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Abstract: Halide moieties are essential structures of compounds in organic chemistry due to their
popularity and wide applications in many fields such as natural compounds, agrochemicals, and
pharmaceuticals. Thus, many methods have been developed to introduce halides into various
organic molecules. Recently, visible-light-driven reactions have emerged as useful methods of
organic synthesis. Particularly, halogenation strategies using visible light have significantly improved
the reaction efficiency and reduced toxicity, as well as promoted reactions under mild conditions. In
this review, we have summarized recent studies in visible-light-mediated halogenation (chlorination,
bromination, and iodination) with photocatalysts.

Keywords: halogenation; photoredox catalysis; visible light

1. Introduction

Halogenation is one of the most important modifications in organic synthesis because
of its extremely wide applications. Halogen derivatives are useful building blocks in or-
ganic synthesis for the construction of complicated, high-activity molecules [1–3]. Moreover,
as halogenation can be applied to a wide variety of organic compounds without altering
their basic structures, halogen-substituted compounds have become popular intermediates
for transformation to create different functional groups [4–6]. Various areas such as phar-
maceuticals, material sciences, industrial chemicals, and bioactive compounds have all
benefited from halogen-containing compounds [7–10]. So far, more than 5000 halogenated
natural compounds have been identified, with several of them exhibiting intriguing phar-
macological characteristics (Figure 1) [11]. Thus, developing halogenation methods is an
interesting area of research, which has received the attention of scientists for decades.

Traditional halogenation methods include addition reactions to multiple bonds, nucle-
ophilic substitution, or radical substitution reactions [12–18]. One of the most fundamental
halogenation reactions in organic chemistry is the addition of halide reagents to C-C mul-
tiple bonds. Halogen electrophiles are the most common type of electrophile, and they
are commonly employed to generate electrophilic addition reactions to unsaturated car-
bon [12]. Multiple-bond compounds (alkenes and alkynes) are easily transformed directly
to halogenated products by reacting with halogen molecules or hydrohalic acids. However,
this technique has significant weaknesses, such as low selectivity, extremely volatility, and
the toxic nature of some halogens, and environmental risks [13].

On the other hand, electrophilic substitution and radical substitution reactions are
the most feasible and well-recognized approaches for the production of aryl halides, alkyl
halides, and many other halide compounds [14]. To produce a carbon-halogen bond, the
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C-H bond was broken, and then the hydrogen atom was replaced by a halide anion or
radical. Halide substitution reactions often require harsh reaction conditions such as high
temperature, inert pressure, or an excess of halogen agent and initiator compounds [13–20].
These requirements have increased the purification and treatment costs of the actual
halogenation process.
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Figure 1. Several halogenated compounds in pharmaceuticals.

Several classic or modified halogen sources including N-bromo- and N-chlorosuccinimide,
plus Selectfluor for halogenation, have also been used. However, the existence of special
reagents has limited the application scope and decreased functional group tolerance.
Besides, these reactions have been generally carried out under difficult circumstances
with poor atom economy [13,14].

Photocatalysis refers to chemical reactions that use light as an energy source. Under
irradiation of light, the ground state photocatalyst receives or releases one electron to
transfer to the excited state, which subsequently interacts with the substrates or reagents to
cause chemical reactions. Generally, photocatalysts can be divided into three main types,
including metal complexes, organic dyes, and heterogeneous catalysts [21,22].

In recent years, visible light photocatalysis has emerged as an effective alternative
in organic synthesis. Many studies have demonstrated the effectiveness of the visible-
light-mediated method in overcoming the inherent disadvantages of traditional organic
synthesis methods, such as proceeding under milder reaction conditions, reducing the
amount of initiator, introducing outstanding functional group tolerance, and maintaining
good regioselectivity [23]. Using photocatalysts for halogenation improves selectivity,
allows better reaction control, and lowers costs [24,25].

Many new discoveries in halogenation utilizing visible light via photoredox catalysis
have been made in the last decade, and many positive results from reactions with a variety
of substrates involving alkyl, aryl, alcohol, carboxyl, etc., have been achieved. In this
review, recent advances in halogenation (chlorination, bromination, and iodination) of a
variety of organic molecules via photocatalysis are presented.
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2. Photo-Catalyzed Halogenation of Aliphatic C-H Bonds

Scheme 1 shows schematic diagrams of the comparison of the traditional methods
with visible-light-induced halogenation of aliphatic C-H bonds.
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Scheme 1. Synthetic methods for halogenation of aliphatic C-H bonds.

2.1. Chlorination of Aliphatic C-H bBonds

In 2016, Gong Chen and co-workers developed nucleophilic halogenation of tertiary
aliphatic C-H bonds [26]. In the reaction, starting substance 1 reacted with LiCl as a
chlorinating source in the presence of (Ru(bpy)3Cl2) 2 as a photocatalyst and azidoio-
dane in hexafluoroisopropanol (HFIP) under the irradiation of a fluorescent bulb at room
temperature to give the corresponding products (Scheme 2). This protocol successfully
demonstrated site-selectivity for specific tertiary C-H bonds and functional group tolerance.
Substrates bearing functional groups such as ester (3a, 4a), ether (3b, 4b), and amide (3c–3e;
4c–4e) provided the corresponding products with moderate to excellent yields (45–80%).
This method was also applied for bromination of tertiary C-H bonds. n-Bu4NBr was
employed as a brominating source, and the bromination was proved to be more efficient
than chlorination and showed better yields.
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A plausible mechanism for chlorination is illustrated in Scheme 3, in which azidoio-
dane 5 participated in two processes simultaneously. Under irradiation of visible light and
photocatalyst Ru(bpy)3Cl2 2, homolytic break of the I–N3 bond of azidoiodane 5 yielded
an iodanyl radical 6 and an azido radical. Azidoiodane 5 also reacted with chlorinating
source LiCl to generate chloroiodane 7. Capture of an H atom of substrate 1 by radical 6
gave the intermediate radical 8. In the meanwhile, chloroiodane 7 provided a Cl atom to
radical 8 to form the desired product 3 and then recovered iodanyl radical 6.
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Scheme 3. Proposed mechanism of photocatalyzed tertiary aliphatic C-H bond chlorination.

Another photo-mediated C(sp3)-H chlorination was reported by Chuo Chen and
co-workers in 2017 [27]. In this reaction, aryl ketones such as benzophenone were em-
ployed as a photocatalyst to assist in the chlorination of C-H groups in the presence of
N-chlorosuccinimide (NCS) as a chloride source under irradiation of a household compact
fluorescence lamp (CFL) in acetonitrile at room temperature (Scheme 4). The benzylic C-H
chlorination was readily performed regardless of the position (ortho, meta, or para) of an
electron-withdrawing group on the benzene ring (12a–c). Chlorinations of the primary and
tertiary benzylic C-H groups (12d) were successfully achieved, and the ester group at the
β-position (12e) was tolerated for this protocol. This method was also highly effective for
non-benzylic chlorination, when acetophenone was used as the photocatalyst instead of
benzophenone (Scheme 5). Particularly, chlorination of cyclo-compounds was carried out
smoothly at high yield (15a–b), whereas the dichlorination of the tert-butyl group (15c–d)
was conducted with a lower yield.

