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1. Modeling of  fibrinogen adsorption kinetics using the soft RSA approach 

Adsorption of fibrinogen molecules on polymer particles was theoretically modeled 

applying  the random sequential adsorption (RSA)  approach. This is a stochastic process 

where   particles (for example protein molecules) are placed consecutively at  a surface in 

such a way that they do not overlap any previously adsorbed ones [1-4]. Another necessary 

condition is that the particles can only  adsorb after contacting with an uncovered surface 

area of the interface.  Upon adsorption, the particles  remain immobilized under a give 

position and cannot desorb. By virtue of these assumptions the  adsorption process  is 

completed when there is no available (uncovered)  interface area large enough to 

accommodate the adsorbing particle. The coverage attained in this limit is referred to as the 

jamming coverage and represents  the most relevant parameter determined in RSA 

modeling. 

In this work, fibrinogen adsorption was analyzed  using  a coarse-grained, bead Model 

B  of the fibrinogen molecule (see Table 1) where the presence of the side  chains is 

explicitly taken in to account [5,6]. In terms of this model, the real shape of the molecule is 

replaced by a string of 23 co-linear touching spheres of various diameters. The two external 

spheres have the diameters of 6.7 nm and the central sphere has a diameter of 5.3 nm. The 

remaining 20 spheres of an equal size have the diameter of 1.5 nm. Therefore,  the length of 

the core part of the molecule is equal to 48.7 nm.  The side arms are modeled as a  straight 

sequence of ns beads of equal size, having the diameter of d4. In calculations performed in 

this work the number of the beads in the side chains was equal to 12 (see Table 1).  
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Table S1. Model Shapes of the Fibrinogen Molecule, from Ref. [5].  

 

 

Model 

 

Shape of Molecule 

 

Remarks 

 

 

Chemical 

 

 

 

 

Mw = 337,897  

 

 

 

Crystallographic 

 

 

 

 

0.72 =  cm3 g -1 

ρ = 1.38 g cm -3 

ν =  405 nm3  

 

 

 

Bead Model B 

 

 

 

 

n = 10, ns = 12 

d1= 6.7 nm, d2 = 5.3 

nm, d3 = d4 = 1.5 nm 

 

 

 

 

A more general  RSA model was adopted in the modeling, referred  to as  soft-RSA, 

where  the electrostatic interactions of the adsorbing molecule with  those attached to the 

interface were considered.  Accordingly, in the first step  in the soft-RSA modeling, a 

discrete charge distribution over the fibrinogen molecule was generated  with  the total 

number of charges experimentally determined via electrophoretic mobility measurements 

[6].  For this charge distribution, the electrostatic interactions  of the  adsorbing fibrinogen 

molecule  with the molecules attached to the surface were calculated using the Yukawa pair 

potential, physically derived from the screened Coulomb interactions  
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where e is the elementary charge,  r12 is the distances between the centers of the two beads of  

the radii  of  a1   and  a2, belonging to the  adsorbing and the adsorbed fibrinogen molecules, 

2/1

2

1

2








=−

Ie

kT
  is the electrical double-layer thickness, ε is the permittivity of the medium, 

k is the Boltzmann constant, T is the absolute temperature,    and I is the ionic strength of the 

electrolyte solution. 

Using the pair potential, Eq. (S1), one can express the interaction energy  of the 

adsorbing molecule with the l-th  adsorbed molecule  al  in the following form [7]: 

1 1

mx mxi i

al aijl

i j

 
= =

=    (S2) 

where ϕaijl is the pair energy of the i-th bead of the adsorbing molecule with the j-th bead of 

the l-th molecule in the interaction zone and imx  is the total number of beads.  

 Consecutively, the net interaction energy of the adsorbing molecule  with adsorbed 

molecules, denoted by  a was calculated by summing up their  interactions with the 

adsorbed fibrinogen molecule located within the interactions zone 
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where Ni is the number of molecules in the interaction zone. 

 Finally, the probability density of  fibrinogen molecule adsorption at a given point at the 

interface was calculated from the Boltzmann formula: 

 

a

v
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=  (S4) 

 

Primarily, this   soft–RSA modeling  scheme yields the dependence of the number of 

adsorbed molecules N  on the total number of  attempts Natt. Then,  using this dependence  

the maximum  number of fibrinogen molecules adsorbed under the jamming state  was 

precisely calculated using the  interpolation procedure used in Ref.[8]. The method is based 

on the use of the asymptotic form of the equation describing  the  particle adsorption in the 

limit of the large number of attempts  

 

mx  = NL
1/q

N attC N−+           (S5) 
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where mx  is the  maximum number  of adsorbed molecules for the infinite number of 

attempts, NL is the surface concentration for a large (but finite) number of attempts and NC , 

q are parameters determined from the RSA modeling.  

