine, tyrosine, and tryptophan [75]. The
higher levels of phenylalanine, tyrosine, and tryptophan will facilitate the rapid biosynthe-
sis of phenolic compounds under any unfavorable environmental conditions [73]. Prompt
endogenous biosynthesis of phenolic compounds in the least time after pathogen invasion
is supposed to be more important than their endogenous concentrations in plants [16].
The plant species that possess a high level of antioxidant phenolic compounds are least
attractive to pathogens [75,76]. To conclude, the primitive and wild citrus species have
a high concentration of total amino acids, and they biosynthesize antioxidant phenolic
compounds (such as flavonoids) more rapidly than cultivated Citrus species.
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Table 3. The average amount of bioactive compounds and antioxidant capacity of different Citrus species [23,73,77,78].

Citrus
Species

Common and
Scientific

Name

Antioxidant
Capacity

(µmol
TE/100 g)

Total
Phenolics (mg

Gallic Acid
Equivalent/g)

Total Amino
Acids (g/100 g

of Sample)

Total
Carotenoids

(mg/kg)

Total
Flavonoids
(mg/100 mL

Juice)

Total
Volatiles

(1 Unit Equals
to 10 mg/g

Fresh Weight)

β-Carotene
(mg/kg)

Lycopene
(mg/kg)

Ascorbic Acid
(mg/kg)

Total Acidity
(g/100 mL

Juice)

Robinson
(Citrus

reticulata)
20.45 ± 0.98 209.37 ± 1.37 - 26.67 ± 0.67 - - 22.67 ± 0.54 4.19 ± 0.12 651.33 ± 0.93 0.563

Clementine
(Citrus

reticulata)
33.10 ± 0.68 302.38 ± 0.91 25.54 ± 0.22 27.23 ± 0.12 19.23± 0.97 191.23 ± 1.29 22.33 ± 0.13 3.27 ± 0.20 656.43 ± 1.03 0.588

Cocktail
(Citrus

paradisi)
45.28 ± 0.76 214.88 ± 0.87 - 37.40 ± 0.33 - 155.4 ± 2.51 31.79 ± 0.93 3.20 ± 0.07 353.17 ± 0.77

Valencia
(Citrus

sinensis)
40.32 ± 1.01 270.56 ± 0.67 20.56 ± 0.31 29.87 ± 0.98 18.34± 1.22 289.43 ± 4.81 25.89 ± 0.36 2.09 ± 0.24 579.99 ± 1.10 1.024

Wild lime
(Citrus hystrix) 83.91 ± 0.81 490.74 ± 1.75 - - 22.25 ± 0.20 - - - - -

Common lime
(Citrus

aurantifolia)
69.54 ± 0.58 211.70 ± 0.0 - - 10.67 ± 0.27 512.92 ± 2.19 - - - 3.328

Citrus maxima 29.34 ± 1.04 501.43 ± 2.98 23.9± 0.9 23.17 ± 1.67 19.45 ± 0.65 - - - - -
Atalantia
buxifolia 74.24 ± 2.19 645.89 ± 3.47 24.84± 0.16 27.83 ± 1.45 28.53± 1.24 1567.11 ± 3.82 - - - -

Poncirus
trifoliata - - - - - 145. 78 ± 1.35 - - - -
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4.5. Hydroxycinnamic Acids and Their Derivatives

Hydroxycinnamic acids (HCAs) are commonly found in all Citrus species, which
give rise to a diverse class of secondary metabolites [79]. Some key HCAs are randomly
found in Citrus species, such as sinapic acid, p-coumaric acid, ferulic acid, caffeic acid,
trans-2-hydroxycinnamic acid, trans-cinnamic acid, rosmarinic acid, protocatechuic acid,
p-hydroxybenzoic, vanillic acid, gallic acid, chlorogenic acid, ferulic-O-hexoside, sinapic-
O-hexoside, and syringic acid [80]. Previous metabolic studies on Citrus species showed
that four structurally related HCAs significantly accumulated in the leaves of C. sinensis
exposed to abiotic and biotic stresses [81]. HCAs and their derivatives such as p-coumaric
acid, ferulic acid, and caffeic acid possess significant antioxidant activities and can detoxify
the ROS produced during oxidative stress [13]. Besides, HCAs have strong antimicrobial
activities. For example, the HCA levels were significantly increased in cucumber after
Prunus necrotic ringspot virus invasion and powdery mildew infestation [82], as well as in
tomato after bacterial (Pseudomonas syringae) attack [83].

