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Abstract: Thiazole, a five-membered heteroaromatic ring, is an important scaffold of a large number
of synthetic compounds. Its diverse pharmacological activity is reflected in many clinically approved
thiazole-containing molecules, with an extensive range of biological activities, such as antibacterial,
antifungal, antiviral, antihelmintic, antitumor, and anti-inflammatory effects. Due to its significance
in the field of medicinal chemistry, numerous biologically active thiazole and bisthiazole deriva-
tives have been reported in the scientific literature. The current review provides an overview of
different methods for the synthesis of thiazole and bisthiazole derivatives and describes various com-
pounds bearing a thiazole and bisthiazole moiety possessing antibacterial, antifungal, antiprotozoal,
and antitumor activity, encouraging further research on the discovery of thiazole-containing drugs.
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1. Introduction

Nitrogen-containing heterocyclic compounds play an important role in the drug dis-
covery process, as approximately 75% of FDA (Food and Drug Administration)-approved
small-molecule drugs contain one or more nitrogen-based heterocycles [1]. Thiazole, or 1,3-
thiazole, belongs to the class of azoles and contains one sulfur atom and one nitrogen atom
at positions 1 and 3. Its diverse biological activity is reflected in a large number of clinically
approved thiazole-containing compounds with an extensive range of pharmacological
activities. Most of these compounds are 2,4-disubstituted thiazole derivatives, and only a
few are 2,5-disubstituted or 2,4,5-trisubstituted thiazoles [2].

Several drugs such as sulfathiazole; aztreonam; numerous cephems (ceftaroline, cefo-
tiam, ceftibuten, cefixime, ceftriaxone, cefotaxime, ceftazidime, cefmenoxime, ceftizoxime,
cefepime, cefdinir) with antibacterial effects; pramipexole with antiparkinsonian activity;
edoxaban with antithrombotic effects; isavuconazole with antifungal effects; famotidine
and nizatidine with antiulcer activity; meloxicam with anti-inflammatory effects; tiazofu-
rin, dabrafenib, dasatinib, ixabepilone, and epothilone with antitumor effects; mirabegron
as a β3-adrenergic receptor agonist; nitazoxanide and thiabendazole with antiparasitic
effects; and febuxostat with antigout activity contain one thiazole moiety in the structure
(Figure 1) [2–4].
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Figure 1. Clinical drugs bearing one thiazole ring. 

Compounds bearing two thiazole rings, such as the antitumor drug bleomycin, the 

antiretroviral agent ritonavir, the pharmacokinetic enhancer for HIV drugs cobicistat, and 

the antibacterial agent cefditoren, have been authorized on  the pharmaceutical market 

(Figure 2) [2,5].   

 

Figure 2. Clinical drugs bearing two thiazole rings. 
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Compounds bearing two thiazole rings, such as the antitumor drug bleomycin, the
antiretroviral agent ritonavir, the pharmacokinetic enhancer for HIV drugs cobicistat,
and the antibacterial agent cefditoren, have been authorized on the pharmaceutical market
(Figure 2) [2,5].

Figure 2. Clinical drugs bearing two thiazole rings.

The high medicinal significance of this scaffold has attracted considerable attention
from many researchers and encouraged the design and synthesis of numerous thiazole-
and bisthiazole-containing compounds with diverse pharmacological activities, such as
antibacterial [6], antifungal [7], antiprotozoal [8], antiviral [9,10], anticancer [11], anti-
inflammatory [12–16], antioxidant [17], analgesic [18], anticonvulsant [19], antidiabetic [20],
and antihypertensive [21] activities. Furthermore, thiazole compounds exhibiting a promis-
ing biological potential for the treatment of Alzheimer’s disease [22,23] and metabolic
syndrome [24] have been reported in the scientific literature.

Nowadays, research in the field of antimicrobial drug design is focused on the dis-
covery of novel targets and chemical entities that possess antibacterial activity in order to
overcome the rapid development of drug resistance. The few antibiotics that have been
recently approved are structurally related to older drugs, being susceptible to the same
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mechanisms of resistance [25]. Tropical diseases such as Chagas disease, leishmaniasis,
and malaria occur especially in underdeveloped countries, around 266 million cases being
reported globally [26]. At the present time, only a small number of drugs are available
on the pharmaceutical market for the treatment of protozoan infections [27]. Cancer re-
mains one of the leading causes of mortality worldwide. The lack of selectivity and target
specificity, as well as the presence of toxicity and resistance, is an inadequate feature of
the currently available anticancer drug therapy [3]. Considering all the above, there is an
urgent need for continuous progress in the design and development of anti-infective and
antitumor agents.

The current review systematically presents different methods for the synthesis of
thiazole and bisthiazole derivatives. Moreover, various reports on the antimicrobial,
antiprotozoal, and antitumor activities of thiazoles and bisthiazoles, mostly published
within the past 10 years, are discussed, providing reference for further research regarding
the development of new biologically active chemical entities.

2. Chemistry of Thiazole

Free thiazole is a pale-yellow flammable liquid, with a pyridine-like odor and a boiling
point in the range of 116–118 ◦C. It has an aromatic character, due to the delocalization of
a lone pair of electrons from the sulfur atom, resulting in a 6π-electron system. Also, its
high aromaticity is highlighted by proton nuclear magnetic resonance, the chemical shift
values of each proton within the thiazole ring being situated between 7.27 and 8.77 ppm.
The resonance structures of thiazole are illustrated in Figure 3 [28,29].

Molecules 2021, 26, x FOR PEER REVIEW  3  of  26 
 

 

overcome the rapid development of drug resistance. The few antibiotics that have been 

recently approved are structurally related to older drugs, being susceptible to the same 

mechanisms of resistance [25]. Tropical diseases such as Chagas disease,  leishmaniasis, 

and malaria occur especially in underdeveloped countries, around 266 million cases being 

reported globally [26]. At the present time, only a small number of drugs are available on 

the pharmaceutical market for the treatment of protozoan infections [27]. Cancer remains 

one of the leading causes of mortality worldwide. The lack of selectivity and target speci‐

ficity, as well as the presence of toxicity and resistance,  is an  inadequate feature of the 

currently available anticancer drug therapy [3]. Considering all the above, there is an ur‐

gent need for continuous progress in the design and development of anti‐infective and 

antitumor agents. 

The current review systematically presents different methods for the synthesis of thi‐

azole and bisthiazole derivatives. Moreover, various reports on the antimicrobial, antipro‐

tozoal, and antitumor activities of thiazoles and bisthiazoles, mostly published within the 

past 10 years, are discussed, providing reference for further research regarding the devel‐

opment of new biologically active chemical entities. 

2. Chemistry of Thiazole 

Free thiazole is a pale‐yellow flammable liquid, with a pyridine‐like odor and a boil‐

ing point in the range of 116‐118 °C. It has an aromatic character, due to the delocalization 

of a lone pair of electrons from the sulfur atom, resulting in a 6π‐electron system. Also, its 

high aromaticity is highlighted by proton nuclear magnetic resonance, the chemical shift 

values of each proton within the thiazole ring being situated between 7.27 and 8.77 ppm. 