In 2020, Wu and co-workers reported a novel strategy for benzylic chlorination using
N-chlorosuccinimide (NCS) as a chloride source and Acr+-Mes as a photocatalyst under
radiation of blue LED light in dichloromethane (Scheme 6) [28]. Several typical alkylben-
zene derivatives were tested to assess the scope of this chlorination method. Reaction of
toluene 18a had a higher reaction yield than that of ethylbenzene 18b (78% for 18a and
64% for 18b). Substrates containing different groups such as phenyl 18e and carbonyl 18d
on the aromatic ring were smoothly converted to target chlorides in moderate to good
yields (64–77%), while reaction of nitro group 18c on the aromatic ring achieved a lower
yield (21%).
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A plausible mechanism for chlorination proposed by Wu and co-workers is depicted in
Scheme 7. Visible light excited Acr+-Mes 17 to give the charge state Acr•-Mes•+ 19, which
caused the oxidization of N-chlorosuccinimide (NCS) or substrate 16 to provide Acr•-Mes
radical 20. This radical 20 reacted with NCS 11 to yield NCS•− 21 via the SET process and
to recover Acr+-Mes 17. Then, NCS•− 21 lost a chlorine anion to give N-centered radical
22, which underwent the hydro atom transfer (HAT) process with substrate 16 to afford
benzylic radical 24. The radical 24 captured a chloride atom of NCS 11 to form benzylic
chloride product 18.
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In the same year, Wei Yu and co-workers developed a method for the chlorination of
aliphatic sulfonamides [29]. The chlorination was achieved via a reaction with NaOCl·5H2O
crystals as a chlorinating agent, NaHSO4, and Ru(bpy)3Cl2 as a photocatalyst under blue
LED irradiation at room temperature in a mixture of acetonitrile and water (4:1) (Scheme 8).
A wide range of sulfonamide substitutes with variations at the sulfonyl moiety were
chlorinated at the δ-position with 71% to 95% yields (27a–27e), while the substituents on
the amide moiety led to a significant decrease in reaction yield (27f–27h).
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A probable mechanism of the reaction is presented in Scheme 9. Substrate 26 reacted
with NaOCl 30 to form N-chlorosulfonamides 31, which was transformed to sulfonamide
radical 32 under the effect of the photocatalyst Ru*(bpy)3

2+ 28, which was generated from
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Ru(bpy)3
2+ 2 by light. This radical 32 underwent the 1,5-hydrogen atom transfer (1,5-HAT)

process to form carbon-centered radical 34 at the C5 position. The carbon-centered radical
34 then participated in two reactions. Firstly, radical 34 was oxidized by photocatalyst
Ru(bpy)3

3+ 29 to give carbocation 35 and Ru(bpy)3
2+ 2, and then carbocation 35 obtained Cl

anions to form the final product 27. On the other hand, radical 34 also picked the chloride
atom of compound 31 to generate the final compound 27 and sulfonamide radical 32.
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2.2. Bromination of Aliphatic C-H Bonds

In 2013, Nishina and co-workers reported mono-bromination of hydrocarbons [30].
In the reaction, starting substances reacted with Br2 in the presence of Li2MnO3 as a
photocatalyst under irradiation of fluorescent light under O2 pressure to give brominated
products (Scheme 10). This reaction showed higher selectivity to the secondary C-H bonds
of n-hexane than to the primary C-H bonds (37b), and bromination of the 2-position had
priority over that of the 3-position with a ratio of 2:1. Some other compounds, such as
adamantane (37c), benzine (37d), and tert-butylbenzene (37e), were all tolerated for this
method with good to excellent yield (42–93%). Furthermore, N-bromosuccinimide, a
bromine source, could be used rather than Br2 to brominate a wide range of substrates,
which broadened the scope and applicability of this method without the need for harsh
reaction conditions (39a–b) (Scheme 11).
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In 2014, an efficient C-H bond bromination process on aliphatic and benzylic com-
pounds, without the use of an inert environment or anhydrous solvent, was reported by
Tan and co-workers [31]. Eosin Y disodium salt, as a photoredox catalyst, and reductive
compound morpholine were employed to perform bromination of aliphatic and benzylic
compounds under irradiation of an 11 W lamp in a mixture of dichloromethane and water
(1:1) at 34 ◦C for 24 h (Scheme 12). Bromination of adamantane derivatives containing
ketones, esters, and ether functional groups were successfully achieved (43a–d) (55–74%
yield). The reaction did not occur with unsaturated C-H, but C(sp3)-H on toluene deriva-
tives (43e–f) and alkyls (43g–k) were brominated with 2–76% yields. Additionally, they
applied this bromination method to some useful compounds that could be utilized in the
pharmaceutical and medical fields, and a Terpenoid and an Estrone derivative (43l) were
brominated with good efficiency.
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The proposed mechanism of this reaction is shown in Scheme 13. Absorbing light of
photocatalyst Eosin Y2− 41 formed Eosin Y2−* (singlet) 44, which underwent an intersystem
crossing process (ISC) to generate Eosin Y2−* (triplet) 45. When CBr4 47 was reduced to
CBr4

− 48 by Eosin Y2−* (triplet) 45, the C-Br bonds of CBr4
− 48 became less stable, and a

Br atom of CBr4
− 48 was lost to form CBr3 radical 49. The CBr3 radical 49 then captured a

proton from substrate 40 to create CHBr3 51 and carbon-radical R• 50, which was linked
to the free Br atom or received Br from CBr4 to give the product RBr 43. Morpholine 42
reduced Eosin Y− 46 to Eosin Y2− 41 and afforded compound 52. Compound 52 reacted
with morpholine 42 to give radical 53, which captured a proton from substrate 40 to afford
carbon radical R• 50.
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In 2018, Franzén and co-workers reported a chemoselective protocol for benzylic
C(sp3)-H bromination without observation of competing arene C(sp2)-H bromination [32].
This process was carried out in the presence of NBS as a bromide source, trityl cation
(TrBF4) as a Lewis acid organocatalyst, and in dichloromethane under irradiation of flu-
orescent light (55W F. L.) at room temperature (Scheme 14). In the reaction of toluene,
benzyl bromide was generated in 82% yield (58a). The toluene derivatives with different
substitutes (including halogen, nitrozo, cyanide, ester, and sulfochloride) were tolerated for
this protocol with good to excellent yields (88–91%) (58b–d). Reaction of ethylbenzene also
gave the corresponding product in 92% yield. Naphthalene and heterocycle derivatives
were smoothly brominated via this process to produce target compounds in good yield
(82–96%) (58e–f). For the reaction of diphenylmethane (58g), the desired benzyl bromide
could be observed by 1H NMR. However, this bromide was spontaneously hydrolyzed
during isolation and purification to produce the corresponding alcohols.
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3. Photo-Catalyzed Halogenations of Aliphatic Multiple Bonds

Scheme 15 shows schematic diagrams of the comparison of the traditional methods
with visible-light-induced halogenation of aliphatic multiple bonds.
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3.1. Chlorination of Aliphatic Multiple Bonds

In 2020, Nicewicz and co-workers developed an organic photoredox catalyst system
for the regioselective addition of strong Bronsted acidic nucleophiles such as HCl to alkenes
(Scheme 16) [33]. Two different techniques were employed for chlorinating β-methylstyrene
derivatives using 9-mesityl-10-methylacridinium as a catalyst under irradiation of 450 nm
light. In the first method, a reaction with in situ anhydrous HCl (from pivaloyl chloride
and 2,2,2-trifluoroethanol (TFE)) in thiophenol and 2,6-lutidine in chloroform was per-
formed under irradiation of 450 nm light. In the second method, substrates reacted with
2,6-lutidine HCl and 4-methoxythiophenol in a mixture of CHCl3 and TFE under irradia-



Molecules 2021, 26, 7380 11 of 44

tion of 450 nm light. Reaction using in situ anhydrous hydrogen chloride (HCl) yielded an
anti-Markovnikov hydrohalogenation product. For the reaction of styrene substrates with
electron-withdrawing groups, the corresponding products were generated with moderate
yields (51–99%) (61a–d), and few to no Markovnikov addition compounds were observed.
Chlorination of substrates containing electron-releasing substituents showed lower yields
and favored the undesirable Markovnikov reaction (61e–g). The anti-Markovnikov hy-
drohalogenation of α-methylstyrene was completed in less than 5 h with a 93% yield
using 2,6-lutidine hydrochloride. Reaction of several α-methylstyrene compounds gave
the products with more than 60% yields, whereas reaction of mono-substituted styrenyl
alkenes provided slightly lower yields.
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Scheme 16. Photoredox anti-Markovnikov hydrochlorination of styrenes.