4.6. Antioxidant Flavonoids

Flavonoids are one of the major classes of secondary metabolites, which are exten-
sively found in citrus fruit peel, fruit juice, leaves, and roots [84,85]. Among the secondary
metabolites, flavonoids possess the highest antioxidant, antimicrobial, antiallergy, anti-
inflammatory, and anticancer activities. In addition, flavonoids have cardiovascular, hep-
atoprotective, and neuroprotective effects and are used for obesity control [80]. Flavonoids
are further divided into different subclasses including flavanone, flavone, flavanonol,
flavonols, isoflavones, and anthocyanins [80]. Several subclasses of antioxidant flavonoids
have been isolated from different Citrus species (including C. aurantifolia, C. aurantium,
C. clementina, C. grandis, C. unshiu, C. hystrix, C. limon, C. paradisi, C. limonimedica, C. medica,
C. reticulata, and C. sinensis) and are characterized as flavanone and flavanonol: narin-
genin, hesperetin, narirutin, naringin, hesperidin, neohesperidin, eriocitrin, neoerioc-
itrin, poncirin, and didymin [86]; flavone and flavonol: luteolin, apigenin, quercetin,
luteolin-6,8-di-C-glucoside, luteolin-7-O-rutinoside, apigenin-6,8-di-C-glucoside, apigenin-
7-O-rutinoside, diosmin, rutin, chrysoeriol, chrysoeriol-7-O-rutinoside, chrysoeriol-6,8-
di-C-glucoside, quercetin, quercetin-7-O-rutinoside, kaempferol, and kaempferol-3-O-
rutinoside [87]; poly-methoxylated-flavones: sinensetin, nobiletin, tangeretin, isosinensetin,
3,5,6,7,8,3′,4′-heptamethoxyflavone, and 5,7,8,3′,4′-pentamethoxyflavone [88,89]; and color
pigments: proanthocyanidins and anthocyanins [84]. Among different flavonoid subclasses,
flavanone is abundantly found in Citrus species with the highest antioxidant activity com-
pared with other flavonoids [90]. Some key bioactive flavonoids such as naringenin,
naringin, hesperetin, hesperidin (flavanone), tangeritin, and nobiletin (polymethoxylat-
edflavone) are extensively studied and are not only resilient antioxidants, but also have
antimicrobial, anticancer, and anti-inflammatory properties [90].

Flavonoids are localized in plant vacuoles and are considered the most powerful
antioxidant compounds [84]. The relationship between flavonoid activity and ROS scav-
engers has been determined [84,85]. The catechol structure in the B ring (heterocyclic ring)
is the key contributing factor for the scavenging activities of flavonoids [86]. Flavonoids
are involved in the processes of plant resistance against pathogens, pollination attraction,
and seed dispersal facilitation; possess antibacterial, antifungal, and antiviral activities;
and can scavenge ROS and defend against insects and pests [91,92]. Flavonoid biosyn-
thesis is increased significantly after serve abiotic (metal toxicity, drought, wounding,
high-light stress, chilling, salt stress, radiation, and nutrient deficiency [19,65,84]) and
biotic stresses (e.g., bacterial, fungal, and viral infection) in Citrus species [15]. The genes
involved in the biosynthesis of antioxidant flavonoids are demonstrated in Figure 3. In
citrus, the concentration of antioxidant metabolites is positively correlated with stress
tolerance (Figure 4).
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Figure 3. Flavonoid biosynthesis pathway. Gene abbreviations were taken from KEGG (www.
genome.jp/kegg/pathway accessed on 14 August 2021) for plants. PAL, phenylalanine ammonia
lyase; C4H, cinnamate 4-hydroxylase; 4CL, 4-coumarate: CoA ligase; CHS, chalcone synthase; CHI,
chalcone isomerase; F3H, flavanone 3-hydroxylase; F3′M, flavonoid 3′-monooxygenase; FLS, flavonol
synthase; DFR, dihydroflavonol 4-reductase; ANS, anthocyanidin synthase; BAN, banyuls; UGT,
UDP-glucosyl transferase 78D3.