The resonance structures of thiazole are illustrated in Figure 3 [28,29]. 

N

S

N

S

N

S

N

S

N

S

 

Figure 3. The resonance structures of thiazole. 

The calculated π‐electron density revealed  that  the electrophilic substitution  takes 

place preferentially at the C‐5 position, followed by the C4‐position (Figure 4). The nucle‐

ophilic substitution occurs at the C‐2 position [30]. 

 

Figure 4. Calculated π‐electron density of thiazole. 

The acidity given by the presence of the three hydrogen atoms decreases in the order 

H2 >> H5 > H4 [4].   

3. Synthesis of Thiazole Derivatives 

Hantzsch synthesis is the oldest and most widely known method for the synthesis of 

a thiazole ring. The method consists of a cyclization reaction between alpha‐halocarbonyl 

compounds and various reactants containing the N‐C‐S fragment. Examples of such com‐

pounds include thiourea, thioamides, thiosemicarbazides, and thiosemicarbazones [31].   

The  condensation  of  thioamides with  various  alpha‐halocarbonyl  compounds  is 

commonly used. Many thiazoles with alkyl, aryl, or heteroaryl substituents at position 2, 

4, or 5 can be obtained through this reaction. The reaction mechanism consists of the nu‐

Figure 3. The resonance structures of thiazole.

The calculated π-electron density revealed that the electrophilic substitution takes
place preferentially at the C-5 position, followed by the C4-position (Figure 4). The nucle-
ophilic substitution occurs at the C-2 position [30].

Figure 4. Calculated π-electron density of thiazole.

The acidity given by the presence of the three hydrogen atoms decreases in the order
H2 >> H5 > H4 [4].

3. Synthesis of Thiazole Derivatives

Hantzsch synthesis is the oldest and most widely known method for the synthesis of
a thiazole ring. The method consists of a cyclization reaction between alpha-halocarbonyl
compounds and various reactants containing the N-C-S fragment. Examples of such com-
pounds include thiourea, thioamides, thiosemicarbazides, and thiosemicarbazones [31].

The condensation of thioamides with various alpha-halocarbonyl compounds is com-
monly used. Many thiazoles with alkyl, aryl, or heteroaryl substituents at position 2, 4, or 5
can be obtained through this reaction. The reaction mechanism consists of the nucleophilic
attack of the thioamide sulfur atom on the alpha carbon of the alpha-halocarbonyl, with
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the formation of an intermediate compound, which by subsequent dehydration leads to
the corresponding thiazole (Scheme 1).
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Scheme 1. Reaction mechanism of Hantzsch thiazole synthesis.

By the reaction of thiourea with alpha-halocarbonyl compounds, monosubstituted
or disubstituted 2-aminothiazoles can be obtained, while by using other compounds
containing thioamide moieties, such as thiosemicarbazides and thiosemicarbazones, 2-
hydrazinothiazole and thiazol-2-yl-hydrazone derivatives can be synthesized in good
yields. The condensation reactions occur through imino thioether and hydroxythiazoline
intermediates, which are sometimes stable and isolable. The alpha-halocarbonyl component
may be represented by alpha-haloketones and alpha-haloesters [32,33].

Another method of obtaining thiazoles is represented by Gabriel synthesis, which
consists of the cyclization reaction of acylaminocarbonyl compounds and a stoichiometric
amount of phosphorus pentasulfide at 170 ◦C (Scheme 2) [28,34].
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Scheme 2. Gabriel thiazole synthesis.

Cook–Heilbron synthesis leads to 2,4-disubstituted 5-aminothiazole derivatives by
the reaction of an α-aminonitrile and dithioacids or esters of dithioacids, carbon disulfide,
carbon oxysulfide, or isothiocyanates under mild reaction conditions (Scheme 3). When
carbon disulfide is used in the reaction, 5-amino-2-mercaptothiazole compounds are formed
(Scheme 4) [32,33].
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Scheme 4. Cook–Heilbron synthesis of 5-amino-2-mercaptothiazoles.

Lingaraju et al. [35] efficiently synthesized a series of 4,5-disubstituted thiazole deriva-
tives from active methylene isocyanides and methyl carbodithioates (Scheme 5). The reac-
tion took place in the presence of a strong base, sodium hydride, and dimethylformamide
(DMF) as a solvent. The short reaction time (10–30 min) and obtaining sufficiently pure
final products in good yields are the main advantages of this method. Moreover, this
procedure made it possible to obtain 2-unsubstituted thiazoles, which cannot be easily
synthesized through other approaches such as Hantzsch or Cook–Heilbron synthesis.
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The proposed mechanism is illustrated in Scheme 6. Carbanion 2, formed by re-
moving a proton from the active methylene group of compound 1, in the presence of
sodium hydride, attacks dithioester 3, generating an unstable intermediate 4. Subsequently,
in the presence of sodium hydride, carbanion 5 is obtained, being in equilibrium with the
enethiolate anion 6. In the end, thiazole nucleus 7 is formed following the intramolecular
cyclization of compound 6.
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Castagnolo et al. [36] reported the synthesis of 2-aminothiazoles by a domino alkylation-
cyclization reaction starting from various substituted propargyl bromides and thiourea
derivatives. The synthesis was carried out in the presence of a stoichiometric amount of
potassium carbonate and DMF as a solvent, at a temperature of 130 ◦C, under microwave
irradiation, for 10 min (two cycles of 5 min each), as illustrated in Scheme 7.

Scheme 7. Synthesis of 2-aminothiazoles from substituted propargyl bromide and thioureas.

This method is attractive due to the high availability of alkynes, which are an impor-
tant alternative to α-haloketones used in Hantzsch synthesis, the main disadvantage of the
latter being the strongly irritating character.

The proposed reaction mechanism is shown in Scheme 8. The initial step consists of the
alkylation of thiourea or substituted thioureas, leading to the formation of intermediate 8.
Subsequently, compound 8 undergoes a 5-exo-dig cyclization reaction with the generation
of intermediate 9, which is transformed through an isomerization reaction into the final
reaction product, 2-aminothiazole 10.
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Tang et al. [37] developed a method of obtaining thiazoles by a copper-catalyzed cy-
clization reaction starting from oximes, anhydrides, and potassium thiocyanate (Scheme 9).
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To optimize reaction conditions, the authors examined various solvents, such as 1,2-
dichloroethane, 1,4-dioxane, acetonitrile and toluene, different copper salts (such as CuI,
CuCl, CuBr, CuBr2, Cu(OAc)2, and Cu(OTf)2 and their replacement with other metal salts
such as Fe(OAc)2, FeBr2, FeBr3, FeCl3, PdCl2, and AgCl), and different sulfur sources such
as KSCN, NaSCN, NH4SCN, S, and Na2S.
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Scheme 9. Synthesis of thiazoles from oximes, anhydrides, and KSCN.

Good to excellent yields (up to 85%) were obtained when toluene was used as a
solvent, copper(I) iodide as a catalyst, and two equivalents of KSCN as a sulfur source.
The reaction took place at a temperature of 120 ◦C, under a nitrogen atmosphere, for 24 h.