Eq.(S5)  can be used for efficient extrapolation of results obtained for the large  

number of attempts to  the infinite  number of attempts, impractical to attain.  

Using this algorithm  the fibrinogen adsorption at the polymer particles was  modeled 

for the three adsorption regimes:  (i) the side-on regime, (ii)   the end-on regime and (iii) the 

mixed regime where the molecules can adsorb in the  end-on orientation if there is  not 

enough space for the  side-on orientation.  

The most relevant quantities  derived from the modeling  were the number of 

adsorbed fibrinogen molecules forming the corona  in the side-on Np║ and the end-on  
pN ⊥

 

orientations after a given number of attempts. Knowing  these numbers, the net surface 

concentration of molecules can be calculated as   

 

N = (Np║ +
pN ⊥

 ) / pS           (S6) 

 

where 2

p pS d=    is the geometrical area of the  polymer particle  of the diameter  dp.  

 Snapshots of fibrinogen layers at the polymer particles of the size 820 nm, for 0.01 

M NaCl concentration and  pH 3.5, are shown in Fig.  S1.  

 

 

 

 

Fig. S1  The fibrinogen coronas  at  LS polymer  particles  (820 nm in diameter) derived 

from the RSA modeling  for various adsorption regimes (0.01 M NaCl, pH 3.5): 

1. side-on adsorption,        N =   990   µm-2   (Γ =0.56 mg m-2 )  

2. end-on adsorption,                    N =  5700   µm-2   (Γ =3.2  mg m-2 ) 

3. side-on/end-on  adsorption  simultaneously,       N = 5100  µm-2     (Γ =2.8  mg m-2 )  

the   side-on and end-on adsorbed molecules are marked  in red and blue color, respectively.  

1 2 3 
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The mass coverage  of  the fibrinogen corona at the particles can be calculated as  

 

wM
N

v



=            (S7) 

 

where Av is the Avogadro constant and  Mw is the molar mass of fibrinogen.  

The absolute coverage  of fibrinogen corona can be calculated as  

 

gfS N =            (S8) 

where Sgf   is the characteristic cross-section area of the fibrinogen molecule. 

 Ten independent runs were performed, which gives the overall number of fibrinogen 

molecules equal to 5×104. This yields the relative error of the maximum coverage 

determination smaller than 0.5%. 

 

2. Calculation of the zeta potential of the particles with fibrinogen corona  

The primary experimental data shown in Fig. 3 were interpreted in terms of the 

theoretical electrokinetic model formulated in Ref.[9,10]. In contrast to the Gouy-Chapmann 

approach, in this model three-dimensional fluid velocity and electric potential distributions 

around adsorbed protein molecules are considered in an exact way applying the multiple 

expansion method. This enabled the following expression for the zeta potential of interfaces 

covered by protein molecules ( )  to be formulated  

 

( ) ( ) ( )i i p pF F     = +          (S9) 

 

where  ζi is the zeta potential of bare substrate, ζp is the particle (protein) zeta potential in the 

bulk, and ( ) ( ),i pF F   are the dimensionless functions. The Fi function describes the 

damping of the flow within the adsorbed molecule layer and the Fp function characterizes 

the contribution to the zeta potential stemming from the molecules. Accordingly, for low 

particle coverage, the Fi function approaches unity and the Fp function vanishes. For thin 

double-layers, one can express the functions by the following analytical expressions [10] 
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where the Ci, pa and 
pb  coefficients for spherical particles layers assume the limiting values 

of 10.2, 0.202 and 0.618, respectively.  

For elongated particles in the form of touching bead strings, the  Ci   coefficients  for 

various number of beads are given in Ref. [9]. 

Interestingly, Eq. (S10) is applicable for the random and equilibrium distributions of 

protein molecules in the coronas.  

 

3. Convective- diffusion deposition of particles in the oblique impinging-jet (OBIJ) cell 

Polymer particle deposition  kinetics at solid substrates can be quantitatively described 

solving the continuity (mass balance) equation [11]: 

0
n

t


+   =


j  (S11) 

where n is the number concentration of particles, t is the time and j  is the generalized flux 

vector incorporating the translational and the rotary fluxes. 

