Supplementary Information

Structural changes in milled wood lignin (MWL) of Chinese quince (*Chaenomeles sinensis*) fruit subjected to subcritical water treatment

Wen-Yue Wang ^{1, 2}, Zhao Qin ², Hua-Min Liu ^{2,*}, Xue-De Wang ², Jing-Hao Gao ², Guang-Yong Qin ^{1,*}

- ¹ School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; 15238646131@163.com
- ² College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China; qinzhao505@163.com (Z.Q.); wangxuede1962@126.com (X.-D.W.); g123asd321@163.com (J.-H.G.)
- * Correspondence: hmliu@haut.edu.cn (H.-M.L.); qinguangyong@zzu.edu.cn (G.-Y.Q.)

Contents

Figure. S1 Py-GC/MS chromatograms of UL, L130, L150, and L170 fractions.

Figure. S2 The structural compounds labelled in Table S1

Table S1 The identities and relative abundances of carbohydrate-derived compounds by Py-GC/MS.

Table S2 Assignments of main lignin ¹³C–¹H cross signals in the 2D HSQC spectra of the UL and L170.

Figure S1. Py-GC/MS chromatograms of UL, L130, L150, and L170 fractions.

Figure S2. The structural compounds labelled in Table S1

Table S1

The identities and relative abundances of carbohydrate-derived compounds by Py-

NO.	Compound	Origin	UL	L130	L150	L170
1	Phenol	Н	1.4	0.1	0.4	0.0
2	Phenol, 3-methyl-	Н	0.5	0.0	0.0	0.2
3	Phenol, 2- methoxy-	G	12.7	7.8	11.4	7.7
4	Phenol, 2,4- dimethyl-	Н	0.6	0.0	0.0	0.5
5	Creosol	G	6.1	5.7	7.1	5.5
6	Catechol	G	18.7	24.3	28.6	33.9
7	Phenol, 4-ethyl-2- methoxy-	G	9.9	0.0	0.0	0.0
8	2-Methoxy-4- vinylphenol	G	13.6	11.5	12.2	10.0
9	1,2-Benzenediol, 4- methyl-	G	3.0	2.2	0.0	4.2
10	Phenol, 2,6- dimethoxy-	S	15.1	13.8	18.3	16.5
11	trans-4- Methoxycinnamal dehyde	G	0.1	0.1	0.0	0.0
12	Ethanone, 1-(3- hydroxy-4-	G	0.9	0.8	0.5	0.5
13	Phenol, 2,4-bis(1,1- dimethylethyl)-	Н	2.9	0.0	0.0	0.0
14	Ethanone, 1-(2,6- dihydroxy-4-	G	8.5	0.0	0.0	0.0
15	methoxyphenyl)- Homovanillyl alcohol	G	0.4	0.0	0.0	0.0
16	Phenol, 2,6- dimethoxy-4-(2- propenyl)-	S	1.1	1.1	1.5	1.2
17	Ethanone, 1-(4- hydroxy-3,5-	S	2.4	2.5	3.1	2.1
18	dimethoxyphenyl)- 3,5-Dimethoxy-4- hydroxyphenylacet	S	1.9	0.0	0.0	0.0

	ic acid					
	3,5-di-tert-Butyl-4-					
19	hydroxyphenylpro pionic acid	Н	0.0	0.0	0.0	0.0
20	Phenol, 2-methyl-	н	0.0	0.1	0.0	0.0
21	Phenol, 4-ethyl-	Н	0.0	0.1	0.0	0.0
	Phenol, 2-					
22	methoxy-4-(1-	G	0.0	0.3	0.0	0.0
	propenyl)-					
23	Vanillin	G	0.0	0.4	0.0	0.5
24	Butylated Hydroxytoluene	Н	0.0	29.0	14.8	5.4
	Benzaldehyde, 4-					
25	hydroxy-3,5-	S	0.0	1.3	1.5	1.9
	dimethoxy-					
26	2-Methoxy-6-	G	0.0	0.0	0.7	0.0
20	methylphenol					
27	Phenol, 2-	G	0.0	0.0	0.0	0.5
	methoxy-3-methyl-	~				
28	1,2-Benzenediol, 3- methoxy-	G	0.0	0.0	0.0	9.5
	Н%		5.4	29.3	15.2	6.1
	G%		73.9	53.1	60.5	72.3
	S%		20.5	18.7	24.4	21.7
	S/G		0.34	0.45	0.51	0.35

Table S2

Assignments of main lignin ¹³C-¹H cross signals in the 2D HSQC spectra of the UL and

Label	δс/бн	Assignment
Вв	54.3/2.99	C_{B} –H _B in β-β (resinol) substructures (B)
-OCH3	56.4/3.68	C–H in methoxyls
A	60.4//3.30-3.79	C _ν -H _ν in β-O-4 substructures (A)
Est	62.7/4.30	v-ester of LCC
Ara-6	63.3/3.40	C ₆ -H ₆ in arabinosyl units
C _r	63.3/3.66	C_{v} – H_{v} in phenylcoumaran substructures (C)
By	71.8/3.75-4.12	C_{y} – H_{y} in B-B resinol substructures (B)
-1 Ag	72.6/4.81	C_{q} = H _q in β-O-4 substructures (A)
Glu-5	73.3/3.25	C_5 —H ₅ in glucosvl units
	84.3/4.23	C_{B} —H _B in B-O-4 linked to G/H unit (A)
\mathbf{B}_{a}	85.7/4.59	C_{g} -H _g in β-β resinol substructures (B)
	86.7/4.06	C_{B} -H _B in B-O-4 linked to a S unit (A)
C _a	87.7/5.38	C_{g} -H _a in phenvlcoumaran substructures (C)
S _{2.6}	104.5/6.63	$C_{2,6}$ -H _{2,6} in syringyl units (S)
S'2.6	107.2/7.26	$C_{2,6}$ -H _{2,6} in oxidized S units (S')
G ₂	111.8/6.94	C_2 -H ₂ in guaiacyl units (G)
G ′ ₂	112.0/7.52	C ₂ -H ₂ in oxidized G units (G')
PCA ₈	114.2/6.27	C_8 -H ₈ in <i>p</i> -coumaric acid (PCA)
PCA _{3.5}	115.2/6.71	C _{3.5} –H _{3.5} in <i>p</i> -coumaric acid (PCA)
G ₅	115.6/6.65	C ₅ -H ₅ in guaiacyl units (G)
G ₆	119.6/6.75	C_6-H_6 in gualacyl units (G)
$\mathbf{J}_{\mathbf{\beta}}$	125.6/6.82	C_{β} -H _{β} in cinnamaldehyde end groups (J)
H _{2,6}	129.2/7.17	C _{2,6} –H _{2,6} in H units (H)

L170.