Pummelo, sweet orange, and mandarin are very close to each other metabolically
(Table 3 and Figure 4); the genomic data of these species also showed similar results (Sup-
plementary Figure S2). It was revealed that sweet orange is derived from the interspecific
hybridization between mandarin (male parent) and pummelo (female parent) followed by
backcrossing with mandarin (male parent), i.e., sweet orange = (pummelo ×mandarin) ×
mandarin [93]. The genetic relationship among sweet orange, pummelo, and mandarin
results in a close metabolic correlation. The variation in the genetic makeup might be
the main reason for the dissimilar distribution of metabolites among primitive, wild, and
cultivated citrus species. In the future, editing or cloning of promising genes from primitive
and wild citrus species (that are responsible for metabolic synthesis) and overexpressing
them in cultivated citrus will be a novel strategy to improve the endogenous metabolic
potential of cultivated citrus species. A high level of metabolites will not only increase the
tolerance of citrus, but can also help to overwhelm the nutritional deficiency in humans.

www.genome.jp/kegg/pathway
www.genome.jp/kegg/pathway
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5. Therapeutic Applications of Citrus Fruits and Potential Usage of Citrus Wastes

Citrus fruits provide an impressive list of phytochemicals, nutrients, antioxidants, and
bioactive chemicals that are required for a balanced diet and can prevent humans from
various diseases such as inflammation, heart diseases, gastrointestinal diseases, cancers,
tumors, and obesity [94–97]. Flavonoid compounds that are abundantly present in citrus
fruits such as nobiletin, neohesperetin, hesperetin, and tangeretin have significant tumor-
suppressing properties in the human body [98]. For example, d-limonene (in citrus peel
oil) shows significant anticancer activity; using citrus peel oil is effective in controlling skin
cancer since d-limonene can suppress tumor cell growth [99]. Extracts from C. sphaerocarpa
(Korean hallabong) peels present inhibitory effects on breast cancer metastasis [100].

All commercially cultivated citrus species contain an abundant amount of ascorbic
acid (a powerful antioxidant agent) that is considered an immune booster and prevents
humans from a variety of chronic and infectious diseases, muscle fatigue, and oxidative
damage [94]. Also, citrus fruits have plentiful hesperidin (a flavonoid), which can help
humans fight against the novel SARS-CoV-2 coronavirus (COVID-19) [101]. Tyrosine has
been shown to have good anticancer activity. Citrus fruit juice displays antioxidant and
antiproliferative effects (tending to inhibit cell growth) on different patients suffering from
cancer [100]. Generally, taking an unnecessary and imbalanced diet will lead to bowel
diseases and colon cancers, and about 90% of colon cancers worldwide are caused by
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improper diet habits [102]. Polyphenols and enzymes from citrus fruit juice (e.g., grapefruit
juice) can control and treat cancers as well as obesity of the human body [103]. Moreover,
citrus fruits possess enormous kinds of bioactive compounds (e.g., nobiletin, hesperidin,
and flavones) that play an extraordinary role in hepatic mechanisms (distortion of the
vascular architecture and liver parenchyma); specifically, sweet orange and lemon are
reported to be able to control 60–70% of liver diseases [104].