Vicinal chloro-trifluoromethylation of alkenes was reported by Han and co-workers
in 2014 [34]. In the chloro-trifluoromethylation, alkenes reacted with CF3SO2Cl 64 in the
presence of Ru(Phen)3Cl2 65 as a photocatalyst and K2HPO4 as an additive in acetonitrile
under visible light at room temperature to give the corresponding products (Scheme 17).
In general, terminal alkenes showed high reactivity. Alkenes containing N-tosyl- and
N-Boc-protected amines were readily chloro-trifluoromethylated (66a–b) (99% and 91%
yields, respectively), and the reaction of an alkene bearing a phthalimide group generated
the corresponding product (66c) (88% yield). Notably, unprotected hydroxyl and formyl
groups of alkenes (66d) were tolerated for the reaction procedure, giving 75% and 83%
yields, respectively. Furthermore, reactions of alkenes containing ether (66e), ester (66f),
amide, and halogen functional groups on the aromatic ring generated target compounds in
high yields (71–88%).
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A proposed mechanism of this reaction is shown in Scheme 18. When being exposed
to visible light, Ru(Phen)3

2+ 65 became the excited state *Ru(Phen)3
2+ 67. Reduction of

triflyl chloride CF3SO2Cl 64 by *Ru(Phen)3
2+ 67 was then cleaved to CF3

• 69, SO2, and Cl−

70. After that, *Ru(Phen)3
2+ 67 became the highest oxidation state Ru(Phen)3

3+ 68. CF3
•

radical 69 attacked alkene 63 to generate radical intermediate 71, which was later oxidized
by Ru(Phen)3

3+ 68 to give the carbonation intermediate 72 and Ru(Phen)3
2+ 65. Finally,

Cl− anion 70 was captured by carbonation intermediate 72 to produce product 66.

Molecules 2021, 26, x FOR PEER REVIEW 13 of 46 
 

 

Ru(Phen)33+ 68 to give the carbonation intermediate 72 and Ru(Phen)32+ 65. Finally, Cl− 
anion 70 was captured by carbonation intermediate 72 to produce product 66. 

 
Scheme 17. Chlorotrifluoromethylation of alkenes with CF3SO2Cl by photoredox catalysis. 

S
O

O
ClF3C

Ru(phen)3
2+

Ru(phen)3
3+

Ru(phen)3
2+

Cl + SO2 + CF3 R CF3

R CF3 R CF3
ClCl

R

S
O

O
ClF3C SO2 + CF3

photoredox
catalysis

radical-chain
propagation63

71

72

66

hv

6567

68

64

6970

70

64 69
 

Scheme 18. Proposed mechanism of chlorotrifluoromethylation of alkenes. 

In 2015, Dolbier and co-workers reported photoinduced atom transfer radical addi-
tion (ATRA) reactions of alkenes using fluoroalkylsulfonyl chlorides (CF3SO2Cl) [35]. For 
chlorination, alkenes reacted with CF3SO2Cl in the presence of Cu(dap)2Cl 74 as an effi-
cient photocatalyst and K2HPO4 as a promoter in dichloromethane under irradiation of 
visible light, which produced the corresponding products in high yields (Scheme 19). 
Various alkenes were successfully tested for the reaction with CF3SO2Cl to generate tar-
get products. Reactions of unsaturated carbonyl substrates such as amides (75a–e), esters 
(75g–75h), and cyanide (75f) led to the production of target products in moderate to ex-
cellent yields. Unsubstituted and α-substituted substrates smoothly underwent this 
process, while synthetic yields were considerably decreased to 52%, when the substrate 
was replaced at the β-position (75d). Other fluoroalkylsulfonyl chlorides, such as 
HCF2SO2Cl, H2CFSO2Cl, and CF3CH2SO2Cl, were tested in this reaction process. Even 
though, it was discovered that their reactions required higher temperatures (108 °C), this 
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In 2015, Dolbier and co-workers reported photoinduced atom transfer radical addition
(ATRA) reactions of alkenes using fluoroalkylsulfonyl chlorides (CF3SO2Cl) [35]. For chlo-
rination, alkenes reacted with CF3SO2Cl in the presence of Cu(dap)2Cl 74 as an efficient
photocatalyst and K2HPO4 as a promoter in dichloromethane under irradiation of visible
light, which produced the corresponding products in high yields (Scheme 19). Various
alkenes were successfully tested for the reaction with CF3SO2Cl to generate target products.
Reactions of unsaturated carbonyl substrates such as amides (75a–e), esters (75g–75h), and
cyanide (75f) led to the production of target products in moderate to excellent yields. Un-
substituted and α-substituted substrates smoothly underwent this process, while synthetic
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yields were considerably decreased to 52%, when the substrate was replaced at the β-
position (75d). Other fluoroalkylsulfonyl chlorides, such as HCF2SO2Cl, H2CFSO2Cl, and
CF3CH2SO2Cl, were tested in this reaction process. Even though, it was discovered that
their reactions required higher temperatures (108 ◦C), this reaction procedure of alkenes
provided desired products with good to excellent yields (61–98%) (Scheme 20). (77a–77i).
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Scheme 20. Another preparation of β-chlorinated phenyl amine and phenyl ester.

In 2020, Wan and co-workers demonstrated photoredox vicinal dichlorination of
alkenes [36]. For this transformation, CuCl2 (20 mol%) as a catalyst and hydrochloric acid
(2.5 equiv.) as a chlorine source were used for dichlorination in acetonitrile under irradiation
of a 38W white LED (Scheme 21). A variety of phenolic esters with electron-withdrawing
groups (NO2, SO2, carbonyl, CN, ester, CF3, and halides) (79a–c) and electron-donating
groups (phthalimide, N-hydroxyphthalimide, acetal, Me, t-Bu, and ether) (79d–e) on ben-
zene rings were well tolerated for this reaction with moderate to good yields (50–71%).
Reaction of sulphonamides (79f) with free N-H groups was successfully conducted, pro-
viding dichlorinated compounds with acceptable yield (75%). The presence of heteroatoms
such as oxygen and sulfur had no effect on the efficiency of this reaction, while alkenes
with oxidatively labile amine groups were readily converted into dichloride products.
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A proposed mechanism of this reaction is shown in Scheme 22. When CuCl2 80 was
irradiated by visible light, it was excited to CuCl2* state 81. After that, ligand to metal
charge transfer (LMCT) excitation occurred, forming chlorine radical 83, which quickly
reacted with alkene 78 to give radical 84. Finally, radical 84 reacted with CuCl2 80 to afford
the desired product 79 and CuCl. Then, oxidation of CuCl by HCl recovered CuCl2 80.
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3.2. Bromination of Aliphatic Multiple Bonds

In 2011, Stephenson and co-workers developed a photoredox-catalyzed halogena-
tion via atom transfer radical addition (ATRA) of haloalkanes and α-halocarbonyls to
olefins [37]. By using Ir[(dF(CF3)ppy)2(dtbbpy)]PF6 as a photocatalyst and LiBF4 as a Lewis
acid additive, they carried out the addition of various haloalkanes and α-halocarbonyls
to different olefins under irradiation of visible light in a mixture of DMF and H2O (1:4)
(Scheme 23). Using diethyl 2-bromomalonate as a halide source, the reaction of monosub-
stituted and 1,1-disubstituted olefins was carried out smoothly (67–99% yields). Olefin
functional groups that were well tolerated included free alcohols, silyloxy ethers, benzyl
ethers, alkyl bromides, esters, enones, carbamates, and aromatic rings (88a–b). A number
of α-halocarbonyls and haloalkanes could be used as halogen sources. A variety of fluori-
nated compounds were successfully employed for this reaction, generating products with
high yields (75–93%) (88c–d).
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Scheme 23. Photocatalysis halogenation of several olefins.

A mechanism of this reaction was proposed as shown in Scheme 24. Ir3+ 87 was
changed to excited state Ir3+* 89 under irradiation of visible light, and Ir3+* 89 subsequently
reacted with haloalkane 86 or α-halocarbonyl to give radical 91 and Ir4+[X−] complex
90. The electrophilic radical 91 then underwent an atom transfer radical addition (ATRA)
process with olefin 85 to generate a new radical 92. This radical 92 was oxidized by Ir4+ and
then captured X− to give the product 88. On other hand, the new radical 92 also received
X− from haloalkane 86 or α-halocarbonyl to give the product 88.
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Scheme 24. Proposed mechanism for conversion of olefins to products.

Synthesis of α-bromoketones from olefins was reported by Zhang and co-workers
in 2021 [38]. In this method, the reactions of styrenes with CHBr3 in the presence of
Ru(bpy)3Cl2 (1.0 mol%) as a photocatalyst and PhI(OAc)2 (1.0 equiv) as a promoter
in dioxane under irradiation of a blue LED (450–455 nm) was carried out to produce
α-bromoketone products in good yields (Scheme 25). Using this protocol, various olefin
derivatives were transformed to α-bromoketones. Styrene with different substitutes
such as methyl groups and halides were readily treated with tribromomethane to give
the corresponding products in good to excellent yields (95a–e) (79–91%). In addition,
2-vinylnaphthalene was transformed to a desired product with high yield (92%) via this
protocol (95f). This visible-light-irradiation protocol was also applied to the synthesis of
α-iodo/chloroketones from olefins, and it successfully provided target products.
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In 2011, Stephenson and co-workers performed halogenation of alcohols in the 
presence of CBr4 or CHI3 as halide sources and Ru(bpy)3Cl2 as a photocatalyst in DMF 
under radiation of blue LED irradiation at room temperature (Scheme 28) [39]. Substrates 
bearing various functional groups such as ethers, silyl ethers, alkene, alkynes, carba-

Scheme 25. Several α-bromoketones from olefin sunder visible light irradiation.