Wang et al. [38] obtained a series of thiazole derivatives starting from aldehydes,
amines, and element sulfur through an oxidation reaction catalyzed by copper salts in
the presence of molecular oxygen (Scheme 10). The main advantages of this method
are the high availability of the starting materials, the low-cost catalyst, and the use of a
green oxidant.
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Scheme 10. Synthesis of thiazoles from aldehydes, amines, and element sulfur.

Chen et al. [39] successfully synthesized 4-substituted 2-aminothiazoles and 4-substituted
5-thiocyano-2-aminothiazoles starting from substituted vinyl azides and potassium thio-
cyanate under different reaction conditions. They found that the use of palladium(II)
acetate as a catalyst and n-propanol as a solvent led to 4-substituted 2-aminothiazoles, after
a reaction time of 12 h, at 80 ◦C, while in the presence of iron(III) bromide as a catalyst
and acetonitrile as a solvent, 4-substituted 5-thiocyano-2-aminothiazoles were formed
(Scheme 11).
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Scheme 11. Synthesis of thiazoles from vinyl azides and potassium thiocyanate under different
reaction conditions.

When palladium(II) acetate was used as a catalyst, vinyl azides could be substi-
tuted with either aromatic (phenyl, naphthyl) or alkyl substituents, while the reaction
catalyzed by iron(III) bromide took place only when vinyl azides were substituted with
aromatic residues. In both cases, if the phenyl residue is substituted with an electron-
withdrawing group (-NO2, -COOCH3), the reaction yield decreases. Moreover, if an
electron-withdrawing group, such as an ester or a benzoyl group, binds directly to the
alpha-carbon of vinyl azide, the reaction no longer takes place.
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The study of the mechanism showed that the reaction occurred through an ionic
mechanism, in the presence of palladium(II) acetate, and through a radical mechanism,
in the presence of iron(III) bromide, thus explaining the formation of different reaction
products [39].

Numerous heterocyclic compounds possessing the thiazole ring have been obtained
in good to excellent yields using microwave irradiation [40,41]. Compared to conventional
methods, microwave-assisted synthesis has several advantages, being an environmentally
friendly and cost-effective tool, that leads to improved yields in short reaction times [42].

Asif et al. [43] developed a simple, one-pot, efficient method for the synthesis of novel
steroidal thiazole derivatives through the condensation reaction of 2-bromoacetophenone,
thiosemicarbazide, and steroidal carbonyl compounds (Scheme 12). The reaction took
place under microwave heating at 60 ◦C, in ethanol, for 35–45 min, obtaining the target
compounds in good yields (80–85%).

Scheme 12. Synthesis of thiazoles from thiosemicarbazide, ketones, and 2-bromoacetophenone under
microwave irradiation.

Mamidala et al. [44] reported the synthesis of new coumarin-based thiazole derivatives,
starting from thiocarbohydrazide, aldehydes, and α-halocarbonyl coumarins in a molar
ratio of 1:2:1, under microwave heating (Scheme 13). Various solvents like methanol,
ethanol, dimethyl sulfoxide (DMSO), and acetonitrile and different catalysts such as acetic
acid, sulfuric acid, and hydrochloric acid were investigated in order to optimize the reaction
regarding time and yield. Thus, it was observed that using ethanol as a solvent and a
catalytic amount of acetic acid under microwave irradiation (70 ◦C, 210 W) led to high
yields (88–93%) and short reaction times (5–8 min).

Scheme 13. Synthesis of thiazoles from thiocarbohydrazide, aldehydes, and α-bromoketones under
microwave irradiation.

Chinnaraja and Rajalakshmi [45] reported the microwave-assisted synthesis of novel
hydrazinyl thiazole derivatives within 30–175 s under solvent- and catalyst-free condi-
tions. Starting from either various carbonyl compounds, thiosemicarbazide, and alpha-
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haloketones or substituted thiosemicarbazones and alpha-haloketones (Scheme 14), the tar-
get compounds were obtained in good to excellent yield and high purity through an
eco-friendly, one-pot procedure.

Scheme 14. Synthesis of thiazoles from thiosemicarbazones and α-bromoketones under
microwave irradiation.

4. Biological Activity of Thiazole Derivatives

Among heterocyclic compounds, thiazole has proved its biological significance in
medicinal chemistry, being a valuable scaffold in the design and synthesis of new drugs.

4.1. Antimicrobial Activity

Currently, research in the area of antimicrobial drug design and development has
been stimulated due to the expansion of the bacterial resistance phenomenon, with the
emergence of multidrug-resistant strains such as Staphylococcus aureus, Enterococcus sp.,
Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacteriaceae [46], and Candida sp.
with intrinsic and acquired resistance to fluconazole [47].

Nowadays, particular attention is given to hybrid molecules containing a thiazole
nucleus in combination with other pharmacophore features. Numerous hybrid molecules
of thiazole combined with different heterocycles, such as thiophene, pyrazole, triazole,
1,3,4-oxadiazole, pyridine, 1,4-dihydropyridine, indole, quinoline, pyrimidine, pyrazine,
triazine, and pyrazoline, were designed, synthesized, and evaluated as antimicrobial
agents [48–50]. Moreover, novel hydrazones and Schiff bases bearing a thiazole scaffold
have demonstrated good antimicrobial activity [51,52].

A new series of 2,5-dichloro thienyl-substituted thiazoles were efficiently obtained by
Sarojini et al. [53] (compound 11, Figure 5) and their minimum inhibitory concentration
(MIC) values against four fungal strains (Aspergillus fumigatus, Aspergillus flavus, Penicillium
marneffei, and Trichophyton mentagrophytes) and four bacterial strains (Staphylococcus aureus,
Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa) were determined. Com-
pounds substituted with amino or 8-quinolinyl moieties exhibited enhanced antimicrobial
activity with MIC values ranging between 6.25 and 12.5 µg/mL.

Karegoudar et al. [54] successfully developed a series of 4-substituted 2-(2,3,5-trichloro
phenyl)-1,3-thiazoles (compounds 12 and 13, Figure 5) and 4-substituted 2-(2,3,5-trichloroph
enylidenehydrazino)-1,3-thiazoles (compound 14, Figure 5) and evaluated their antimi-
crobial activity on four bacterial strains and four fungal strains. The best antibacterial
activity was observed among derivatives substituted with 4-(methylthio)phenyl, salicy-
lamide, N-methylpiperazine, or 4,6-dimethyl-2-mercaptopyrimidine residues, and the best
antifungal activity was reported among compounds substituted with 3-pyridyl, biphenyl,
or 4-mercaptopyrazolopyrimidine moieties.