For spherical particles the  rotational flux becomes irrelevant and the translation flux 

vector j can be expressed as: 

( )
1

hn n n
kT

= −  −  +j D D U  (S12) 

where D is the translation diffusion tensor, = −F ,  is the interaction force of the particle 

with the substrate comprising the external and specific surface force contributions,  is the 

net interaction potential, h h r h=  U M F + M To  is the particle velocity resulting from 

hydrodynamic forces Fh and torques Toh. 

Substituting the expression for the flux into Eq. (S11) one obtains the following continuity 

equation: 

 

( )
1

h

n
n n n

t kT


  
=   +  −   

D D U  (S13) 
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It should be mentioned that in Eq. (S13) the hydrodynamic and specific interactions 

among particles were neglected as well as the coupling between hydrodynamic and specific 

interactions. Moreover, the diffusion coefficient was assumed to be independent of the 

particle concentration. 

It should be mentioned that exact solutions of Eq. (S13)   for  three-dimensional flows 

comprising the specific interactions  term  are not feasible by currently available computer 

software. However, useful  solutions can be derived for some limiting forms of these 

equations having practical significance. The first one appears for uniformly accessible 

surfaces [11] where the perpendicular flow velocity  component is independent of  the 

tangential coordinate.  This type of flow occurs for example for the rotating disk, and for the 

impinging-jet flows comprising the oblique impinging jet (OBIJ)  flow applied in our 

experiments. In this case, Eq.(S13)  becomes one-dimensional  and assumes under the quasi-

stationary conditions  the following  form [11]  

 

   ( ) ( ) ( )( ) ( )( )
2

1 1 2 3

1
1 1

2

d dn d
F H n Pe F H F H H n Pe F H H n

dH dH kTdH

  
+ + + = +  

  
(S14) 

            

 

where  H is the  coordinate perpendicular to the interface scaled by the particle radius,   

( ) ( ) ( )1 2 3, ,F H F H F H  are the universal hydrodynamic correction functions,   n  is the 

scaled particle concentration,  ch pV d
Pe

D

=  is the Peclet number characterizing the  

significance of the flow relative to the diffusion,  
chV  is the characteristic velocity of the 

flow far from the interface  and   D  is the diffusion coefficient of the particles in the bulk.  

 Numerical solution of Eq.(S14) acquired using the  Runge-Kutta forth-order method  

yield the mass transfer rate   constant   ck   as a function   of the  flow rate and the  particle 

diffusion coefficient.  Also the influence of the energy barrier,   described by the specific 

interaction potential   consisting of electrostatic and van der Waals interactions, on the 

mass transfer rate can be adequately determined. 

 Accordingly, the surface  concentration of deposited particles under this quasi-

stationary transport regime described by Eq.(S14)  is given by the linear dependence  
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p c bN k n t=           (S15) 

    

 

where  bn  is the number concentration of the particles in the bulk and t is the deposition 

time.  

 However, the disadvantage of Eq.(S15)  is that it is accurate for  not too large surface 

concentration of particles where the surface blocking effects remain negligible. 

 The large coverage regime can be adequately treated  in terms of the surface  boundary 

layer  approach [11]  where   the following  kinetic equation describing particle transport 

near interfaces  was  formulated 

 

( )[ ( )  ]   ( ) 
p

c  a b a a p d p

dN
 k n n k n B N k N

dt
 −  −= =  (S16) 

 

where ( )an    is  particle concentration  at the  surface boundary layer of the thickness a , ka, 

kd are the kinetic adsorption and desorption constants, and ( )pB N  is the blocking function 

(referred more appropriately to as the available surface function [1-3]). 

The adsorption and desorption constant can be calculated in an ab initio way if the 

particle/interface interaction potential is known using the expressions [9]: 

 

( )

( )

( )

/

' /

'
'

a

a

m

kT

a
z kT

e
k  

e
dz

D z

 






=



 (S17) 

( ) ( ) /m a kT

d ak k e
   −  =  

 

where ϕ(m) is the specific interaction energy of the particle at the primary minimum  

distance δm, ϕ(a) is the specific interaction energy of the particle with the interface 

evaluated at the distance δa and D(z) is the diffusion coefficient of the particles, which 

depends on the distance from the substrate surface.  

It should be mentioned that for a barrier-less adsorption regime and  a deep primary 

minimum the desorption constant vanishes  and  the kinetic adsorption constant can be 

calculated from the dependence: 
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Under  the convective diffusion transport where the  mass transfer rate constant is 

independent of time  one can express Eq.(S16)  can be expressed  in the form of the definite 

integral  
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where 2= / 4p pd N     is the absolute  coverage of particles. 