A proposed mechanism of this method is illustrated in Scheme 26. First, photocatalyst
(PC) 2 was activated under irradiation of visible light to produce the excited state (PC)* 28.
The generated (PC)* 28 then reacted with halide reagent 96, yielding halide radicals (X•

97 and (CHX2)• 98) through C-X bond cleavage. Addition of X• radical 97 to substrate 94
yielded radical intermediate 99, which was then incorporated with 3O2 to give intermediate
radical 100. The radical 100 captured a hydrogen atom from (CHX2)• radical 98 to form
compound 101, which subsequently underwent a dehydration process to provide the final
product 95.
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4. Photo-Catalyzed Halogenations of Alcohols

Scheme 27 shows schematic diagrams of the comparison of the traditional methods
with visible light-induced halogenation of alcohols.
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Scheme 27. Synthetic methods for halogenation of alcohols.

In 2011, Stephenson and co-workers performed halogenation of alcohols in the pres-
ence of CBr4 or CHI3 as halide sources and Ru(bpy)3Cl2 as a photocatalyst in DMF under
radiation of blue LED irradiation at room temperature (Scheme 28) [39]. Substrates bearing
various functional groups such as ethers, silyl ethers, alkene, alkynes, carbamates, and
phenols were tolerated for this reaction procedure (107a–h). In this reaction, primary alco-
hols were successfully converted to the corresponding halides with yields ranging from
77 to 98%. Reactions of secondary alcohols were smoothly conducted for the bromination
and iodination processes (107i–j), although the reaction rates were slower than those of
primary alcohols.
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Scheme 28. Conversion of alcohols to bromides or iodides using photoredox catalysis.

A possible mechanism was proposed as shown in Scheme 29. Under visible light
irradiation, the photocatalyst Ru(bpy)3

2+ 2 was changed to excited state Ru(bpy)3
2+* 28,

which underwent single-electron oxidation by CBr4 47 to generate Ru(bpy)3
3+ 29 and

electron-deficient radical •CBr3 49. The •CBr3 radical 49 then reacted with DMF 108, result-
ing in stable radical 109. Ru(bpy)3

3+ 29 was reduced by radical 109 to return Ru(bpy)3
2+ 2

and produced intermediate 110. On the other hand, intermediate 110 was also generated
through the reaction of radical 109 with CBr4 47. At this point, there are two possible ways
to afford the target product. The first way involved the reaction of alcohol with compound
110 to create intermediate 112. In the second process, the bromide anion directly attacked
intermediate 110 to generate Vilsmeier–Haack reagent 111, which then reacted with alcohol
106 to form intermediate 112. Finally, the SN2 substitution reaction of 112 with bromide
anion provided the desired product 107.
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Scheme 29. Mechanism of alcohols halogenation reaction.

Bromination of alcohols using metal-free organic photocatalyst was demonstrated by
Li and co-workers in 2019 [40]. The bromination reaction of alcohols was carried out in the
presence of CBr4 as a bromide source and 4,7-diphenyl-2,1,3-benzothiadiazole (Ph-BT-Ph)
as a photocatalyst under blue LEDs irradiation in DMF at room temperature to yield the
corresponding products (Scheme 30). Both primary and secondary alcohols were readily
converted into desired bromides in the use of Ph-BT-Ph. Reaction yields of primary alcohols
(116a–c) were somewhat greater than those of secondary alcohols (116d–e). It was noted
that formate ester was observed as a minor side product from the reaction of alcohols, and,
in the reaction of cyclododecanol, cyclododecyl formate (116f) was generated as a main
product. No photobleaching impact of photocatalyst was discovered.
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A mechanism was proposed as shown in Scheme 31. Under irradiation of visible
light, one electron was transferred from the lowest unoccupied molecular orbital (LUMO)
of the photocatalyst Ph-BT-Ph 115 to CBr4 47 to afford •CBr3 radical 49 and Br−. DMF
captured radical 49 to give intermediate 109, which subsequently delivered an electron,
resulting in iminium compound 110. The bromide ion reacted with intermediate 110 to
generate Vilsmeier–Haack reagent 118, which then interacted with alcohol 114 to produce
the desired compound 119. In another pathway, reduction of CBr4 47 by photocatalyst Ph-
BT-Ph 115 gave carbene CBr2 120. Then, reaction of carbene CBr2 120 with DMF produced
CO and (dibromomethyl) dimethylamine intermediate 121, which was also converted to
Vilsmeier–Haack reagent 118 after losing one bromide atom.
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5. Photo-Catalyzed Halogenations of Carboxylic Acids

Scheme 32 shows schematic diagrams of the comparison of the traditional methods
with visible-light-induced halogenation of carboxylic acids.
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5.1. Chlorination of Carboxylic Acids

In 2016, Glorius and co-workers reported photocatalytic Hunsdiecker-type decar-
boxylative halogenation (bromination, chlorination and iodination) of alkyl carboxylic
acids [41]. Diethyl bromomalonate, N-chlorosuccinimide (NCS), and N-iodosuccinimide
(NIS) were used as halide sources, Cs2CO3 was a promoter, and [Ir(dF(CF3)ppy)2(dtbbpy)]PF6
was a photocatalyst in chlorobenzene to perform this decarboxylative halogenation of
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carboxylic acids under irradiation of blue LEDs (lmax = 455nm) (Scheme 33). Primary,
secondary, and tertiary carboxylic acid substrates were all tolerated for this method. A
broad range of functional groups such as esters, protected amines, aryl, and silyl ethers
were successfully used in this protocol to produce target products with good to high yields
(124a–w) (25–86%). It was discovered that the reaction could also be achieved with excel-
lent product yields in ethyl acetate instead of chlorinated solvents. Besides, this reaction
could be conducted on a gram scale (5 mmol) without reducing the yield, even though a
longer reaction time was required.
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A proposed mechanism for this method is illustrated in Scheme 34. Photocatalyst
IrIII 87 was transformed to IrIII* 89 under the irradiation of visible light. Photoexcitation
of photocatalyst IrIII* 89 facilitated decarboxylation of substrate 122 to give IrII 125 and
appropriate alkyl radical 126, which captured a halide atom from the halide source 123 to
give the final product 124 and malonyl radical 127 as a byproduct. The malonyl radical
127 received one electron from IrII 125 to recover photocatalyst IrIII 87 and yielded the
malonate anion 128.
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5.2. Bromination of Carboxylic Acids 
Another decarboxylative bromination of carboxylic acids using potassium bromide 

was reported by Uchiyama and co-workers in 2020 [42]. In this protocol, a series of ste-
rically hindered primary, secondary, and tertiary carboxylic acids, bearing different 
structures such as acyclic, cyclic, caged, and bridgehead, were treated with potassium 
bromide in the presence of (diacetoxyiodo)benzene as a photocatalyst in CH2Cl2 or PhCF3 
under irradiation of a ceiling fluorescent light at room temperature to generate the cor-
responding products without rearrangement or fragmentation (Scheme 35). Substrates 
bearing nitro, ester/lactone (131d–e), amide/sulfonamide/2-nitrophenylsulfonyl 
(nosyl)/imide (131i), ketone (131b, 131f–g), and bromide/fluoride (131h) functionalities 
were tolerated for this brominating procedure. Additionally, reaction of carboxylic acid 
with the extremely radical-sensitive ether group was also successfully achieved with 87% 
yield. 

