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Abstract: Cyanogenic glycosides are an important and widespread class of plant natural products,
which are however structurally less diverse than many other classes of natural products. So far,
112 naturally occurring cyanogenic glycosides have been described in the phytochemical litera-
ture. Currently, these unique compounds have been reported from more than 2500 plant species.
Natural cyanogenic glycosides show variations regarding both the aglycone and the sugar part of
the molecules. The predominant sugar moiety is glucose but many substitution patterns of this
glucose moiety exist in nature. Regarding the aglycone moiety, four different basic classes can
be distinguished, aliphatic, cyclic, aromatic, and heterocyclic aglycones. Our overview covers all
cyanogenic glycosides isolated from plants and includes 33 compounds with a non-cyclic aglycone,
20 cyclopentane derivatives, 55 natural products with an aromatic aglycone, and four dihydropyri-
done derivatives. In the following sections, we will provide an overview about the chemical diversity
known so far and mention the first source from which the respective compounds had been isolated.
This review will serve as a first reference for researchers trying to find new cyanogenic glycosides and
highlights some gaps in the knowledge about the exact structures of already described compounds.

Keywords: cyanogenic glycosides; plant toxins; specialized natural products

1. Introduction

Like many other plant natural products, cyanogenic glycosides serve as defense agents
against herbivores, in this case by releasing toxic hydrogen cyanide after tissue damage.
Some plant species are deadly for humans due to their high content of cyanogenic glyco-
sides. For other species, used as staple foods, the content of cyanogenic glycosides requires
special modes of preparation in order to detoxify the plants before human consumption.
For a third group of plants, the moderate content (or the additional/consumption in mod-
erate amounts) of cyanogenic glycoside makes them highly praised aroma plants (such as
almonds in the production of marzipan).

The first cyanogenic glycoside that was isolated from a plant source was amygdalin
(65) which was obtained from bitter almonds [Prunus dulcis (Mill.) D.Webb var. amara
(DC.) H.Moore] in 1830 [1]. Currently, more than 2500 plant species are known to contain
cyanogenic glycosides [2]. To the best of our knowledge, the latest addition to the list
of naturally occurring cyanogenic glycosides is prunasin methacrylate (71), which was
isolated from Centaurea microcarpa Coss. & Durieu ex Batt. & Trab. (Asteraceae) in 2018 [3].
In total there are now 112 cyanogenic glycosides reported; 68 cyanogenic glycosides were
reported before the year 2000 and 44 cyanogenic glycosides have been reported from 2000
until today.

Molecules 2021, 26, 719. https://doi.org/10.3390/molecules26030719 https://www.mdpi.com/journal/molecules

https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0001-8956-9874
https://doi.org/10.3390/molecules26030719
https://doi.org/10.3390/molecules26030719
https://doi.org/10.3390/molecules26030719
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/molecules26030719
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/1420-3049/26/3/719?type=check_update&version=2


Molecules 2021, 26, 719 2 of 19

Cyanogenic glycosides or α-hydroxynitrile glycosides are a unique class of natural
products featuring a nitrile moiety, which after enzymatic degradation of the genuine
natural product can release hydrogen cyanide (prussic acid). Cyanogenic glycosides
consist of two main parts, an aglycone and a sugar moiety. The general structure of
cyanogenic glycosides is displayed in Figure 1: R1 represents the aglycone part; R2, R3,
R4, and R5 represent the possible positions of substituents attached to the glucose moiety.
The aglycone part consists of a nitrile group linked to an aliphatic, cyclic, aromatic, or
heterocyclic moiety. Aglycones of cyanogenic glycosides are biosynthesized starting from
one of the following amino acids: phenylalanine, tyrosine, valine, isoleucine, leucine, 2-(2′-
cyclopentenyl)-glycine, and 2-(2′-hydroxy-3′cyclopentenyl)-glycine [4]. Additionally, some
cyanogenic glycosides (discussed in groups A and B) also feature sulfate groups in their
structures. The sugar moiety consists usually of glucose or a substituted glucose moiety.
Besides monoglycosides, the most common sugar moieties in cyanogenic glycoside, also
di- and triglycosides occur in some compounds. Additional substitutions of all hydroxyl
groups of the sugar moiety also exist and thus add to the variety of natural products.
In addition to glucose, the following sugars have been reported as parts of cyanogenic
glycosides: allose, apiose, arabinose, rhamnose, and xylose.
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Figure 1. General structure of cyanogenic glycosides. 