 Eq.(S19) can be explicitly evaluated  by conventional numerical  methods  which 

yields the particle deposition kinetics  provided that the blocking function is known in an 

analytical form. This function can be conveniently acquired from the random sequential 

adsorption (RSA) modeling [1-3,11].  In the case of spherical particles, the exact numerical 

calculations were interpolated by the following analytical expression valid for the entire 

range of particle coverage [3] 

 

( ) ( ) ( )
2 3 3

( ) = 1+ 0.812 0.4258 0.0716 1B      + + −
  

              (S20) 

where 





=  and  Θ   is the jamming coverage, equal  to 0.547  for non-interacting  

(hard)  particles of a spherical  shape [1]. 

It was shown in Ref.[11]  that the above results obtained pertinent to hard particles can 

also be extended to the case of particles interacting via the short- range Yukawa potential. 

For electrostatic double-layer interactions the characteristic range of this potential is given 

by [11] 

 

1 1
ln ln 1 ln* o o

p ch p ch

h
d d

 

   

  
= − +   

   

                (S21) 

 

where o is electrostatic energy at contact and ch  is the characteristic interaction energy.  
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Consequently, one can calculate the jamming coverage for interacting particles 

referred to as the maximum coverage) from the relationship  

2

1

(1 )
mx *

Θ Θ
h

=
+

                   (S22) 

Upon calculating Θmx one can use Eq.(S20) to calculate the blocking function substituting 

mx


 =


. 

4. Measurements of particle deposition  kinetics in the OBIJ cell  

 

In  preliminary experiments,  the stability of the polymer particles with fibrinogen 

coronas was determined  by measuring their diffusion coefficient and the electrophoretic 

mobility as a function of storage time. These data expressed as the dependence of the 

normalized zeta potential and the normalized hydrodynamic diameter on the storage time are 

shown in Fig. S2.  As can be seen, the particles bearing the corona characterized by the 

coverage of  2.2 mg m-2 were stable over the time up to  24 hours, which suggests that they 

are prone to long-lasting electrokinetic investigations.  

 

Fig. S2.  The stability of the LSFi particle suspension (100 mg L-1, 0.01 M NaCL) at pH 3.5 

(▲) and pH 7.4 (●) (PBS) expressed as the dependence of the normalized hydrodynamic 

diameter  dH/ dH0  and the normalized zeta potential ζ/ζ0 on the storage time  (where 0  and 

dH0  are  the zeta potential  and the hydrodynamic diameter for the initial time). 
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The deposition kinetics of particles at bare and PLL modified substrates was   

determined using the oblique impinging-jet cell (see Fig. S3)  according to the previously 

described procedure [12]. 

 

 

 

 

 

 

                             

 

 

 

Fig. S3. The microfluidic OBIJ cell:   1. the container with the particle suspension, 2. the 

inlet tubing with the capillary, 3. the transparent substrate plates, 4. the inverted optical 

microscope, 5. the outlet tubing, 6. the  used suspension container. Adopted from Ref. [12]. 

  A steady laminar flow of the suspension was generated by the hydrostatic pressure 

difference between  two containers 1 and 6, which enables to regulate the volumetric flow 

rate within broad limits. It  should be mentioned that  because  of the  under-pressure 

prevailing in the cell, the mica substrate in the form of freshly cleaved sheets was firmly   

attached to the cell wall without using any adhesive. This  eliminated the possibility of the 

contamination of the cell during the measurement.  Deposited particles were observed in situ  

using  inverted optical microscope 4  equipped in long-distance objectives, camera, and 

imaging processing software.  The number of particles per a unit area (typically one square 

micrometer, denoted hereafter by N) was determined by a direct counting of over 10-20 

equal sized areas randomly chosen over the mica surfaces with the total number of number 

of particles exceeding 1000. This provides a relative precision of these measurements at 

more than 98%. Using the known values of the surface concentration Np, the absolute 
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(dimensionless) coverage of particles was calculated as  = Np Sg, where Sg is the 

characteristic cross-section are of the particles.  

 The experimental run was completed by the desorption step. Accordingly, after 

completing  the particle deposition run, where  the  pure  electrolyte  of a controlled pH and 

ionic strength was flushed through the cell  at a regulated flow rate. The  surface 

concentration of the particle monolayer was monitored in situ over a prolonged time in order 

to quantify the desorption rate. A primary particle deposition/desorption run acquired in this 

way is shown in Fig.  S4.  One can observe that  the desorption of particles was negligible 

over the time of 300 min. 