A possible mechanism was proposed as shown in Scheme 36. The hypervalent io-
dine reagent PhI(OAc)2 130 reacted with substrate 129, followed by treatment with KBr, 
to provide intermediate 133. Intermediate 133 was triggered by visible light to yield •Br 
radical and iodo-radical intermediate 134. The I-O bond in radical 134 was cleaved to 
afford acyloxy radical 135. Removal of CO2 from 135 gave cyclopropyl radical 136. At 
last, radical 136 captured the bromide source to generate the desired product 131. 
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5.2. Bromination of Carboxylic Acids

Another decarboxylative bromination of carboxylic acids using potassium bromide
was reported by Uchiyama and co-workers in 2020 [42]. In this protocol, a series of sterically
hindered primary, secondary, and tertiary carboxylic acids, bearing different structures
such as acyclic, cyclic, caged, and bridgehead, were treated with potassium bromide in
the presence of (diacetoxyiodo)benzene as a photocatalyst in CH2Cl2 or PhCF3 under
irradiation of a ceiling fluorescent light at room temperature to generate the corresponding
products without rearrangement or fragmentation (Scheme 35). Substrates bearing nitro,
ester/lactone (131d–e), amide/sulfonamide/2-nitrophenylsulfonyl (nosyl)/imide (131i),
ketone (131b, 131f–g), and bromide/fluoride (131h) functionalities were tolerated for
this brominating procedure. Additionally, reaction of carboxylic acid with the extremely
radical-sensitive ether group was also successfully achieved with 87% yield.
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Scheme 35. Decarboxylative bromination of sterically hindered carboxylic acids.

A possible mechanism was proposed as shown in Scheme 36. The hypervalent iodine
reagent PhI(OAc)2 130 reacted with substrate 129, followed by treatment with KBr, to
provide intermediate 133. Intermediate 133 was triggered by visible light to yield •Br
radical and iodo-radical intermediate 134. The I-O bond in radical 134 was cleaved to
afford acyloxy radical 135. Removal of CO2 from 135 gave cyclopropyl radical 136. At last,
radical 136 captured the bromide source to generate the desired product 131.
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Scheme 36. Mechanism of decarboxylative bromination using hypervalent iodine(III) reagents.

6. Photo-Catalyzed Halogenations of Aromatic C-H Bonds

Scheme 37 shows schematic diagrams of the comparison of the traditional methods
with visible-light-induced halogenation of aromatic C-H bonds.
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6.1. Halogenation of Aromatic C-H Bonds

In 2015, Ghosh and co-workers reported halogenation of aromatic C-H bonds utilizing
Cu-MnO as a heterogeneous catalyst [43]. In this methodology, Cu-MnO as a catalyst,
N-halogen succinimide as a halide source, and O2 as an oxidant reagent were employed
to perform the halogenation in nitrobenzene at 125 ◦C under irradiation of visible light
to provide the corresponding products (Scheme 38). It was reported that good yield and
high regioselective halogenation of aromatic C-H bonds can be well achieved with other
transition metal catalysts (Pd, Au, Ru, Co) [44–47]. However, in this study, a heteroge-
neous Cu-MnO catalyst was employed due to the cost-efficiency, ubiquity, and versatility
properties of Cu. This halogenation (chlorination, bromination, and iodination) produced
monohalogenated products selectively in moderate to high yields (32–83%). In this method,
chlorination performance was generally better than that of bromination and ionization. Us-
ing this protocol, the monohalogenated products from substrates bearing electron-donating
groups such as methyl and methoxy groups in the para position of the aromatic ring were
prepared with high yield (136d–i), whereas the monohalogenated products from substrates
bearing an electron-withdrawing group, such as the trifluoro-methyl group (139j–l), were
obtained with moderate to good yields (32–44%).
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of heterocyclic amide substrate produced the halogenated product in high yields (70–
83%) (147g–j). 

A plausible mechanism is illustrated in Scheme 41. Initially, the household light ex-
cited photocatalyst alizarin red S 146, resulting in the excited state alizarin red S* 148. 
Alizarin red S* 148 was reductively quenched by Br-, affording a •Br radical 151 and an 
alizarin red S*− 149. K2S2O8 152 then oxidized alizarin red S•− 149 to recover the ground 
state alizarin red S 146 and provided SO4•− 153. FeCl3 incorporated with substrate 145 to 
give chelated compound 150, which reacted with •Br radical to give intermediate radical 
154. Then, intermediate radical 154 was oxidized by SO4•− 153 to generate cation inter-

Scheme 38. Photocatalysis halogenation of 2-arylpyridines.

A plausible mechanism of this halogenation as proposed by Ghosh and co-workers
is shown in Scheme 39. After oxidization of CuI 140 to CuII 141 by O2, CuII 141 reacted
with 2-phenylpyridine 137 and halide ion, which was generated from NXS 138 under
irradiation of visible light to produce complex 142. A single electron transfer (SET) process
between the phenyl ring and CuII caused complex 142 to become cationic radical 143. Then,
intramolecular transfer of the halide anion to the phenyl ring of 143 yielded compound
144 and recovered CuI 140. Finally, 144 underwent another single electron transfer (SET)
process to lose a proton to give the desired product 139.
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Scheme 39. Proposed mechanism for 2-arylpyridines C-H halogenation.

In 2017, Wu and co-workers demonstrated halogenation of quinoline using a pho-
toredox process in mild conditions [48]. This halogenation was achieved in the presence
of alizarin red S as a photocatalyst, FeCl3 as a catalyst, K2S2O8 as an oxidant, and potas-
sium halides as halogen sources under irradiation of CFL in water at room temperature
(Scheme 40). Being abundant, readily obtainable, inexpensive, and non-toxic, water is
more environmentally friendly compared to other organic solvents. However, most organic
substrates are poorly soluble in neat water, and, thus, the reactions that take place in neat
water are often inefficient and generate the products with low yields. On the other hand,
organic substrates are easily soluble in organic solvents such as DMF, and organic solvents
help increase the reaction yields even though they are harmful and not environmentally
friendly. Wu’s method used water as a solvent, but could overcome the disadvantage
of aqueous solvents to still achieve high yields. Using this reaction procedure, all target
compounds were readily prepared in good to outstanding yields, but the effect of substi-
tute groups on the benzene ring of benzamides on the reaction efficiency was not clearly
understood. Bromination was conducted more effectively than iodination. Substrates with
methoxy, methyl, and halide groups on the quinoline ring yielded the desired products in
good yields (75–98%) (147a–f). Additionally, the reaction of heterocyclic amide substrate
produced the halogenated product in high yields (70–83%) (147g–j).
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Scheme 40. Halogenation of 8-aminoquinoline amide compounds.

A plausible mechanism is illustrated in Scheme 41. Initially, the household light
excited photocatalyst alizarin red S 146, resulting in the excited state alizarin red S* 148.
Alizarin red S* 148 was reductively quenched by Br-, affording a •Br radical 151 and
an alizarin red S*− 149. K2S2O8 152 then oxidized alizarin red S•− 149 to recover the
ground state alizarin red S 146 and provided SO4

•− 153. FeCl3 incorporated with substrate
145 to give chelated compound 150, which reacted with •Br radical to give intermediate
radical 154. Then, intermediate radical 154 was oxidized by SO4

•− 153 to generate cation
intermediate 155. Finally, intermediate 155 interacted with a chloride anion to give the
final product 147, while recovering FeCl3 156.
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Combining photocatalysis and biocatalysis for halogenation of aromatic compounds
was described by Gulder and co-workers in 2018 [49]. They employed vanadium-dependent
haloperoxidase (VHPO) from Acaryochloris marina (AmVHPO) and Curvularia inaequalis
(CiVHPO) as biocatalysts, flavin mononucleotide (FMN) as a photocatalyst, and KBr or KCl
as halide providers for halogenation under irradiation of blue LEDs in a mixture of MES
buffer (pH = 6.0) and MeCN to yield the corresponding products (Scheme 42). The method
was highly effective for the bromination process. Reactions of substrates with benzene
ring containing methoxy substituents provided target products in excellent yield (99%)
(158a–b). Substrates with a heterocycle ring were halogenated with moderate performance
(158d). Regarding chlorination, this method was less efficient for one- and two-substituent
derivatives (159b–c).
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In 2018, Ghosh and co-workers reported extensive application of Cu-MnO catalyst
for halogenations of anilides and quinolones [50]. They used Cu-MnO as a catalyst
and N-halosuccinimide as a halogenating source in acetonitrile under visible light ir-
radiation to achieve halogenations of anilides and quinolines with good regioselectivity
(Schemes 43 and 44). For anilide derivatives, reaction of para-substituted substrates con-
taining both electron-withdrawing and electron-donating groups, such as anilides bearing
isopropyl, tert-butyl, hexyl, and cyclohexyl groups in the amide chain and chloro, bromo,
fluoro, and trifluoromethyl groups in the phenyl ring in acetanilide, successfully produced
mono ortho-halogenated products in high yields (81–98%) (161a–h). The protocol showed
that halogenation of 8-aminoquinoline amides with a variety of functional groups was also
successful and worked well with an aryl amide group and an alkyl amide group (163a–i).
Benzamides containing both electron-donating and electron-withdrawing groups were
readily halogenated. In addition, the reactions of alkyl amides such as acetamide, cyclopen-
tanecarboxamide, and decanamide were successfully conducted to give desired products.