A sugar moiety is connected to an aglycone via the oxygen linked to the α-carbon 
atom (relative to the nitrile group). Specific enzymes (β-glucosidases) can easily hydrolyse 
the resulting structures after tissue damage in the plant. In vitro, hydrolysis is also possi-
ble by diluted acids or bases. After splitting-off the sugar moiety from the aglycone by 
hydrolysis of the β-glycosidic bond, the aglycone can be further degraded, releasing HCN, 
either spontaneously (in vitro) or facilitated by an additional specific enzyme, (S)-hy-
droxynitrile lyase. This phenomenon is called cyanogenesis, a term first introduced by 
Henry and Dunstan in 1905 [5].  

Some natural cyanogenic glycosides are enantiomers, differing in the stereochemis-
try of the aglycone, but not the sugar part. Example of such compound pairs are lotaus-
tralin (R) (5)/epilotaustralin (S) (11); volkenin (1R, 4R) (36)/epivolkenin (40) (1S, 4R); ta-
raktophyllin (1R,4S) (38)/tetraphyllin B (1S,4S) (45); suberin A (1R,2R,3R,4R) (49)/suberin 
B (1S,2S,3S,4S) (51) and prunasin (R) (54)/sambunigrin (S) (55) [6,7]. 

Cyanogenic glycosides are fascinating natural products, because they have not only 
a vital role for the plants producing them, but also for other living organisms. The crucial 
role of cyanogenic glycosides in protecting the plants producing them is particularly cru-
cial at the early stages of plant development. Accordingly, the concentration of cyanogenic 
glycosides is often higher in seedlings and young leaves than in mature plants [8]. In ag-
riculture, cyanogenic glycosides can also be employed to protect non-source plants from 
herbivory by spraying preparations containing cyanogenic glycosides (e.g., cassava 
wastewater obtained in the process of reducing linamarin (1) content in cassava, in order 
to make it safe for human consumption [9]). Moreover, recent results have indicated a 
potential neuroprotective action of prunasin 2’,3’,4’,6’-tetra-O-gallate (83) [10]. 

2. Results 
The keyword “cyanogenic glycosides” was used to search the literature for references 

to this particular group of compounds; in this way, we found numerous articles, book 
chapters, and seminar proceedings, some dating back to the 19th century. These publica-
tions were then screened for those, which discussed the isolation and elucidation of 
cyanogenic glycosides compounds.  

In the following sections, all cyanogenic natural products found in the literature are 
mentioned and displayed in Figures 2–18. In Figure 19, abbreviations used in the other 
figures are explained. In Table 1, the trivial and semi-trivial names (if at all existing) are 
indicated, along with the compound numbers and the number of the respective figure in 
which the chemical structure of the compound is presented. 

The 112 individual natural products retrieved from the literature, were divided into 
four groups, based on their aglycones. Group A comprises 33 cyanogenic glycosides with 
a non-cyclic aliphatic aglycone, group B 20 cyanogenic glycosides featuring cyclopentene 
or cyclopentane in the aglycone, group C contains 55 cyanogenic glycosides with an aro-
matic aglycone (some of which are the derivatives of prunasin), and group D consists of 
four cyanogenic glycosides with a heterocyclic aglycone (pyridinone derivatives). The ref-
erences cited in this review are, whenever possible, the first articles that reported the iso-
lation of a particular cyanogenic glycoside. 

Figure 1. General structure of cyanogenic glycosides.