In a study by Lino et al. [55], a novel series of thiazole derivatives bearing a hydrazone
group was synthesized. The biological activity of the thiosemicarbazone intermediates and
target compounds was evaluated in vitro against seven fungal strains: Candida albicans,
C. krusei, C. parapsilosis, C. tropicalis, Cryptococcus neoformans, C. gatti, and Paracoccidioides
brasiliensis. It was noted that the thiazole nucleus was essential for antifungal activity, since
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the activity of the intermediate compounds was absent. Furthermore, the presence of a
hydrophobic aliphatic chain linked to the hydrazone functional group and the chlorine
atom in the para position on the benzene ring were associated with an increase in antifungal
activity. Compound 15 (Figure 5) showed superior activity compared to fluconazole on all
Candida and Cryptococcus species used in this assay.
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Also, ongoing research is focused on the development of new antimicrobial com-
pounds with a different mechanism of action than those currently used in therapy. FabH,
also known as β-ketoacyl-(acyl-carrier-protein)synthase III (KAS III), is a key enzyme
involved in the biosynthesis of bacterial fatty acids, being responsible for the first con-
densation reaction between acetyl-coA and malonyl–acyl carrier protein (ACP), with the
formation of acetoacetyl-ACP. FabH is found in many bacterial pathogens including Es-
cherichia coli, Staphylococcus aureus, Mycobacterium tuberculosis, Enterococcus faecium, Strepto-
coccus pneumoniae, Pseudomonas aeruginosa, Neisseria meningitidis, and Haemophilus influenzae,
most of them possessing high levels of resistance to currently authorized antimicrobial
drugs [56]. The three-dimensional structure of the FabH protein is well preserved among
many Gram-positive and Gram-negative bacteria. Consequently, molecules with a FabH
inhibitory effect could have a broad-spectrum antimicrobial activity [57].

Cheng et al. [58] reported the synthesis of a new series of 2-phenylacetamido-thiazole
derivatives with potent Escherichia coli KAS III (ecKAS III) inhibitory activity. The an-
tibacterial screening was performed on two Gram-negative bacterial strains (Escherichia
coli and Pseudomonas aeruginosa) and two Gram-positive bacterial strains (Bacillus subtilis
and Staphylococcus aureus). The most active derivative (compound 16, Figure 5) showed
favorable MIC values, ranging between 1.56 and 6.25 µg/mL, on all tested bacterial strains.
It also exhibited the highest ecKAS III inhibitory activity, with an IC50 value of 5.3 µM.

Lv et al. [59] synthesized a new series of thiazole Schiff bases and evaluated their
antibacterial activity against several Gram-positive and Gram-negative bacterial strains
(Bacillus subtilis, Staphylococcus aureus, Streptococcus faecalis, Escherichia coli, Pseudomonas
aeruginosa, and Enterobacter cloacae). The MIC values of the tested compounds were com-
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pared to those of penicillin G and kanamycin B, used as reference substances. Compounds
17 and 18 (Figure 5) showed a better antibacterial effect compared to kanamycin B against
E. coli and a favorable activity against other bacterial strains, thus indicating the presence
of broad-spectrum antibacterial activity. Moreover, the two derivatives possessed good
in vitro ecKAS III inhibitory activity, with IC50 values equal to 3.6 and 6.8 µM, respectively.

4.2. Antiprotozoal Activity

Protozoan infections are very common in some regions throughout the world, being
endemic in less developed countries. The development of novel molecules with antiproto-
zoal activity is necessary, given the small number of antiprotozoal drugs currently on the
market, their relatively low efficacy and high toxicity, as well as the spread of resistance [60].

de Oliveira Filho et al. [61] synthesized 22 novel thiazole derivatives and investigated
their anti-T. cruzi activity. Compound 19 (Figure 6) proved to be very potent against
trypomastigotes of the Y strain, with an IC50 value equal to 0.37 µM, being nearly 28 times
more active than benznidazole, used as a reference drug. It also reduced blood parasitemia
in mice. Moreover, the new compounds possessed a good drug-likeness profile.
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A novel series of 2-acylamino-5-nitro-1,3-thiazoles was synthesized by Nava-Zuazo
et al. [62] and evaluated against the following protozoa: Giardia intestinalis, Trichomonas
vaginalis, Leishmania amazonensis, and Trypanosoma cruzi. Methylcarbamate derivative (com-
pound 20, Figure 6) displayed the highest giardicidal activity, with an IC50 value equal to
10 nM, being more potent than metronidazole and nitazoxanide, used as reference drugs.
Ethyloxamate derivative (compound 21, Figure 6) revealed the highest trichomonicidal
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effect. Ureic derivatives (compounds 22, 23, and 24, Figure 6) showed moderate antileish-
manial activity. None of the new synthesized 2-acylamino-5-nitro-1,3-thiazoles showed
trypanocidal effect at a concentration under 50 µM.

Bueno et al. [63] synthesized and investigated the antimalarial activity of new thiazole
derivatives. The structure–activity relationship study indicated that the activity of the
obtained compounds was not significantly influenced by pharmacomodulations of the B
ring if a nitrogen atom from a piperidine, piperazine, or N-methylpiperazine moiety was
directly linked at position 2 of the thiazole ring (compound 25, Figure 6). At the same time,
it was observed that the structural integrity of the B ring was, therefore, essential for the
biological activity, since its opening led to a significant decrease in the antimalarial activity.
The presence of an ethyl or isopropyl radical at position 5 of the thiazole nucleus was
favorable for the activity. Moreover, substitutions of the C ring greatly influenced the anti-
malarial activity. The ortho monosubstitution with non-voluminous electron-withdrawing
groups was essential for the activity. Substitution at both ortho positions led to inactive
compounds. If the para position is occupied, the substituent must be a small-volume atom
such as fluorine.

Sahu et al. [64] synthesized 20 thiazole-1,3,5-triazine hybrids as potential antimalarial
agents (compound 26, Figure 6). Two strains of P. falciparum, one sensitive (3D-7) and one
resistant (Dd-2) to chloroquine, were employed for this assay. All compounds proved to be
active against the chloroquine-sensitive strain, with IC50 values ranging between 10.03 and
54.58 µg/mL. Among them, eight thiazole-1,3,5-triazine derivatives displayed IC50 values
from 11.29 to 40.92 µg/mL against the chloroquine-resistant strain.

Makam et al. [65] developed a series of 2-(2-hydrazinyl)thiazoles and evaluated the
antimalarial activity of the new compounds against Plasmodium falciparum. The compounds
contain various substituents at positions 2, 4, and 5, including phenyl, pyridyl, and five-
membered rings. Thus, it was observed that the presence of a 2-pyridyl hydrazinyl residue
at position 2 of the thiazole nucleus was associated with enhanced antimalarial activity.
Moreover, compounds 27 and 28 (Figure 6) substituted at position 5 with a -COOC2H5
and a -COCH3 group, respectively, showed the highest inhibitory activity, with IC50 values
equal to 0.725 and 0.648 µM, respectively. The enhanced biological activity owing to
the presence of a carbonyl group at position 5 could be explained due to the keto-enol
tautomerism that could influence the pharmacological properties.

4.3. Antitumor Activity

A major problem of cancer therapy remains the lack of selectivity of currently avail-
able antitumor agents, and consequently their high toxicity, and the development of the
cancer cell resistance phenomenon. Nowadays, research in the field is focused on targeted
therapy, numerous compounds that act specifically on a particular molecular structure
being synthesized [66].