Citrus fruits are composed of juice (45%), rag and pulp (26%), inner peel albedo
(17%), outer peel flavedo (10%), and seeds (2%) [105]. The pulp and juice are edible,
whereas the peel and seeds are non-edible or waste production of citrus fruits [105]. The
waste materials of citrus fruits (such as seeds, segment wall, flavedo, albedo, rag, and
pith residue) provide renewable sources for the production of valuable compounds that
are widely used in cosmetic, food, nutraceutical, and pharmaceutical industries [105,106].
The citrus fruit peel is a good source of polymethoxyflavonoids, flavonoids, saponins,
phenolic compounds, essential oils, and tannins [6], which have immunosuppressive,
hepatoprotective, and antimicrobial effects (against dental caries bacteria Lactobacillus
acidophilus and Streptococcus mutans) [107]. Moreover, the polyphenolic compounds possess
an inhibitory effect on breast cancer metastasis, a cytotoxic effect on colorectal carcinoma
cells, and antioxidant and antiulcer activities in humans [33,100,105,106]. The citrus albedo
provides abundant dietary fiber, reducing the risk of cancers [105]. Essential oils from
the C. limon peel revealed a resilient antifungal effect on oral candidiasis fungus (Candida
albicans) because the C. limon peel contains terpenoids that prevent ergosterol synthesis
and destroy the fungal cell wall (extinguish cell membrane permeability) [108]. Also, citrus
wastes contain complex polysaccharide content and coloring material, which are widely
used by soft drink/beverage industries as clouding agents [109]. Moreover, the citrus
segment membrane, peel, and other by-products are dried and used as raw material to
extract pelletization or pectin in animal feed [110].

6. Genomic Features of Citrus Species

The complex and diverse genomic features of citrus species lead to the uneven distri-
bution of metabolites among Citrus species. The intraspecific variation and heterozygosity
in some citrus species (e.g., sweet orange and some mandarins) and interspecific admixture
(a mechanism involving complex backcrosses), origins for enormous variations at the ge-
nomic level, both result in significant dissimilarities in the biosynthesis of metabolites [111].
Some pure citrus genotypes (e.g., citrons without interspecific admixture) exhibit consid-
erably reduced intraspecific diversity (about 0.1%) than other Citrus species. In addition,
some primitive citrus species (e.g., A. buxifolia) are sexually propagated (assists natural
variation at the genomic level), whereas the cultivated citrus species such as sweet orange
and mandarin are asexually propagated thus reducing the uncertainty associated with
sexual reproduction [93,112]. Therefore, inducing any trait of interest such as enhancing
antioxidant metabolites in cultivated citrus species will require genome engineering tools.
The difference and variations in the genomic features between primitive and cultivated
citrus will offer a unique opportunity to induce or edit the genes associated with high
production of antioxidant metabolites.

In the past few years, the rapid success in the field of genome editing and the invention
of clustered regularly interspaced short palindromic repeat (CRISPR) genome engineering
technology have revolutionized the field of molecular and genetic research [113]. The
use of CRISPR to knock-in the desired gene of interest to enhance the metabolites or
knock-out the candidate gene to trigger endogenous production of the desired antiox-
idant flavonoids/metabolites will be a novel strategy to boost antioxidant potential in
citrus plants. Interestingly, the publicly available genomes of nine citrus species, including
primitive, wild, and cultivated species [112,114,115], provide a novel opportunity to under-
stand the biosynthetic mechanism of these metabolites and to breed citrus cultivars with
increased endogenous metabolic antioxidants.
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7. Conclusions

We conclude that citrus fruits are an ample source of antioxidant metabolites such
as volatiles, fatty acids, alkaloids, coumarins, limonoids, carotenoids, ascorbic acid, toco-
pherols, terpenoids, amino acids, hydroxycinnamic acids, and flavonoids. In this review,
we highlight that the primitive and wild citrus species, having high levels of antioxidant
metabolites, are more tolerant to abiotic and biotic stresses compared to cultivated citrus
species. Additionally, we abridge promising genes that are involved in the biosynthesis
of antioxidant metabolites and their role in stress tolerance. Furthermore, we discuss
the potential usage of citrus wastes and the therapeutic application of citrus metabolites.
In the future, genome-editing technologies should be used to unravel the biosynthetic
mechanism and regulatory pathways of antioxidant metabolites (i.e., flavonoids) to trigger
the endogenous synthesis of flavonoids, which will ultimately enhance stress tolerance in
cultivated citrus varieties.

Supplementary Materials: The following are available online, Figure S1: The citrus-producing
countries around the world (FAO 2017). Figure S2: Phylogenetic tree of citrus germplasms constructed
based on published genomic data by RAxML and visualized by iTOL.
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