A sugar moiety is connected to an aglycone via the oxygen linked to the α-carbon atom
(relative to the nitrile group). Specific enzymes (β-glucosidases) can easily hydrolyse the
resulting structures after tissue damage in the plant. In vitro, hydrolysis is also possible by
diluted acids or bases. After splitting-off the sugar moiety from the aglycone by hydrolysis
of the β-glycosidic bond, the aglycone can be further degraded, releasing HCN, either
spontaneously (in vitro) or facilitated by an additional specific enzyme, (S)-hydroxynitrile
lyase. This phenomenon is called cyanogenesis, a term first introduced by Henry and
Dunstan in 1905 [5].

Some natural cyanogenic glycosides are enantiomers, differing in the stereochemistry
of the aglycone, but not the sugar part. Example of such compound pairs are lotaustralin (R)
(5)/epilotaustralin (S) (11); volkenin (1R, 4R) (36)/epivolkenin (40) (1S, 4R); taraktophyllin
(1R,4S) (38)/tetraphyllin B (1S,4S) (45); suberin A (1R,2R,3R,4R) (49)/suberin B (1S,2S,3S,4S)
(51) and prunasin (R) (54)/sambunigrin (S) (55) [6,7].

Cyanogenic glycosides are fascinating natural products, because they have not only a
vital role for the plants producing them, but also for other living organisms. The crucial
role of cyanogenic glycosides in protecting the plants producing them is particularly crucial
at the early stages of plant development. Accordingly, the concentration of cyanogenic
glycosides is often higher in seedlings and young leaves than in mature plants [8]. In
agriculture, cyanogenic glycosides can also be employed to protect non-source plants
from herbivory by spraying preparations containing cyanogenic glycosides (e.g., cassava
wastewater obtained in the process of reducing linamarin (1) content in cassava, in order
to make it safe for human consumption [9]). Moreover, recent results have indicated a
potential neuroprotective action of prunasin 2′,3′,4′,6′-tetra-O-gallate (83) [10].
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2. Results

The keyword “cyanogenic glycosides” was used to search the literature for references
to this particular group of compounds; in this way, we found numerous articles, book chap-
ters, and seminar proceedings, some dating back to the 19th century. These publications
were then screened for those, which discussed the isolation and elucidation of cyanogenic
glycosides compounds.

In the following sections, all cyanogenic natural products found in the literature are
mentioned and displayed in Figures 2–18. In Figure 19, abbreviations used in the other
figures are explained. In Table 1, the trivial and semi-trivial names (if at all existing) are
indicated, along with the compound numbers and the number of the respective figure in
which the chemical structure of the compound is presented.

Table 1. Cyanogenic glycosides covered in this review.

Trivial/Semi-Trivial Name Figure Nr. Trivial/Semi-Trivial Name Figure Nr.

Aliphatic Compounds Aromatic Compounds

Linamarin 2 1 prunasin 11 54
Linustatin 2 2 sambunigrin 11 55

Linustatin C 2 3 passiedulin 11 56
Linamarin gallate 2 4 - 11 57

(R)-lotaustralin 3 5 epilucumin 12 58
- 3 6 neoamygdalin 12 59

neolinustatin 3 7 - 12 60
linustatin A 3 8 - 12 61
linustatin B 3 9 oxyanthin 12 62

supinanitriloside C 3 10 vicianin 12 63
(S)-epilotaustralin 3 11 lucumin 12 64

- 3 12 amygdalin 12 65
sachaloside V 3 13 - 12 66
heterodendrin 4 14 eucalyptosin B 12 67

epiheterodendrin 4 15 eucalyptosin C 12 68
3-hydroxyheterodendrin 4 16 eucalyptosin A 12 69

epiproacacipetalin 5 17 peregrinumcin A 13 70
proacacipetalin 5 18 prunasin 6’-O-methacrylate 13 71
proacaciberin 5 19 prunasin 6’-O-trans-2-butenoate 13 72

proacacipetalin-6’-O-β-D-
glucoside 5 20 prunasin-6’-O-malonate 13 73

epicardiospermin-5-p-
hydroxybenzoate 5 21 prunasin 6’-O-gallate 13 74

cardiospermin 5 22 grayanin 13 75
cardiospermin-5-benzoate 5 23 prunasin 4’-O-p-coumarate 13 76