Thiazole derivatives have demonstrated remarkable anticancer potential due to the
high affinity toward various biological targets involved in cancer pathogenesis, such
as PRL-3, SHP-2, and JSP-1 phosphatases; tumor necrosis factor (TNFα); antiapoptotic
biocomplex Bcl-XL-BH3; integrin avb3; and protein kinases Pl3K, CDK, LIM, EGFR,
and VEGFR [66–68].

Kinase-mediated signaling pathways are involved in tumor proliferation and survival,
as well as in evasion of the host immune system response [69]. Two novel thiazole-based
compounds with tyrosine kinase inhibitory activity, dasatinib and dabrafenib (Figure 7),
are currently authorized for clinical use

Dasatinib is approved for treatment of children and adults who are diagnosed with
Philadelphia chromosome-positive chronic myeloid leukemia or Philadelphia chromosome-
positive acute lymphoblastic leukemia. It is a multitarget inhibitor that inhibits BCR-ABL
(breakpoint cluster region-Abelson) and other tyrosine kinases [71]. Dabrafenib is a cancer
medicine used to treat adult patients with melanoma or metastatic non-small cell lung
cancer with BRAF V600E mutation. The mechanism of action consists of the inhibition
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of BRAF kinase activity involved in stimulating cell division [72,73]. Moreover, a potent
and selective inhibitor of cyclin-dependent kinases Cdk2, Cdk7, and Cdk9, the thiazole
derivative SNS-032 is in phase I clinical trials [66]. [70].
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Also, the antitumor potential of thiazole derivatives is highlighted by the large number
of compounds that have been shown to possess in vitro cytotoxic activity [74]

Xie et al. [75] successfully synthesized a series of hybrid molecules of thiazole com-
bined with a 2-pyridone ring. The antiproliferative activity of the new compounds was
assessed in vitro by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-
mide) method against three human tumor cell lines: colon cancer HTC-116 cells, gastric
carcinoma MGC803 cells, and liver cancer Huh7 cells. The results were compared with those
of 5-fluorouracil, used as a reference substance. The most active compound (29, Figure 7)
showed IC50 values equal to 3.15 ± 1.68 µM for the MGC803 cell line and 8.17 ± 1.89 µM
for the HTC-116 cell line, lower than the obtained IC50 values of 5-fluorouracil (25.54± 0.05
and 11.29± 1.06 µM, respectively). It was also observed that the presence of halogen atoms
(Cl, Br, F) on the benzene rings led to an increase in inhibitory activity, while the presence
of electron-donating groups (-CH3, -OCH3) led to a decrease in antiproliferative activity.
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Wang et al. [76] developed a number of thiazole derivatives containing a β-pinene
residue (compound 30, Figure 7). The antiproliferative activity of these compounds was
evaluated against three tumor cell lines: murine colorectal carcinoma CT-26 cells, human
cervical carcinoma HeLa cells, and human hepatocellular carcinoma SMMC-7721 cells.
The best inhibitory activity against the tested tumor cell lines was present when a strong
electron-donating group (-OH) was introduced into the R2 position. In addition, the most
active compound (31, Figure 7) was substituted with a strong electron-withdrawing group
(-NO2) at the R1 position. It exhibited a strong antiproliferative effect, with IC50 values
ranging between 3.48 and 8.84 µM, the highest inhibitory activity being recorded against
the HeLa cell line.

Anuradha et al. [77] synthesized a series of thiazole derivatives as potential antitumor
agents. Their inhibitory activity was evaluated in vitro against two tumor cell lines (Bcl-2
Jurkat and A-431 cell lines) and a normal cell line (ARPE-19 cells), using doxorubicin as a
reference substance. IC50 values of the most active compound (32, Figure 7) were lower
than those of doxorubicin (34.77 µM in the Bcl-2 Jurkat cell line compared to 45.87 µM
in the case of doxorubicin and 34.31 µM in the A-431 cell line compared to 42.37 µM in
the case of doxorubicin). The absence of toxicity in the normal cell line was also observed.
In silico studies and experimental results showed that this compound induced apoptosis in
tumor cells by binding to Bcl-2 protein.

5. Synthesis of Bisthiazole Derivatives (Thiazolyl-Thiazoles and
Thiazolyl-Linker-Thiazoles)
5.1. Synthesis of Thiazolyl-Thiazole Derivatives

The synthesis of symmetrical 2,2′-bisthiazole compounds occurs most frequently by
condensation of dithiooxamide with α-bromoketones at a ratio of 1:2 in ethanol at reflux
(Scheme 15) [78–80].

Molecules 2021, 26, x FOR PEER REVIEW 13 of 26 
 

 

those of 5-fluorouracil, used as a reference substance. The most active compound (29, Fig-

ure 7) showed IC50 values equal to 3.15 ± 1.68 µM for the MGC803 cell line and 8.17 ± 1.89 

µM for the HTC-116 cell line, lower than the obtained IC50 values of 5-fluorouracil (25.54 

± 0.05 and 11.29 ± 1.06 µM, respectively). It was also observed that the presence of halogen 

atoms (Cl, Br, F) on the benzene rings led to an increase in inhibitory activity, while the 

presence of electron-donating groups (-CH3, -OCH3) led to a decrease in antiproliferative 

activity. 

Wang et al. [76] developed a number of thiazole derivatives containing a β-pinene 

residue (compound 30, Figure 7). The antiproliferative activity of these compounds was 

evaluated against three tumor cell lines: murine colorectal carcinoma CT-26 cells, human 

cervical carcinoma HeLa cells, and human hepatocellular carcinoma SMMC-7721 cells. 

The best inhibitory activity against the tested tumor cell lines was present when a strong 

electron-donating group (-OH) was introduced into the R2 position. In addition, the most 

active compound (31, Figure 7) was substituted with a strong electron-withdrawing group 

(-NO2) at the R1 position. It exhibited a strong antiproliferative effect, with IC50 values 

ranging between 3.48 and 8.84 µM, the highest inhibitory activity being recorded against 

the HeLa cell line. 

Anuradha et al. [77] synthesized a series of thiazole derivatives as potential anti-

tumor agents. Their inhibitory activity was evaluated in vitro against two tumor cell lines 

(Bcl-2 Jurkat and A-431 cell lines) and a normal cell line (ARPE-19 cells), using doxorubi-

cin as a reference substance. IC50 values of the most active compound (32, Figure 7) were 

lower than those of doxorubicin (34.77 μM in the Bcl-2 Jurkat cell line compared to 45.87 

μM in the case of doxorubicin and 34.31 μM in the A-431 cell line compared to 42.37 μM 

in the case of doxorubicin). The absence of toxicity in the normal cell line was also ob-

served. In silico studies and experimental results showed that this compound induced 

apoptosis in tumor cells by binding to Bcl-2 protein. 

5. Synthesis of Bisthiazole Derivatives (Thiazolyl-Thiazoles and Thiazolyl-Linker-

Thiazoles) 

5.1. Synthesis of Thiazolyl-Thiazole Derivatives 

The synthesis of symmetrical 2,2’-bisthiazole compounds occurs most frequently by 

condensation of dithiooxamide with α-bromoketones at a ratio of 1:2 in ethanol at reflux 

(Scheme 15) [78–80]. 