A possible mechanism for this halogenation was proposed as shown in Scheme 45.
For anilides, nitrogen of substrate 160 was coordinated with CuII to generate complex 164,
and then visible light caused the N–Cu bond of 164 to homolytically break to give the
nitrogen radical 165 and CuI, which was oxidized by O2 to recover CuII. The radical 165
was subsequently converted to intermediate aryl cation radical 166. Reaction of 166 with
the halide radical produced from N-halosuccinimide 138 under visible light occurred,
followed by rearomatization to afford the final product 161. For the 8-amidoquinoline
derivatives, a similar chemical mechanism was presented. This method showed regioselec-
tive addition of halide radical to the amide group at ortho- and para-positions, the most
electrophilic locations.
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6.2. Chlorination of Aromatic C-H Bonds

In 2016, Konig and co-workers proposed chlorination of arenes via reaction with
N-chlorosuccinimide (NCS) or N-chloramines in the presence of [Ru(bpy)3]Cl2 as a pho-
tocatalyst and ammonium peroxodisulfate as an oxidant under irradiation of blue LEDs
in a mixture of acetonitrile and water (4:1) (Scheme 46) [51]. In these reaction condi-
tions, substrates with electron-donating groups such as anisole (174a–b), methoxybenzene,
phenol, and acetanilide were chlorinated in good yields (92–95%) via treatment of both
N-chlorosuccinimide 11 and N-chloramines 173. However, reaction of aromatic amines
(174c), xylene, and toluene (174e) provided chlorinated products with low yields when
N-chloramines were used. Besides, electron-poor substrates such as chlorobenzene (174k)
did not provide chlorination. When compared to N-chloramines 173, the electron density
on the nitrogen atom was significantly lowered by two electron withdrawing groups in
N-chlorosuccinimide 11, and it was able to chlorinate fewer electron-dense substrates such
as xylene and toluene by NCS.
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Scheme 46. The visible-light-mediated chlorination of arenes with N-chloramines.

Selective chlorination of aryl C-H bonds using NaCl as a chlorine source, Ru(bpy)3Cl2·6H2O
as a photocatalyst, and Na2S2O8 as an oxidant under irradiation of a blue LED in a mixture
of acetonitrile and water (1:1) at room temperature and air pressure was reported by Hu and
co-workers in 2017 (Scheme 47) [52]. In this reaction, substrates bearing electron-donating
groups such as isopropyl (176a–b) and methoxy groups (176c–d) on the phenyl ring were
chlorinated in good yields (82–94%). Both para- and ortho-chlorinated products were also
readily formed. Chlorination of substrates bearing -CN, an ester, or a halogen connected
to the benzene ring via an alkyl chain worked well in good yields (89–91%) (176e–h). On
the other hand, the substrates containing only an electron-withdrawing group such as
nitrobenzene and (trifluoromethoxy)benzene were not tolerated for this method. However,
the yields from these substrates were improved when combining an electron-withdrawing
group and an election-donating group on the aryl ring.
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A proposed mechanism of this reaction was presented in Scheme 48. Under light, the
photocatalyst RuII 2 was excited to *RuII 28, which reacted with Na2S2O8 152 to generate
RuIII 29 and SO4

•−. SO4
•− directly oxidized RuII 29 to give RuIII 2. Then, RuIII 29 reacted

with Cl− to regenerate RuII 2 and form Cl+ 177. Cl+ 177 then reacted with aromatic
compounds 175 to give the chlorination products 176 through the electrophilic addition
of 178.
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Lamar and his co-workers developed chlorination of arenes and heteroarenes using
organic dyes as visible light photoredox catalysts in 2019 [53]. The reaction was carried
out via treatment with NCS as a chlorine source in the presence of methylene green as an
organic dye photocatalyst under irradiation of a white LED in acetonitrile (Scheme 49).
Under the optimized conditions, reactions of disubstituted benzene derivatives bearing
activating (electron-donating) and deactivating (electron-withdrawing) groups readily
provided the corresponding products with good to high yields (58–86%) (181b–d). Various
heteroarenes such as pyridine, pyrrole, indazole, and indole were tolerated for the reaction
(181e–h), giving chlorinated products with moderate to excellent yields (63–93%).
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Hammond and co-workers proposed a novel strategy for chlorination of arenes and 
heteroarenes using brilliant green (BG) in 2019 [54]. The chlorination was conducted via 
treatment of trichloroisocyanuric acid (TCCA) as a chlorine source in the presence of 
brilliant green (BG) under irradiation of white LEDs in acetonitrile (Scheme 51). For 
monosubstituted benzene, reactions of substrates with an electron-donating group 
smoothly afforded the corresponding products with high yields (74–92%) (192a–b), while 
the chlorination of substrates with an electron-withdrawing group such as nitrobenzene 

Scheme 49. Chlorination of arenes and heteroarenes via organic dyes.

A plausible reaction mechanism was proposed as shown in Scheme 50. Irradiation of
light allowed methylene green to transfer from ground state methylene green 180 to excited
state methylene green 182. Then, 182 led to the single-electron oxidation of NCS 11, giving
cationic radical 184 and providing reduced state methylene green 183. The radical 184
reacted with substrate 179 to generate arene chloride cation intermediate 186 and charged
succinimide 185. Capture of a proton from intermediate 186 by anion 187 yielded final
product 181. In addition, the reduced state methylene green 183 was oxidized to give
back ground state methylene green 180 and to provide succinimide anion 187 by other
oxidants (for example ammonium peroxodisulfate or oxygen gas in air) or by charged
succinimide 185.
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Scheme 50. Mechanism for chlorination of arenes and heteroarenes by N-chlorosuccinimide.

Hammond and co-workers proposed a novel strategy for chlorination of arenes and
heteroarenes using brilliant green (BG) in 2019 [54]. The chlorination was conducted
via treatment of trichloroisocyanuric acid (TCCA) as a chlorine source in the presence of
brilliant green (BG) under irradiation of white LEDs in acetonitrile (Scheme 51). For mono-
substituted benzene, reactions of substrates with an electron-donating group smoothly
afforded the corresponding products with high yields (74–92%) (192a–b), while the chlo-
rination of substrates with an electron-withdrawing group such as nitrobenzene (192c)
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and acetophenone (192d) was unsuccessful. On the other hand, reactions of naphthalene
derivatives bearing electron-withdrawing groups or electron-donating groups successfully
yielded monochlorinated products in good to high yields (63–96%) (192e–f). Various func-
tional groups including halogens, carbonyls (ketone, aldehyde and amide), phenol, ethers,
amines, nitro, nitrile, and benzylic C-Hs were tolerated for this method. Additionally,
heterocyclic compounds were successfully chlorinated using this reaction as compared
with the failure of the general reaction of TCCA using acidic conditions.
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A possible mechanism was proposed as shown in Scheme 52. Photocatalyst brilliant
green BG 190 was transferred to excited state BG* 193 by visible light, and reaction of excited
state BG* 193 with TCCA 191 caused the single-electron oxidation to generate electrophilic
chlorine species 195 and reduced state photocatalyst BG− 194. 195 reacted with substrate
189 to give chlorination product 192 via electrophilic aromatic chlorination, and to provide
196, which reacted with TCCA 191 to give 197. The reduced state photocatalyst BG− 194
was oxidized by 196 or O2 to return to its ground state BG 190.