cardiospermin-5-p-
hydroxybenzoate 5 24 prunasin 4’-O-caffeate 13 77

cardiospermin-5-cis-coumarate 5 25 prunasin 4’,6’-di-O-gallate 13 78
cardiospermin-5-trans-p-

coumarate 5 26 prunasin 3’,6’-di-O-gallate 13 79

cardiospermin-5-sulfate 5 27 prunasin 2’,6’-di-O-gallate 13 80
acacipetalin 6 28 prunasin 3’,4’,6’-tri-O-gallate 13 81
acaciberin 6 29 prunasin 2’,3’,6’-tri-O-gallate 13 82

isocardiospermin-5-p-
hydroxybenzoate 6 30 prunasin 2’,3’,4’,6’-tetra-O-gallate 13 83

triglochinin 7 31 6’-O-galloylsambunigrin 13 84
isotriglochinin 7 32 oxyanthin 5”-O-benzoate 14 85

isotriglochininmonomethylester 7 33 hedyotoside A 14 86
deidaclin 8 34 canthium glycoside 14 87

tetraphyllin A 8 35 amygdalin-
6”-p-hydroxybenzoate 14 88
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Table 1. Cont.

Trivial/Semi-Trivial Name Figure Nr. Trivial/Semi-Trivial Name Figure Nr.

Aliphatic Compounds Aromatic Compounds

volkenin 8 36 amygdalin-6”-p-coumarate 14 89
volkenin sulfate 8 37 anthemis glycoside A 14 90
taraktophyllin 8 38 anthemis glycoside B 14 91

6’-O-α-L-
rhamnosyltaraktophyllin 8 39 taxiphyllin 15 92

epivolkenin/passicoriacin 8 40 taxiphyllin 6’-O-gallate 15 93
6’-O-α-L-

rhamnopyranosylepivolkenin 8 41 glochidacuminoside D 15 94

passicapsin 8 42 dhurrin 15 95
passitrifasciatin 8 43 dhurrin 6’-glucoside 15 96

passibiflorin 8 44 proteacin 15 97
tetraphyllin B 8 45 holocalin 16 98

tetraphyllin B sulfate 8 46 holocalin acetate 16 99
passicoccin 8 47 zierin 16 100
gynocardin 9 48 zierinxyloside 16 101
suberin A 10 49 xeranthin 16 102

6′-O-β-D-glucopyranosylsuberin
A 10 50 hydracyanoside A 17 103

suberin B 10 51 - 17 104
6′-O-β-D-glucopyranosylsuberin

B 10 52 hydracyanoside B 17 105

passiguatemalin 10 53 hydracyanoside C 17 106
hydracyanoside D 17 107

- 17 108

Dihydropyridone derivatives
epinoracalyphin 18 109

noracalyphin 18 110
epiacalyphin 18 111

acalyphin 18 112

The 112 individual natural products retrieved from the literature, were divided into
four groups, based on their aglycones. Group A comprises 33 cyanogenic glycosides with
a non-cyclic aliphatic aglycone, group B 20 cyanogenic glycosides featuring cyclopentene
or cyclopentane in the aglycone, group C contains 55 cyanogenic glycosides with an
aromatic aglycone (some of which are the derivatives of prunasin), and group D consists
of four cyanogenic glycosides with a heterocyclic aglycone (pyridinone derivatives). The
references cited in this review are, whenever possible, the first articles that reported the
isolation of a particular cyanogenic glycoside.

Within each group, compounds have been ordered first by the respective aglycone
and then according to the substitution pattern of the respective aglycones and their
sugar moieties. Here, compounds with ether bound substituents have been queued
before compounds with additional sugar moieties, and these before compounds with
acyl-substituents. The (R)- and (S)-series (if at all applicable or known) of otherwise
identical aglycones/compounds have been ordered separately.

