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Abstract: We report on the use of quartz-enhanced photoacoustic spectroscopy for continuous carbon-
dioxide measurements in humid air over a period of six days. The presence of water molecules alters
the relaxation rate of the target molecules and thus the amplitude of the photoacoustic signal. Prior
to the measurements, the photoacoustic sensor system was pre-calibrated using CO2 mole fractions
in the range of 0–10−3 (0–1000 ppm) and at different relative humidities between 0% and 45%,
while assuming a model hypothesis that allowed the photoacoustic signal to be perturbed linearly
by H2O content. This calibration technique was compared against an alternative learning-based
method, where sensor data from the first two days of the six-day period were used for self-calibration.
A commercial non-dispersive infrared sensor was used as a CO2 reference sensor and provided the
benchmark for the two calibration procedures. In our case, the self-calibrated method proved to be
both more accurate and precise.

Keywords: photoacoustics; gas spectroscopy; environmental sensors; carbon dioxide; humidity;
optics; lasers; metrology; calibration

1. Introduction

The photoacoustic spectroscopy (PAS) technique is finding increasing interest as a
powerful, yet simple, trace-gas detection method [1–7]. PAS, however, is not an absolute
metrological technique, and its use requires detailed knowledge of the chemical composi-
tion of the investigated gas sample. This renders photoacoustic (PA) sensors difficult to
calibrate, and therefore commercialize, for environmental monitoring applications [8].

The PAS method is different from other optical absorption-based methods, most
notably the tunable diode laser absorption spectroscopy (TDLAS), cavity ring-down spec-
troscopy, and non-dispersive infrared absorption spectroscopy (NDIR) [9–15]. Whereas
these methods directly measure optical attenuation, PAS is based on the detection of acous-
tic waves generated by exciting ro-vibrational states of target molecules with modulated
light [16–18]. The absorbed energy translates into kinetic energy, which forms an acoustic
wave that can be detected with a pressure transducer. In a simplistic view, the generated PA
sound-wave intensity depends linearly (in the low-absorption regime) on the concentration
of the target molecule and a spectral overlap between the molecular absorption cross
section and the light spectrum. However, from a more general perspective, the generated
PA sound-wave intensity depends not only on the concentration of the target molecule,
but on the entire gas-sample composition. Other molecules may alter the relaxation kinet-
ics of the various excited ro-vibrational modes [19,20], causing a change in the PA signal
strength. In this way, the measured PA signal is gas-matrix dependent, meaning that
PA-based trace-gas sensors, while they can be extremely sensitive, can quickly become
inaccurate without adequate calibration of the necessary gas-matrix corrections. Most no-
tably, and highly relevant for real-life adaptation of PA sensors, the presence of water vapor
in a gas sample acts as an enzyme of the relaxation process, and thereby enhances, or in
fewer cases diminishes, the generated sound wave. In practice, this entails that absolute
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environmental gas-concentration measurements can only be achieved upon correction of
the sample water content.

Multiple strategies and methods have so far been implemented for humidity correction
of PA trace-gas sensors [21–29]. Here, we develop a calibration framework based on a
simple learning-based method for quantifying the influence of humidity on photoacoustic
carbon-dioxide concentration measurements. Using this approach, the model is only
required to be locally accurate (within the observed values), which is a highly relaxed
assumption. We compare the long-term performance of a commercial NDIR CO2 sensor
with that of a quartz-enhanced photoacoustic (QEPAS) module (for details on the QEPAS
technique, see, e.g., [30–32]) resonantly pumped by a pulsed optical parametric oscillator
(OPO) having an emission wavelength of 4.32 µm. We find very good agreement with the
NDIR sensor when calibrated using atmospheric measurement data as training data for
the calibration algorithm.

2. Experimental Setup

The experimental setup, sketched in Figure 1, includes a mid-infrared (MIR) pulsed
optical parametric oscillator (OPO), a QEPAS sensor module (ADM01, Thorlabs, Dachau,
Germany), an NDIR sensor (T6613, Telaire, Telaire Pforzheim, Germany), optical detectors
for power measurement, humidity/temperature/pressure sensors, a mass-flow control
system, and a Raspberry PI microprocessor for data acquisition.

BPFMIR OPO
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BS 
QEPAS

MFC

MFC

MFC

CO2

N2

Air

Gas Outlet
NDIR

Pressure
Humidity

Detector
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Figure 1. Block diagram of the main parts of the experimental setup. QEPAS: Quartz-enhanced
PAS. MIR OPO: Mid-infrared (MIR) pulsed optical parametric oscillator. MFC: Mass-flow controller.
BPF: Bandpass filter. BS: Beamsplitter. Two detectors (black: fast detector; red: thermal detector) are
monitoring the optical power.