In 2020, Lamar and co-workers reported FDA-certified food dye mediated-chlorination
of aromatic and heteroaromatic substrates [55]. The chlorination of aromatic compound
was achieved via reaction with N-chlorosaccharin (NCS) as a chloride source in the presence
of Fast Green FCF as photoredox catalyst under irradiation of white LED in acetonitrile
(Scheme 53). Reaction of substrate with at least one electron-withdrawing group produced
chlorinated product in moderate to good yields (47–70%). Electron-rich aromatics (201a)
and naphthalene derivatives (201f–g) were readily chlorinated to give monochlorinated
products in high to exceptional yields (90–94%). Pyrrole (201e), indole, indazole, and
pyridine heteroaromatic substrates were also well tolerated for this reaction procedure,
which showed considerably higher efficiency than uncatalyzed reaction processes. A
reaction using 1,3-dichloro-5,5-dimethylhydantoin (DCDMH)/Brilliant Blue FCF system
showed similar results to those of the NCS/Fast Green FCF system. However, a study of
dichlorination reactions indicated that the chlorination using a DCDMH/Brilliant Blue
FCF system was more efficient than chlorination using an NCS/Fast Green FCF system.
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xenon light (Scheme 55) [56]. For methoxy-substituted benzenes, bromination reactions 
were successfully achieved regardless of position or number of substituents. The reaction 
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Scheme 53. Visible-light-promoted chlorination of aromatics and heteroaromatics.

A plausible mechanism is shown in Scheme 54. Chlorination of brilliant blue 202
by DCDMH 203 was carried out to generate intermediate 204, which was subsequently
converted to dichlorinated sulfonphthalein 205. Compound 205 then provided the elec-
trophilic chlorine to aromatic compound 199 or heterocycle arenes to give chlorinated
product 201, and, after that, 205 became a monochlorinated sulfonphthalein species 206,
which obtained a chlorine atom from DCDMH 203 to recover dichlorinated compound 205.
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6.3. Bromination of Aromatic C-H Bonds

In 2011, Fukuzumi and co-workers developed selective bromination of aromatic
hydrocarbons and thiophenes via reaction with a solution of 50% of HBr in O2-saturated
acetonitrile in the presence of [Acr+-Mes][ClO4

−] as a photocatalyst under irradiation of a
xenon light (Scheme 55) [56]. For methoxy-substituted benzenes, bromination reactions
were successfully achieved regardless of position or number of substituents. The reaction
was highly selective, and the bromination yield was more than 99% (208a–b) without
observation of dibromo- or tribromo-derivatives during the process. Toluene derivatives
were also brominated (208c), even though the yield of bromination in the presence of
methyl-substituted groups was lower than that of methoxy-substituted benzenes (208d).
Besides, brominations of thiophenes were readily achieved with high yield (81–99%).
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A plausible mechanism of this bromination of aromatic hydrocarbons is presented in
Scheme 56. Under irradiation of light, intramolecular electron transfer caused Acr+-Mes
17 to become the excited state Acr•-Mes•+ 19, which oxidized substrate TMB 207 to give
radical cation 209. At the same time, Acr•-Mes•+ 19 reduced O2 to provide radical HO2

•

212. Reaction of 209 with Br− generated the aromatic ring radical 210, and then radical 210
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reacted with HO2
• 212 via dehydrogenated process to give brominated product 208 and

H2O2. Besides, when H2O2 interacted with HBr and substrate 207, another brominated
compound 208 and H2O were obtained.
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Scheme 56. Proposed photocatalytic reaction mechanism of bromination with hydrogen bromide.

An efficient strategy for bromination of phenols was presented by Xia and co-workers
in 2014 [57]. The reaction was carried out with CBr4 in the presence of Ru(bpy)3Cl2
(5.0 mol%) under visible light irradiation (blue LEDs, λmax = 435 nm) in acetonitrile
(Scheme 57). Both electron-withdrawing and electron-donating groups as substituents in
the benzene ring were tested. Reactions of aromatic substrates bearing TMS (trimethylsi-
lyl), TBS (tert-butyldimethylsilyl), MOM (methoxymethyl), and THP (tetrahydropyranyl)
groups (215a–e) at the para- and ortho-positions yielded 2- and 4-bromophenol in good to
outstanding yields (58–97%), respectively. TMS and methyl-protected naphthalen-2-ol were
readily employed to produce 1-bromonaphthalen-2-ol and 1-bromo-2-methoxynaphthalene
in high yields (76–98%), with great selectivity (215f–g). Additionally, reactions of Bn or
Ms-protected phenols gave target 2- and 4-bromophenol derivatives with no loss of Bn or
Ms groups in good yields (215h–i).
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Scheme 58. General mechanism for in situ generation of bromine.

Employment of microporous organic polymers (MOPs) for selective bromination of
aromatic compounds was reported by Zhang and co-workers in 2016 [58]. The bromination
was achieved via reaction with HBr as a bromine source in the presence of MOPs as
heterogeneous photocatalysts and molecular oxygen as a clean oxidant under irradiation
of visible light in acetonitrile (Scheme 59). Electron-rich aromatic compounds were readily
brominated in good to excellent yields (55–89%). In addition, benzene, naphthalene,
thiophene, and 3-methylbenzo[b]thiophene derivatives were well tolerated for this protocol
(221a–e). In this study, it was discovered that the methyl group on the aromatic ring led to
lower bromination efficiency than that of methoxy groups. Toluene was not brominated
under the same reaction conditions (221f).
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A proposed mechanism of this reaction is shown in Scheme 60. Under irradiation of
light, MOPs material 220 oxidized substrate (TMB) 219 to generate cationic radical TMB•+

222. Reaction of TMB•+ 222 with Br− anion from HBr formed TMB•-Br radical 226. Besides,
the activation of oxygen by MOPs material 220 gave its active forms of O2•− and 1O2.
These activated oxygen species oxidized TMB•-Br radical 226 to create the desired product
221, along with H2O2 227 as a byproduct. However, H2O2 227 also reacted with substrate
TMB 219 and HBr in a minor side reaction to form final product 221.

Organic dye-catalyzed bromination of arenes and heteroarenes was demonstrated by
Lamar and co-workers in 2018 [59]. In this method, arenes reacted with N-bromosuccinimide
(NBS) in the presence of erythrosine B as a photocatalyst and ammonium peroxodisulfate
as an oxidant reagent under irradiation of white LED light in acetonitrile to give the
corresponding products (Scheme 61). Erythrosine B is a xanthene dye, commonly used in
daily life as a food colorant and a painting ink, and it is difficult to degrade under visible
light without other supporting agents. In this study, the optimization reactions using
Erythrosine B were performed in 2, 6, and 24 h, which gave the target products in high
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yields. Based on these results, it can be believed that it is stable under irradiation of light
around 24 h. Under the optimized reaction conditions, naphthalene and anisole derivatives
were efficiently brominated on the aromatic ring without byproducts. Brominations of
aryl ether-containing substrates, phenol derivatives, aniline derivatives, acetanilide, and
the anesthetic lidocaine were also successfully conducted. However, arenes with electron-
withdrawing groups such as chlorobenzene and nitrobenzene did not work well. On the
other hand, reactions of N-containing heteroarenes (pyrrole, pyrazole, indole, and indazole)
successfully afforded brominated products in acceptable to good yields (37–99%).
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They proposed a possible reaction mechanism as shown in Scheme 62. Under irradia-
tion of light, ground state erythrosine B 229 was converted to excited state erythrosine B
231, which oxidized the nitrogen of N-bromosuccinimide 38 to provide cationic radical 233
and reduced state erythrosine B 232. The cationic radical 233 reacted directly with arene
substrate 228 to generate the desired product 230 and charged succinimide species 234 as a
byproduct via electrophilic aromatic bromination. The succinimide 234 or external oxidant
such as O2, (NH4)2S2O8, or H2O2 oxidized reduced state erythrosine B 232 to return to its
ground state erythrosine B 229 and generate succinimide anion 236.
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Anthraquinones were employed as photocatalysts in bromination of arenes and het-
eroarenes by König and co-workers in 2018 [60]. The bromination reaction was carried
out by using sodium bromide as a bromide source, sodium anthraquinone sulfonate (SAS)
as a photocatalyst, and TFA acid as an activator for anthraquinone under irradiation of
LEDs in a mixture of acetonitrile and water (1:1) (Scheme 63). All the methoxy arenes
were successfully brominated in high isolated yields (56–100%) (239a–c). Bromination of
substrates bearing Boc-protected amine (239e) was readily achieved in good yield (73%
yield), even though there was an acidic environment. In contrast, reactions of substrates
with an electron-withdrawing substituent provided desired products with lower yields. In
addition, heteroarenes such as indole derivative 239g and benzimidazole 239h derivatives
were also brominated in modest yields (49–63%). This procedure using SAS was also
successful to oxidize pyrazole derivatives to generate the corresponding products in high
yields. Besides, several bioactive compounds such as phenazone, tramadol, and alkaloid
strychnine were tested in this procedure and yielded the brominated products in good to
excellent yields (25–97%).