 

Fig. S4. The kinetics of LSFi particle  deposition/desorption  at mica in the OBIJ flow cell, 

shown as the dependence of the surface concentration  on the deposition time, pH 3.5,  0.001 

M NaCl,  particle concentration 100 mg L-1, flow rate  2.5×10-3 cm3 s-1. At the time of 300 

min. the desorption run was  initiated where the  pure  electrolyte  of  the same pH and flow 

rate was flushed through the cell. The solid line is the fit of experimental data.  

 Analogous runs were performed  for various  surface concentrations of deposited 

particles  where  the ionic strengths and pH  under the desorption run were  different  from 

those prevailing under the deposition run. For sake of convenience   these results were 

expressed  as the dependence of the  normalized  surface concentration  of particles Np/ Np0   

(where  Np0 is the initial surface concentration of particles   after completing the deposition 
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run)  on  the  desorption time. As shown in Fig. S5    the   particle desorption   at pH 3.5  and 

7.4  was negligible. 

 

 

Fig. S5. The desorption kinetics of the LSFi particles under determined for the OBIJ cell  

(0.01 M NaCl,  volumetric flow rate  2.5×10-3 cm3 s-1) expressed as the dependence of the 

normalized  surface concentration  Np/ Np0  on the desorption time:  pH 3.5 (▲),   pH 7.4  (●) 

.  

 

ACKNOWLEDGEMENTS  

This work was financially supported by the Statutory activity of the J. Haber Institute of 

Catalysis and Surface Chemistry PAS.  The  authors are indebted to Katarzyna Kusak   for 

her help in preparing the artwork.  

 

 

 

 

 



15 

 

References 

[1] E. L. Hinrichsen, J. Feder, T. Jøssang, Geometry of random sequential adsorption, J. 

Stat. Phys. 44 (1986) 793-827. 

[2] S.M. Ricci, J. Talbot, G. Tarjus, P. Viot, Random sequential adsorption of anisotropic 

particles. II. Low coverage kinetics, J. Chem. Phys. 97 (1992) 5219. 

[3] J. Talbot, G. Tarjus, P.R. Van Tassel, P. Viot, From car parking to protein adsorption: an 

overview of sequential adsorption processes, Colloids Surf. Physicochem. Eng. Asp. 

165 (2000) 287-324. 

[4] M. Cieśla, Properties of random sequential adsorption of generalized dimers, Phys. Rev. 

E. 87 (2013) 52401-14. 

[5] Z. Adamczyk, B. Cichocki, M. L. Ekiel – Jeżewska, A. Słowicka, E. Wajnryb,                 

M. Wasilewska, Fibrinogen Conformations and Charge in Electrolyte Solutions 

Derived from DLS and Dynamic Viscosity Measurements, J. Colloid Interface Sci., 

385 (2012) 244-57. 

[6] A. Bratek-Skicki, P. Żeliszewska, Z. Adamczyk, M. Cieśla, Human Fibrinogen 

Monolayers on Latex Particles: Role of Ionic Strength, Langmuir 29 (2013) 3700-10. 

[7]  D. Kosior, M. Morga,  P. Maroni, M. Cieśla, Z. Adamczyk, Formation of Poly-l-lysine 

Monolayers on Silica: Modeling and Experimental Studies, J. Phys. Chem. C 124 

(2019) 4571-81.   

[8] M. Cieśla, Z. Adamczyk, J. Barbasz, M. Wasilewska, Mechanisms of fibrinogen 

adsorption at solid substrates at lower pH, Langmuir 29 (2013) 7005-16. 

[9] Z. Adamczyk, K. Sadlej, E. Wajnryb, M. Nattich,   M.L. Ekiel-Jeżewska,                                    

J. Bławzdziewicz, Streaming potential studies of colloid, polyelectrolyte and protein 

deposition, Adv. Colloid Interface Sci. 153 (2010) 1-29. 

[10] M.L. Ekiel-Jeżewska, Z. Adamczyk, J. Bławzdziewicz, Streaming current and effective 

ζ-potential for particle-covered surfaces with random particle distributions, J. Phys Chem. C 

123 (2019) 3517-31. 

[11] Z. Adamczyk, Particles at Interfaces: Interactions, Deposition, Structure, Elsevier, 

2017. 

[12] Z. Adamczyk, E. Musiał, B. Siwek, Kinetics of Particle Deposition in the Oblique 

Impinging Jet Cell, Colloid Interface Sci. 269 (2004) 53-61. 

 

 

 