The light source is based on an actively Q-switched nanosecond Nd:YAG pump laser
(BrightSolution, Anchorage, AK, USA), which emits pulses with a duration of 15 ns at
a repetition rate of 12.457 kHz and a center wavelength of 1064 nm. The near-infrared
pulses are focused into a 40 mm long fan-out structured periodically poled lithium niobate
crystal (HC Photonics, HsinChu City, Taiwan) placed inside a 55 mm long linear cavity
with a waist of approximately 150 µm at the cavity midpoint. The two cavity mirrors are
characterized by having radius-of-curvature of 100 mm and a high reflectance (R > 0.99) in
the spectral region from 1350 nm to 1700 nm. Exploiting the resonant signal enhancement
in this wavelength range, a continuous chirp of the nonlinear crystal facilitates efficient
generation of MIR pulsed light from 2.8 µm to 4.5 µm. In this work, the MIR wavelength is
fixed to 4.32 µm and with 15 mW of mean optical output power, matching ro-vibrational
lines in the P-branch of the asymmetric stretchband of CO2. More details on the MIR OPO
can be found in [33].
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The QEPAS module contains a quartz tuning fork (QTF) with an eigenfrequency of
f0 = 12,457 Hz and a quality factor of∼5300± 50 at 1 atm [34]. The QTF is piezo-electrically
active in the mechanical mode for which the two prongs oscillate 180 degrees out of phase
(asymmetrical stretching mode), and is therefore sensitive to a pressure wave originat-
ing from in between the two prongs and less sensitive to external sound waves which
makes the two prongs oscillate in-phase [30,31]. Acoustic coupling is further improved
by two microresonator tubes each having a length of 12.4 mm [1]. In- and outcoupling
of the mid-infrared light through the module happens through two BaF2 windows with
a combined transmittance of ∼0.9. QEPAS is a powerful technique and has shown the
capability to monitor gas concentrations at the part per billion or even part per trillion
levels [30,31,35–38].

The gas-flow control is realized using a triplet of Brooks 0254 mass-flow controllers
(MFCs). Two MFCs are used for setting the in-flow rate of N2 and 1000-ppm CO2 in an N2
matrix. The N2-CO2 gas flow is combined with a valve-controlled inlet that enables suction
of laboratory air into the tube system using a mini vacuum pump with variable flow rate.
The combined gas flow is led through the third MFC, which is used to monitor and log the
total gas flow, and on to the QEPAS module and the NDIR sensor.

Data processing is enabled by two lock-in amplifiers receiving the electrical local
oscillator signal from the active laser Q-switch and with integration times of 300 µs. The first
lock-in amplifier measures the incident optical power just before the QEPAS module,
and the second lock-in amplifier demodulates the PA output signal of the QEPAS’ in-build
transimpedance amplifier using a 1-f configuration (i.e., amplitude modulation) [39,40].
The output from the lock-in amplifiers are digitized using a 10-bit ADC (MCP3008) and
logged using a Raspberry PI 3 module (RPI). The same RPI simultaneously logs data
from the NDIR sensor and a humidity–temperature–pressure sensor (BME280, Adafruit,
New York, NY, USA).

3. Theory

A PA sensor can in the simple case be mathematically modeled by assuming a PA
signal that depends linearly on both the target-molecule concentration and the optical
power used for probing the gas sample. However, for gas samples with a non-zero water-
vapor concentration of cH2O, the PA signal can be significantly altered. Considering the PA
measurement of CO2 concentration, the PA voltage signal, UPA, may therefore be described
by a relation of the form

UPA = α1cCO2

(
1 + Polyn>0(cH2O)

)
P, (1)

wherein P is the optical power, α1 is related to the optical absorption of CO2 at the employed
wavelength, and Polyn>0(cH2O) is a constant-excluding polynomial with respect to cH2O.
To test and compare our calibration method with related published work, the PA signal is
hypothesized to be perturbed linearly by water content [24,25], i.e., Polyn(cH2O) = αAHcH2O.
This reforms Equation (1) to

ŪPA = α1cCO2

(
1 + αAHcH2O

)
. (2)