A possible mechanism of this bromination reaction was proposed as shown in Scheme 64.
TFA 245 reacted with SAS 238 to give the active state SAS-H+ 240, which was stimulated by
visible light to yield the triplet state SAS-H+* 241. SAS-H+* 241 caused oxidation of arenes
237 to produce radical cation 244, which in turn reacted with bromide anions and HO2

•

243 to afford the brominated product 239 and hydrogen peroxide. Besides, SAS-H• 242
radical was oxidized by O2 to regenerate SAS 238.
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Lei and co-workers described selective bromination at the C5 position of 8-aminoquinoline
amides in 2019 [61]. In the reaction, aminoquinoline amides reacted with CBr4 as a
bromine source in the presence of 10-phenylphenothiazine (PTH) as an organophotoredox
catalysis and K2CO3 as the base under the irradiation of blue light in acetonitrile to give the
corresponding products (Scheme 65). Both linear and cyclo alkyl-substituted carboxamides
were successfully brominated with good or moderate yields (56–83%). Reaction of dodecyl
and bulky group-substituted carboxamides produced desired products in 88% and 83%
yields, respectively (249a–b). However, this process was less effective for aryl-substituted
carboxamide substrates. Target product was obtained in 80% yield by reaction of substrate
with phenyl (249c), while brominated product was prepared in only 16% yield when the
phenyl group was replaced by para methoxy groups (249d).
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Scheme 65. Selective C5 bromination of 8-aminoquinoline amides.

A plausible mechanism of this bromination reaction proposed by Lei and co-workers
is shown in Scheme 66. Visible light excited photocatalyst PTH 248 to PTH* 250, which was
then oxidatively quenched by CBr4 to provide •CBr3 radical 252 and bromide anion. •CBr3
radical 252 reacted with substrate 247 to give radical intermediate 253, which underwent
single electron transfer with PTH*+ 251 to form radical intermediate 254 and recover ground
state photocatalyst PTH 248. Reaction of radical 254 with Br− anion produced compound
255, which was then used in the hydro atom transfer (HAT) process to prepare the final
product 249.
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Scheme 66. Proposed mechanism for transformation of 8-aminoquinoline amides to bromi-
nated product.

Bromotrichloromethane (BrCCl3)-mediated efficient and regioselective mono-bromination
of electron-rich arenes was developed by Loh and co-workers in 2021 [62]. Reaction of
arenes and heteroarene with BrCCl3 as a bromine source in the presence of RuII bipyridyl
complex photocatalyst and 2-bromopyridine under irradiation of white light (23W) and air
atmosphere gave the corresponding products (Scheme 67). Various electron-rich arenes and
heteroarenes bearing different substitute groups, such as amino, N,N′-dimethyl, hydroxyl,
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methoxy, and other heterocyclic amino groups, were successfully brominated (257a–j).
Brominations of protected anilines (257f) with acid-sensitive protective groups (BOC)
and oxidation-sensitive groups (hydroxyl) of the phenol ring (257j) were also readily
modified to provide target products. However, reactions of substrates baring various
functional groups, such as naphthalene, weak electron-withdrawing groups (EDGs), or
the combination of EDG and electron-withdrawing groups, did not work well to give
desired products.
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position. Besides, reaction of both trimethylbenzene and tert-butyl substituted arenes 
also worked well, although they have potential steric effects. It was found out that the 
acid-sensitive ester functionality (267d) was unchangeable when conducting this reaction 
method. In addition, nitrogen-containing compounds in the substrate (267e) were also 
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Scheme 67. Visible-light-induced mono-bromination of arenes with BrCCl3.

They proposed a probable mechanism for this protocol as described in Scheme 68.
Light irradiation made photocatalyst RuII 2 excited to RuII* 28. The substrate 256 was
oxidized by RuII* 28 to give radical cation 259 and RuI 258, which was then oxidized by O2
to RuII 2. The radical cation 259 was converted to cation radical 260, which in turn reacted
with BrCCl3 261 to yield intermediate 264. Intermediate 264 was deprotonated by a base to
afford the brominated product 257.
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6.4. Iodination of Aromatic C-H Bonds

In 2019, König and co-workers demonstrated oxidative iodination of arenes [63]. The
iodination was achieved via treatment of arenes with I2 as an iodine source, TFA, O2
as an oxidizing agent, and anthraquinone (AQ) as a photocatalyst under irradiation of
LED (400 nm) in benzene (Scheme 69). In the reaction, synthetic protocol allowed arenes-
bearing electron-donating groups to readily produce the desired iodinated products in
good to high yields (56–96%). When arenes9bearing methyl groups were used, they were
successfully iodinated without generation of any side reactions on the benzylic position.
Besides, reaction of both trimethylbenzene and tert-butyl substituted arenes also worked
well, although they have potential steric effects. It was found out that the acid-sensitive
ester functionality (267d) was unchangeable when conducting this reaction method. In
addition, nitrogen-containing compounds in the substrate (267e) were also stable during
the reaction, which successfully afforded target products in high yields (86–92%).
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A plausible mechanism of this iodination was presented in Scheme 70. Reaction of
photocatalyst AQ 266 with TFA 274 to receive a proton provided the protonated AQ-H+

268. Light excited AQ-H+ 268 to the excited state AQ-H+* 269, which then oxidized arenes
to give arene radical cation 271 and AQ-H• radical 270. The generated arene radical cation
271 then captured the iodine atom from iodine molecule 272 to produce iodinated product
267 and iodine radical I• 273, which recombined with another I• to give I2 272. AQ-H• 270
radical was oxidized by oxygen to regenerate AQ 266.
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7. Conclusions

A lot of breakthroughs using photocatalytic reactions have been achieved in this
decade. Current developments in the application of visible light photocatalysts for halo-
genation, including chlorination, bromination, and iodination, are described in this study.

Visible light and photocatalyst-mediated halogenation technologies have many at-
tractive advantages that make them good candidates to replace the old methods. Mild
reaction conditions are useful in multi-step synthetic chemistry and selective halogenation
at specific positions. Being able to replace hazardous or expensive chemicals is another big
advantage. In addition, the excellent functional group tolerance provides the possibility
of applying this protocol to various organic compounds including aliphatic C-H bonds,
multiple bonds, carboxylic acids, and aromatics. In particular, it can also be applied to
halogenation of natural compounds involved in various pharmaceutical applications.

The visible-light-photocatalytic halogenation technique allows the use of several
halogen sources (Br2, Cl2, CBr4, HCl, etc.) without the need for initiators or harsh reaction
conditions, thereby reducing costs and making the reactions “greener”.

On the other hand, using green solvents is also a big challenge. Organic solvents
were utilized in the majority of the reactions described in this investigation. In spite of
improving the efficiency of halogenation processes, most of them have negative impacts on
the environment and require higher solvent removal and recovery costs. Replacing organic
solvents with water would be a challenging research field in the future.

Despite considerable advancements in this procedure, there is still a lot of room for
development at this point. Nearly all photocatalysts contain iridium, ruthenium, lithium,
and transition metals (Cu, etc), or have a very complicated structure (Eoxin Y), resulting in
high prices that obstruct their commercial implementation. Besides, the removal of catalysts
from the products should be taken into account. The heterogeneous catalysts can be easily
separated through filtration. Generally, homogeneous metal catalysts are typically used
in the form of soluble salts or chelating complexes and can be easily eluted via extraction
with water. However, the criteria for product purity are becoming increasingly stringent,
particularly for medicinal items. Therefore, it would be great to come up with approaches
to employ other photocatalysts, which are more popular and cost effective.

Out of the studies on visible-light-mediated photocatalytic halogenation, those on
halogenation of C-H aliphatic compounds and halogenation of arenes are dominant because
aliphatic and aromatic halide derivatives have a wide range of applications in medicine
and industrial chemistry. In the future, there will be a need to discover additional methods
for direct halogenation from other functional groups.

In conclusion, the application of visible-light-mediated photocatalysis represents a
major advance in the field of halogenation of organic compounds, offering a significant
difference from traditional methods. Further research in the future may help overcome
the limitations of photocatalytic halogenation and expand the applications to other func-
tional groups.
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