 
Scheme 15. Synthesis of 2,2’-bisthiazole derivatives starting from dithiooxamide. 

Kooyeon Lee and Phil Ho Lee [81] reported a method for the synthesis of 2,2’-bisthia-

zole by a homocoupling reaction of 2-bromothiazole in the presence of Pd(OAc)2, indium, 

and LiCl, in DMF, at a temperature of 100 °C (Scheme 16). 

 

Scheme 16. Synthesis of 2,2’-bisthiazole starting from 2-bromothiazole. 

The synthesis of symmetrical 4,4’-bisthiazole derivatives is most often performed by 

a condensation reaction of thioamides with 1,4-dibromo-2,3-butanedione, in a molar ratio 

of 2:1, in ethanol at reflux (Scheme 17) [82,83]. 

  

Scheme 15. Synthesis of 2,2′-bisthiazole derivatives starting from dithiooxamide.

Kooyeon Lee and Phil Ho Lee [81] reported a method for the synthesis of 2,2′-
bisthiazole by a homocoupling reaction of 2-bromothiazole in the presence of Pd(OAc)2,
indium, and LiCl, in DMF, at a temperature of 100 ◦C (Scheme 16).
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Scheme 16. Synthesis of 2,2′-bisthiazole starting from 2-bromothiazole.

The synthesis of symmetrical 4,4′-bisthiazole derivatives is most often performed by a
condensation reaction of thioamides with 1,4-dibromo-2,3-butanedione, in a molar ratio of
2:1, in ethanol at reflux (Scheme 17) [82,83].

Scheme 17. Synthesis of 4,4′-bisthiazole derivatives starting from thioamides.
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By condensation of two equivalents of thiourea with an equivalent of 1,4-dibromo-2,3-
butanedione or 2,5-dibromo-3,4-hexandione, 4,4′-bis(2-aminothiazole) derivatives were
obtained (Scheme 18) [84,85].

Scheme 18. Synthesis of 4,4′-bis(2-aminothiazole) derivatives starting from thiourea.

Several methods for the synthesis of 5,5′-bisthiazole compounds, starting from halo-
genated derivatives by transition-metal-catalyzed arylation or cross-coupling reactions,
have been reported in the literature [86,87]. Also, the homocoupling reaction of 2-(4-
methoxyphenyl)thiazole and thiazole-4-carboxylate substrates, in the presence of Pd(II)
salts as a catalyst, led to symmetrical 5,5′-bisthiazoles (Scheme 19) [88,89].
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Scheme 19. Synthesis of 5,5-bisthiazole derivatives by the homocoupling reaction.

Boong Won Lee and Seung Dal Lee [85] reported the synthesis of a novel series
of 5,5′-bis(2-aminothiazole) derivatives by the condensation of 2,5-dithiobiurea with α-
halocarbonyl compounds in a ratio of 1:2 (Scheme 20).

Scheme 20. Synthesis of 5,5′-bis(2-aminothiazole) derivatives.

Bach and Heuser [90] synthesized 2,4′-bisthiazole derivatives starting from 2,4-dibro-
mothiazole, according to the reactions illustrated in Scheme 21. Initially, a palladium-
catalyzed cross-coupling reaction occurred between 2,4-dibromothiazole and an organomet-
allic compound R-M. A new carbon–carbon bond was formed at position 2 of the thiazole
ring, resulting in the synthesis of 2-substituted 4-bromothiazole derivatives. Subsequently,
in the presence of tert-butyllithium, a bromine–lithium exchange took place. Finally, by the
cross-coupling reaction with a new molecule of 2,4-dibromothiazole, 2,4′-bisthiazole deriva-
tives were obtained.
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Scheme 21. Synthesis of 2,4′-bisthiazole derivatives.

The synthesis of 4,5′-bisthiazole compounds was performed in several steps, starting
from different thiourea derivatives (Scheme 22). First, a condensation reaction between
various thioureas and 3-chloro-2,4-pentanedione was performed by refluxing in ethanol,
giving the corresponding thiazole derivatives. Subsequently, the acetyl group was alpha-
brominated with bromine in acetic acid, pyridinium tribromide, or phenyltrimethylammo-
nium tribromide. Last, the condensation of alpha-bromoketone bearing a thiazole scaffold
with various thioureas afforded the desired 4,5′-bisthiazole compounds [91–93].
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5.2. Synthesis of Thiazolyl-Linker-Thiazole Compounds

Numerous protocols for the synthesis of thiazolyl-linker-thiazole compounds have
been reported in the literature, most of them being based on the Hantzsch condensation
reaction. The reaction can occur in a single step, when the two thiazole rings are formed
simultaneously, using starting compounds such as bis-thiosemicarbazones, 2,5-dithiobiurea,
bis-hydrazonoyl halides, or dihalo diketones, or in two steps when the two thiazole rings
are formed successively [94–99].

Gomha et al. [100] synthesized bisthiazole derivatives by the condensation reaction
between various thiosemicarbazones and bis-hydrazonoyl chlorides, in the presence of
triethylamine, under reflux conditions in dioxane, for 4–8 h (Scheme 23).

Scheme 23. Synthesis of bisthiazole derivatives starting from bis-hydrazonoyl chlorides.

Mahmoud et al. [101] developed a new synthetic method starting from a bis-thiosemic-
arbazone derivative, which contains a voluminous linkage. The compound reacted with
two equivalents of various hydrazonoyl chlorides, in the presence of triethylamine, in
refluxing dioxane or α-halocarbonyl derivatives, in refluxing ethanol, leading to the forma-
tion of novel bisthiazole derivatives (Scheme 24).
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6. Biological Activity of Bisthiazole Derivatives
6.1. Antimicrobial Activity

Bisthiazoles are present in the structure of several natural compounds with antimi-
crobial properties. Moreover, synthetic bisthiazole derivatives have been developed as
potential antibacterial or antifungal agents.

Cystothiazoles (Figure 8) were isolated in 1998 by Sakagami and co-workers from
Cystobacter fuscus and demonstrated good antifungal activity against Phytophthora capsici
strain (0.05–5 µg/disk) [102]. In addition, cystothiazole A was active against many fungal
strains, including Candida albicans (MIC 0.4 µg/mL), but inactive against the tested bacterial
strains [103].

Figure 8. Chemical structure of cystothiazoles.

Myxothiazoles (Figure 9), isolated from Myxococcus fulvus cultures, showed moderate
antifungal activity against the Candida albicans strain [104]. Comparing cystothiazole A
with myxothiazole A, it could be observed that the former was more active and less
cytotoxic [103].

Mahmoodi et al. [105] synthesized a novel series of bisthiazoles by refluxing bis-2-
bromo-acetophenones and thiourea, in anhydrous ethanol, for 6 h (compounds 33 and
34, Figure 10). Their antibacterial effect was evaluated against four bacterial strains (Pseu-
domonas aeruginosa, Escherichia coli, Micrococcus luteus, and Bacillus subtilis). Tetracycline
was used as a reference substance. Gram-positive bacteria were more susceptible to the
action of the synthesized compounds than Gram-negative bacteria. The MIC values of the
tested compounds were lower than those of tetracycline against Gram-positive bacteria.
In addition, increased antibacterial activity was observed in the case of compounds with
higher lipophilicity.
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Figure 9. Chemical structure of myxothiazoles.