The power-normalized PA signal is defined as ŪPA ≡ UPA/UP, whereof UP is the
power-logged voltage signal. Using UP, rather than the actual optical power, results in an
arbitrary scaling of α1 of α1 → αPα1, where αP = (∂P/∂UP) is the power-to-voltage linear
coefficient of the power meter.
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As outlined in Section 2, our experimental setup contains an NDIR CO2-sensor placed
in series with the PA module. The NDIR module is based on differential optical absorption
at λ ≈ 4.3 µm, and is practically unaffected by water concentration [15]. The NDIR output
is highly linear with respect to CO2 concentration, i.e., cCO2∼aNDIRUNDIR + bNDIR, as is
confirmed below. This allows the NDIR module to function as a CO2 reference. Insertion of
the linear NDIR response into Equation (2) yields the relationship between PA output and
NDIR output, given as

ŪPA = a0 + a1UNDIR + a2UNDIRcH2O + a3cH2O, (3)

where the coefficients a0 = bNDIRα1, a1 = aNDIRα1, a2 = aNDIRα1αAH, and a3 = bNDIRα1αAH.
Equation (3) provides a model function with which the PA sensor can be calibrated

with reference to the NDIR sensor for varying carbon-dioxide and water concentrations.
The water-vapor concentration is computed based on the BME280 output (relative humidity,
pressure, and temperature), and is expressed as [41]

cH2O =
PxH2O

RT
=

611.6 Pa
RT

exp
[

17.48(T − 273.15 K)

T − 32.42 K

]
RH, (4)

where xH2O is the molar fraction of water vapor, R ≡ 8.314462618 J mol−1 K−1, RH is the
relative humidity expressed as a fractional number between 0 and 1, T is the absolute
temperature measured in kelvin, and P is the pressure in pascal. The calculated water-
vapor concentration is associated with a standard uncertainty calculated using the laws
of error propagation while using the rated uncertainties of the sensor of u(T) = 1 K,
u(RH) = 3%, and u(P) = 100 Pa.

4. Experiments
4.1. Calibration of Carbon-Dioxide Sensors (Dry)

We first assess the CO2-response of the two sensors in dry conditions, i.e., xH2O = 0.
To this end, the lab-air valve is closed off, and the MFCs are used to achieve different
CO2 concentrations (in N2). The CO2 concentration is varied from 0 to 10−3 in steps of
∼125 ppm while preserving a constant flow rate of 80 mL/min. For each CO2-level,
measurements are conducted for 200 s resulting in 100 and 50 measurement points for
the QEPAS and NDIR sensors, respectively. With the expectancy of a linear relation-
ship between CO2 concentration and output signal, a linear regression is performed on
the flow- and power-normalized data, see Figure 2. The NDIR sensor calibration curve
Figure 2a, which displays linear behaviour over the entire measurement range, is given
by UNDIR = βNDIR + αNDIRcCO2 = 440.73 mV + 0.0324 mV m3 mol−1cCO2 with param-
eter uncertainties of u(αNDIR) = 5 × 10−5 mV m3 mol−1, u(βNDIR) = 1.09 mV and a
correlation of r(αNDIR, βNDIR) = −0.85. The QEPAS sensor Figure 2b is seen to be af-
fected by saturation effects at high CO2 concentration [42]. As a result, only points for
which xCO2 < 600 ppm are included in the linear regression analysis. The resulting fit
yields ŪPA = βPA + αPAcCO2 = 0.0042 + 1.2× 10−5 m3 mol−1cCO2 with parameter stan-
dard uncertainties of u(αPA) = 2 × 10−8 m3 mol−1, u(βPA) = 0.0003 and correlation
r(αPA, βPA) = −0.83.
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Figure 2. Calibration of carbon-dioxide sensor response in dry nitrogen gas samples. (a) NDIR sensor
response, and (b) power-normalized QEPAS sensor response. The error bars (y-direction) identify the
1σ variation of datapoints around the mean value of each dataset. During the calibration procedure,
the pressure and temperature were P = (1012± 1) hPa and T = (22.8± 0.1) ◦C, respectively.

4.2. Calibration of Carbon-Dioxide Sensors (Wet)

With the purpose of using the PA sensor for atmospheric CO2 monitoring, it is now
calibrated to correct for humidity content in the sample gas. This is achieved by using the
water-independent, and highly linear, response of the NDIR sensor, as a CO2 reference.
Two approaches for calibration are attempted and assessed: (i) the PA response is measured
for a range of CO2 and humidity levels and the data are fitted to Equation (3) using
appropriate constraints, and (ii) the natural variations in atmospheric CO2 and water
content over a period of three days are used as a basis for establishing a relationship
between PA signal, humidity level, and CO2 concentration, in a learning-like fashion
(see Section 4.3).

Our statistical analysis is based on a least-squares approach, described in [43], which
is in compliance with the “Guide to the Expression of Uncertainty in Measurement”
(GUM) [44]. In this framework, each measurand (Ū(i)

PA, U(i)
NDIR, c(i)H2O) is considered a statis-

tical estimate (with accompanying uncertainty) of the “true” values (ζ(i)PA, ζ
(i)
NDIR, ζ

(i)
H2O).

Each set of measurands are linked through implicit constraints, which, according to
Equation (3), are given by

a0 + a1ζ
(i)
NDIR + a2ζ

(i)
NDIRζ

(i)
H2O + a3ζ

(i)
H2O − ζ

(i)
PA = 0, ∀i. (5)

The general least-squares algorithm provides values for the model parameters, a0−3,
refined estimates of the measurands (ζ(i)PA, ζ

(i)
NDIR, ζ

(i)
H2O), and the covariance matrix of all

determined quantities.
Figure 3a demonstrates how the presence of water molecules enhances the PA signal

for a specific CO2-level (quantified by the NDIR sensor response). The data are constituted
by four different data series differentiated by the approximate mole fraction of water
of 0 (blue), 2× 10−3 (green), 4× 10−3 (orange), and atmospheric levels of 10× 10−3 to
12 × 10−3 (red). Linear trendlines are added to the plot for the three dataseries (with
sub-atmospheric humidity levels) to help visualization of the slightly increased slope as a
function of humidity level, and the error bars signify standard uncertainties found through
repeated measurements.

Running the general least-squares algorithm using the data shown in Figure 3a, pro-
vides parameter estimates of a0, a1, a2 and a3 with which the model residuals (Ū(i)

PA − ζ
(i)
PA)

provides a basis for a validity check using a χ2-test. Figure 3b shows the normalized devia-
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tions (residuals) between the PA measurands Ū(i)
PA and the refined estimates ζ

(i)
PA defined

as [43]

di =
Ū(i)

PA − ζ
(i)
PA

u(Ū(i)
PA − ζ

(i)
PA)

, (6)

and further displays the χ2-value obtained in the fit. With a value of χ2 = 40.3 > 30 = ν,
where ν is the degrees of freedom, Pr(χ2(30) > 40.3) = 0.098, meaning that the model
(null) hypothesis is rejected at a 10%-significance level, but can not be discarded at a 5%-
significance level. However, the observed χ2-value indicates that the model might be too
simple to describe the physics at hand in both dry and wet conditions simultaneously. This
conclusion is strengthened by the normalized deviations, a considerable amount of which
lie outside (or close to the boundaries) of the range [−2; 2].
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Figure 3. Calibration of a PA sensor of CO2 in humid gas samples. (a) acquired PA signal for a wide
range of CO2- and absolute humidity levels, demonstrating the PA water-enhancement effect. The er-
ror bars represent 1σ standard deviations for each measurement point; (b) the normalized deviations,
di for each of the 34 measurand sets, acquired using the generalized least-squares algorithm [43].

4.3. Prolonged Atmospheric Carbon-Dioxide Measurements

We now assess the PA sensor with respect to stability in performance over prolonged
periods of multiple days. For a given set of measurands (ŪPA, cH2O), we predict a CO2-
concentration of

cCO2 = bNDIR + aNDIR
ŪPA − (a0 + a3cH2O)

a1 + a2cH2O
. (7)

The combined model and measurand uncertainty of this prediction is quantified by
the variance

u2(cCO2) = dTΣd, (8)

where d is a column vector containing the partial derivatives of cCO2 with respect to
parameters a0−3, bNDIR, aNDIR, and the measurands ŪPA and cH2O, and Σ is the associated
eight-dimensional covariance matrix of those same quantities.