Figure 10. Bisthiazole derivatives with antimicrobial activity.
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Bikobo et al. [106] synthesized a series of 1,4-phenylenebisthiazole compounds (35,
Figure 10) and investigated their antimicrobial activity against three bacterial strains (Ente-
rococcus faecalis, Staphylococcus aureus, and Salmonella typhimurium) and two fungal strains
(Candida albicans and Candida krusei). The most active compound in this series was the 1,4-
phenylenebisthiazole derivative substituted with a 3-carbamoyl-4-hydroxyphenyl residue.

Althagafi et al. [107] synthesized a series of 4,5′-bisthiazole compounds (36, Figure 10)
and performed an antimicrobial screening using four Gram-positive bacterial strains
(Staphylococcus aureus, Staphylococcus epidermidis, Bacillus subtilis, and Streptococcus pyo-
genes), four Gram-negative bacterial strain (Pseudomonas aeruginosa, Escherichia coli, Kleb-
siella pneumoniae, and Salmonella typhimurium), and two fungal strains (Aspergillus niger
and Geotrichum candidum). The activity was evaluated by measuring the diameter of the
inhibition zone, and the results were compared to those of ampicillin, gentamicin, and am-
photericin B, used as reference substances. Most of the compounds exhibited a superior
inhibitory effect against the Aspergillus niger strain than amphotericin B. They also dis-
played moderate to good antibacterial activity, several derivatives being more active on
some bacterial strains than the reference substances. Still, the tested compounds had no
activity against Streptococcus pyogenes and Pseudomonas aeruginosa strains.

Abhale et al. [108] synthesized a series of 4′,5-bisthiazole derivatives and tested their
antimicrobial activity against four bacterial strains (Bacillus subtilis, Staphylococcus aureus,
Escherichia coli, and Proteus vulgaris) and one mycobacterial strain (Mycobacterium smegmatis).
Amoxicillin, ciprofloxacin, rifampicin, and isoniazid were used as reference substances for
antimicrobial activity assays. The most active compound (37, Figure 10) showed superior
efficacy than isoniazid against M. smegmatis (MIC 30.38 µg/mL) and superior activity than
amoxicillin and ciprofloxacin against B. subtilis, E. coli, and P. vulgaris.

Based on the results obtained for 4′,5-bisthiazole derivatives, a new series of 2,5′-
bisthiazole compounds was synthesized and evaluated against two mycobacterial strains
(M. tuberculosis H37Ra and M. bovis BCG). Compounds 38, 39, and 40 (Figure 10) dis-
played good antimycobacterial activity against both strains, with MIC90 and IC50 values
ranging between 9.64 and 23.64 µg/mL and between 0.82 and 4.55 µg/mL, respectively.
Subsequently, 2,5′-bisthiazole derivatives were subjected to an antibacterial and antifungal
screening against two Gram-negative bacterial strains (Escherichia coli and Pseudomonas
fluorescence), two Gram-positive bacterial strains (Staphylococcus aureus and Bacillus subtilis),
and a fungal strain (Candida albicans), exhibiting moderate to good antibacterial activity
and moderate antifungal activity [109].

Bondock and Fouda [110] synthesized a series of bisthiazolyl hydrazones and investi-
gated their antimicrobial activity against Gram-positive and Gram-negative bacteria and
fungi. Regarding the inhibitory activity against Gram-positive bacteria, compound 41
(Figure 10) was twice as active as ampicillin against S. pneumoniae (MIC 0.06 µg/mL) and
compound 42 (Figure 10) was four times more active than ampicillin against S. pneumoniae
(MIC 0.03 µg/mL) and B. subtilis (MIC 0.06 µg/mL). Regarding the inhibitory activity
against Gram-negative bacteria, compounds 43 and 44 (Figure 10) showed a gentamicin-
like activity against K. pneumoniae (MIC 0.03 µg/mL). The results of the antifungal activity
assay showed that compound 43 (Figure 10) was four times more potent against A. fumiga-
tus (MIC 0.03 µg/mL) compared to the activity of the reference substance, amphotericin
B (MIC 0.12 µg/mL). In addition, compound 41 (Figure 10) showed a similar activity to
that of amphotericin B against this fungal strain (MIC 0.12 µg/mL). In this study, it was
observed that the presence of two thiazole moieties merged through a hydrazone group is
associated with increased antibacterial and antifungal activity.

A novel series of acylhydrazones containing a 1,4-phenylenebisthiazole nucleus (com-
pound 45, Figure 10) were synthesized by Borcea et al. [111]. Their anti-Candida activity
was evaluated in vitro against two strains of Candida albicans and two non-albicans strains
(C. parapsilosis and C. krusei). Several compounds have proved to be as active as fluconazole,
used as a reference drug. An in silico molecular docking study was performed in order to
investigate the binding mode of the tested compounds toward lanosterol 14α-demethylase.
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The results showed that all interactions between the tested compounds and lanosterol 14α-
demethylase involved amino acids residues from the access channel, without interaction
with the heme-iron catalytic site.

6.2. Antiprotozoal Activity

Liu et al. [112] developed new DB766 analogues in which the terminal pyridyl nucleus
was replaced with various heterocyclic rings, including the thiazole nucleus. The biological
activity of the new compounds was evaluated against Trypanosoma cruzi, Trypanosoma
brucei rhodesiense, Leishmania amazonensis, and Plasmodium falciparum. Among the bis-
arylimidamide thiazole derivatives obtained, compounds 46, 47, and 48 exhibited IC50
values between 0.17 and 0.3 µM against L. amazonensis and compound 48 showed promising
activity against T. brucei rhodesiense, with an IC50 value equal to 12 nM. Moreover, five of
the bis-arylimidamide thiazole derivatives showed favorable activity against P. falciparum,
with IC50 values ranging between 9 and 86 nM. None of the bis-arylimidamide thiazoles
showed anti-T. cruzi activity under 1 µM.

Bansal et al. [113] synthesized several bisthiazole derivatives containing a pyrazole
moiety and investigated their antimalarial activity against Plasmodium falciparum. Com-
pounds 49 and 50 (Figure 11) with 4-fluoro and 2,6-dichloro substitution, respectively, exhib-
ited excellent activity against P. falciparum, with IC50 values equal to 0.23 and 0.31 µg/mL,
respectively. Furthermore, it was noted that the presence of an electron-withdrawing group
such as 4-F and 2,4-diCl was associated with an enhanced antimalarial effect, while the pres-
ence of an electron-donating group such as 4-CH3 led to a decrease in antimalarial activity.

Figure 11. Bisthiazole derivatives with antiprotozoal activity.