Figure 4 illustrates our 6-day long CO2 measurements using both the NDIR sensor
and the estimated concentration levels based on three different methods of calculation.
Figure 4b compares the NDIR signal with a CO2-measured PA signal uncorrected for the
atmospheric water content visualized in Figure 4a for reference. In this case, the CO2
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concentration is calculated based on a “dry” calibration (Figure 2), and thus fails to take
into account the enhancing effect of the water molecules. As a result, the deduced CO2 data
shows strong correlation to the humidity data, and significantly overestimates the CO2
content of the gas. Conversely, Figure 4c shows the estimated CO2 concentration based
on the calibration procedure described in Section 4.2. In this situation, the bias offset of
the PA-calculated CO2-level is largely removed; however, the water content is still visually
observable, indicating that the humidity is not ideally compensated with the computed
calibration parameters. Finally, Figure 4d shows the case where the system is allowed to
self-calibrate based on “historical” data. The grey area marks the training period, in which
data from the three sensors are used to build a model in the same way as outlined in
Section 4.2. Using this latter approach, the model in Equation (2) is only required to be
locally accurate (within the observed values of CO2 and H2O), which is a highly relaxed
assumption. As a result, the PA-calculated CO2 level succeeds in predicting the same CO2
level as the reference NDIR sensor. Different sets of calibration parameters for different
levels of humidity could in principle be determined and used to calibrate the PA sensor for
all humidity values.
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Figure 4. Carbon-dioxide monitoring over six days in atmospheric humidity levels. (a) measured
absolute humidity; (b) CO2 level deduced from PA signal, uncorrected for the atmospheric water
content; (c) CO2 level deduced from PA signal, corrected for the atmospheric water content using
parameters from the calibration (Figure 3); (d) CO2 level deduced from PA signal, corrected for the
atmospheric water content using a model based on “historical” training data from the shaded time
period. The shaded regions around each curve represent the calculated 1σ confidence region for each
time series.

5. Discussion

Measurements of gas concentrations using PAS becomes highly nontrivial in wet
(water-containing) gas mixtures. Although water molecules do not, necessarily, directly
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contribute through optical absorption, they influence the relaxation mechanisms of other
absorbing molecules in the mixture. This effect is apparent from Figure 4b, in which the
PA signal is seen to be enhanced by more than a factor of 1.5 as a result of the humidity
levels (xH2O ∼ 10× 10−3) displayed above in Figure 4a. This enhancement has previously
been demonstrated to be both gas- and wavelength dependent, but, perhaps more crit-
ically, the enhancement factor does not necessarily seem to be a simple linear function
of absolute humidity (see fx [28] for a study on CO). This lag of linearity can also be
found in our data for CO2, e.g., by comparing data at time stamps t = 15 h and t = 60 h,
for which we estimate water-enhancement factors, αAH of (0.0015± 0.0002) m3 mol−1

and (0.0008± 0.0002) m3 mol−1, respectively. It is this inconsistency that results in the
inaccurate correction performed in Figure 4c, and which ultimately means that the model
hypothesis must be discarded as being too simple to describe the physics at hand.

To investigate if the established setup could still be used for CO2 monitoring, we
attempted to base the calibration on “historical” data from the PA sensor, the humidity
sensor, and the NDIR sensor as a CO2 reference. After two days of model training in
normal atmospheric conditions, our PA sensor proved to be capable of estimating the same
CO2 level (within the uncertainties) as the reference NDIR sensor throughout a period of
four days. This also included the final tests of daylong human interference seen towards
the end of the considered time span that lasted from the 5th to the 10th of November 2020.

Our analysis here involved the use of a cheap miniature sensor for monitoring the
atmospheric humidity. Such sensors are typically fairly inaccurate from an absolute per-
spective, resulting in the large confidence interval in Figure 4c, and a smaller relative
uncertainty leading to the smaller confidence interval in Figure 4d. However, even in
the latter case, the humidity uncertainty is still the largest contribution in the final uncer-
tainty budget of the photoacoustically-based CO2 measurements. This strongly underlines
that PA-based concentration measurements in real-life monitoring conditions necessar-
ily involve a highly sensitive measurement of the absolute humidity level. A sensitive
humidity measurement can either be done using the PA effect [25], or, perhaps more conve-
niently, by embedding small state-of-the-art humidity sensors (see e.g., [45,46]) into the PA
gas chamber.

6. Conclusions

In this work, we presented a pilot study of quartz-enhanced photoacoustic carbon-
dioxide measurements in air of varying humidity. With our general least-squares statistical
framework, we tested a model function for which the water-concentration was assumed to
perturb the photoacoustic signal to first order. However, the calibration, and subsequent
prolonged carbon-dioxide measurements, resulted in a rejection of the model hypothesis.
Instead, the photoacoustic sensor was calibrated using atmospheric measurement data
from the first two days, of a six-day period, as training data. Upon this calibration,
the photoacoustic sensor was found to provide carbon-dioxide estimates that were in
agreement with the reference non-dispersive infrared module over the entire test period.
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Abbreviations
The following abbreviations are used in this manuscript:

AH Absolute humidity
MFC Mass-flow controller
MIR Midinfrared
NDIR Non-dispersive infrared
OPO Optical parametric oscillator
PA Photoacoustic
PAS Photoacoustic spectroscopy
QEPAS Quartz-enhanced photoacoustic spectroscopy
QTF Quartz tuning fork
TDLAS Tunable diode Laser absorption spectroscopy
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