6.3. Antitumor Activity

Turan-Zitouni et al. [114] synthesized a series of new bisthiazole derivatives and
evaluated their antiproliferative activity against three tumor cell lines (A549, C6, and 5RP7
H-ras), as well as their cytotoxic effect against the murine embryonic fibroblast cell line
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NIH/3T3. The best activity was recorded for the p-bromo substituted bisthiazole deriva-
tive (compound 51, Figure 12) against the rat glioma C6 cell line, with an IC50 value
(11.3 ± 1.2 µg/mL) being similar to that of mitoxantrone (11.0 ± 1.7 µg/mL), used as
a reference substance. It also exhibited a weak cytotoxic effect on the normal cell line
NIH/3T3.

Molecules 2021, 26, x FOR PEER REVIEW 20 of 26 
 

 

oamide derivative 52 (Figure 12), showed a superior antiproliferative effect of deferox-

amine on almost all tested cell lines. Its inhibitory activity was highlighted on the lung 

carcinoma A549 cell line, with 98% inhibition of cell proliferation at 10 μM. 

Farghaly et al. [116] synthesized a novel series of bisthiazole derivatives by reacting 

the thiazole thiosemicarbazone key intermediate with alpha-haloketones, in refluxing di-

oxane, containing a catalytic amount of triethylamine. Their antitumor activity was eval-

uated in vitro against colon (HCT-116) and hepatocellular (HepG2) cancer cell lines. The 

most active compound (53, Figure 12) showed a good cytotoxic effect against HCT-116 

and HepG2 cell lines, with IC50 values equal to 6.6 and 4.9 μg/mL, respectively.  

Sayed et al. [117] developed novel thiazolyl-hydrazono-ethylthiazole derivatives (54, 

Figure 12) as potential anticancer agents. The biological assay was carried out using three 

human tumor cell lines: colon carcinoma HCT-116, the more resistant human colorectal 

cancer HT-29, and hepatocellular carcinoma HepG2 cell lines. The results showed prom-

ising cytotoxic activity of several compounds. Moreover, it was observed that the presence 

of an electron-withdrawing substituent, such as chlorine or bromine, was associated with 

increased inhibitory activity, while the presence of an electron-donating group (-CH3, -

OCH3) led to a decrease in cytotoxic activity. The study of the mechanism of action in 

HCT-116 cells revealed that apoptosis occurred through the Bcl-2 family. 

 

Figure 12. Bisthiazole derivatives with antiproliferative activity. 

Chen et al. [118] developed a number of histone deacetylase (HDAC) inhibitors, 

based on the structure of a natural HDAC inhibitor, largazole, and clinically approved 

HDAC inhibitors, vorinostat and panobinostat. Thus, a series of 2,2’-bisthiazoles contain-

ing a hydroxamic acid group were synthesized. In vitro studies showed that the bisthia-

zole derivative 55 (Figure 12) inhibited the enzymatic activity of HDAC, leading to an 

Figure 12. Bisthiazole derivatives with antiproliferative activity.

Rodriguez-Lucena et al. [115] developed a series of bis-2-(2-hydroxyphenyl)-thiazole-
4-carboxamides and bis-2-(2-hydroxyphenyl)-thiazole-4-thiocarboxamides as iron chelators.
The antiproliferative activity of the compounds was evaluated in vitro against 13 human
tumor cell lines (KB, HCT116, HT29, HCT15, MCF7, MCF7R, SK-OV-3, HepG2, PC-3,
A549, HL60, K562, and SF268) representative of different types of carcinoma. The results
were compared with those of deferoxamine. The most active compound, the dithioamide
derivative 52 (Figure 12), showed a superior antiproliferative effect of deferoxamine on
almost all tested cell lines. Its inhibitory activity was highlighted on the lung carcinoma
A549 cell line, with 98% inhibition of cell proliferation at 10 µM.

Farghaly et al. [116] synthesized a novel series of bisthiazole derivatives by reacting
the thiazole thiosemicarbazone key intermediate with alpha-haloketones, in refluxing
dioxane, containing a catalytic amount of triethylamine. Their antitumor activity was
evaluated in vitro against colon (HCT-116) and hepatocellular (HepG2) cancer cell lines.
The most active compound (53, Figure 12) showed a good cytotoxic effect against HCT-116
and HepG2 cell lines, with IC50 values equal to 6.6 and 4.9 µg/mL, respectively.

Sayed et al. [117] developed novel thiazolyl-hydrazono-ethylthiazole derivatives (54,
Figure 12) as potential anticancer agents. The biological assay was carried out using three
human tumor cell lines: colon carcinoma HCT-116, the more resistant human colorectal
cancer HT-29, and hepatocellular carcinoma HepG2 cell lines. The results showed promis-
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ing cytotoxic activity of several compounds. Moreover, it was observed that the presence
of an electron-withdrawing substituent, such as chlorine or bromine, was associated with
increased inhibitory activity, while the presence of an electron-donating group (-CH3,
-OCH3) led to a decrease in cytotoxic activity. The study of the mechanism of action in
HCT-116 cells revealed that apoptosis occurred through the Bcl-2 family.

Chen et al. [118] developed a number of histone deacetylase (HDAC) inhibitors, based
on the structure of a natural HDAC inhibitor, largazole, and clinically approved HDAC
inhibitors, vorinostat and panobinostat. Thus, a series of 2,2′-bisthiazoles containing a
hydroxamic acid group were synthesized. In vitro studies showed that the bisthiazole
derivative 55 (Figure 12) inhibited the enzymatic activity of HDAC, leading to an increase
in the acetylation levels of histones H3 and H4 and apoptosis of T lymphocytes in a
dose-dependent manner.

Subsequently, Gong et al. [119] synthesized a new series of 2,2′-bisthiazole com-
pounds by replacing the hydroxamic acid residue with other functional groups such as
N-hydroxyurea, o-diaminobenzene, trifluoromethyloxadiazole or trifluoromethyl ketone.
Compound 56 (Figure 12), which contains the trifluoromethyl ketone residue, exhibited the
best inhibitory activity against HDAC 1, 3, 4, and 6, with IC50 values between 20.81 and
31.54 nM. It also showed very good antiproliferative activity against multiple myeloma
(MM.1S, RPMI 8226, NCI-H929, and LP1) and lymphoma (Mino and JeKo-1) cell lines.

Fairhurst et al. [120] synthesized a novel series of selective phosphatidylinositol 3-
kinase alpha (PI3Kα) inhibitors with a 4,5-bisthiazole scaffold (compound 57, Figure 12).
The best PI3Kα inhibitory activity was recorded for compounds in which the amide group
was substituted with a cis-3-methylproline amide residue and position 2 of the thiazole
ring was substituted with a quaternary alkyl residue. Subsequently, based on the obtained
results, a new series of 4,5-dihydrobenzo[1,2-d:3,4-d]bisthiazole tricyclic compounds (58,
Figure 12) was developed, the enzyme inhibition ability of these molecules being superior
to 4,5-bisthiazoles [121].

7. Conclusions

Thiazole is an important scaffold in medicinal chemistry, easy to synthesize from
a wide variety of starting compounds. To date, many organic compounds containing
one or more thiazole rings, showing promising antimicrobial, antiprotozoal, and anti-
tumor activities, have been added to the literature. The detailed knowledge of various
synthetic strategies and biological effects would be of great help in the drug discovery and
development process.
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