2.1. Group A: Cyanogenic Glycosides 1–33 Featuring Acyclic Aliphatic Aglycones

This group of cyanogenic glycosides contains compounds derived from the aliphatic
amino acids L-valine (Figure 2), L-isoleucine (Figure 3), and L-leucine (Figures 4–6) and
seco-derivatives from the aromatic amino acid L-tyrosine (Figure 7). Linamarin (1) from
Linum usitatissimum L. (Linaceae) was the first derivative of this group to be isolated (in
1891) [11]. The latest one was isocardiospermin-5-(p-hydroxy)benzoate (30), which was
reported in 2016 [12].
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Figure 2. Cyanogenic glycosides group A-1, valine-derived compounds 1–4: linamarin (1); linustatin
(2) and linustatin C (3) and linamarin gallate (4).

Figures 2 and 3 show the structures of some simple cyanogenic glycosides, which
were isolated from Linum usitatissimum L.: linamarin (1), linustatin (2), lotaustralin (5),
neolinustatin (7) [13], linustatin A (8), linustatin B (9) and linustatin C (3) [14] from
Linum usitatissimum L. (Linaceae). The related compound linamarin gallate (4) was reported
from Loranthus micranthus Hook.f. [as Loranthus micranthus (Linn.)] (Loranthaceae) [15];
lotaustralin (5) from Lotus australis Andrews (Fabaceae) [16]; 2-[(3′-isopropoxy-O-β-D-
glucopyranosyl)oxy]-2-methylbutanenitrile (6) from Linum grandiflorum Desf. (Linaceae) [17];
supinanitriloside C (10) from Euphorbia maculata L. (as Euphorbia supina Raf.) (Euphor-
biaceae) [18]; epilotaustralin (11) from Triticum monococcum L. (Poaceae) [19]; 2-[(6-O-D-
apio-β-D-furanosyl-β-D-glucopyranosyl)oxy]-2-methylbutanenitrile (12) from fresh cas-
sava root cortex Manihot esculenta Crantz (Euphorbiaceae) [20]; sachaloside V (13) from
Rhodiola sachalinensis Boriss. (Crassulaceae) [21].

The structures of heterodendrin (14) and its derivatives are displayed in Figure 4:
heterodendrin (14) was obtained from the vegetative parts of Heterodendron oleaefolium
Desf. (Sapindaceae) [22]; epiheterodendrin/dihydroacacipetalin (15) [23] and 3-hydroxy-
heterodendrin (16) [24] from Acacia sieberiana DC. var. woodii (Burtt Davy) Keay &
Brenan (Fabaceae).

Figure 5 features compounds derived from leucine, which contain a methylene group
in the aglycone, such as cardiospermin (22), derivatives of cardiospermin and some deriva-
tives of acacipetalin. Cardiospermin (22) [25] and cardiospermin-5-sulfate (27) [26] were
isolated from Cardiospermum hirsutum Willd. [as Cardiospermum grandiflorum Sw. (Sapin-
daceae)]; cyanogenic glycosides isolated from Sorbaria sorbifolia (L.) A.Braun (Rosaceae)
such as epicardiospermin-5-p-hydroxybenzoate (21), (2S)-cardiosperminbenzoate (23), (2S)-
cardiospermin-5-cis-p-coumarate (25) [12], (2S)-cardiospermin-5-p-hydroxy-trans-coumarate
(26) [27]; (2S)-cardiospermin-5-p-hydroxybenzoate (24) from Sorbaria arborea C.K. Schneid
(Rosaceae) [6,28]. Another derivative of cardiospermin, isocardiospermin-5-p-
hydroxybenzoate 30 from Sorbaria sorbifolia (Rosaceae) [12] is displayed in Figure 6.

Acacipetalin (28) (Figure 6) was isolated from Acacia losiopetala Oliv. (Fabaceae) [29],
proaca-cipetalin (18) (Figure 5) from Acacia sieberiana and Acacia hebeclada DC. (Fabaceae) [30],
epiproacacipetalin (17) from Acacia globulifera Saff. (Fabaceae) [31], proacacipetalin 6′-O-β-D-
glucopyranoside (20) from Balanophora involucrata Hook.f. & Thomson (Balanophoraceae) [32]
(Figure 5). Acaciberin (29) (Figure 6) and proacaciberin (19) (Figure 5) were first isolated
from Acacia sieberiana (Fabaceae) [33].

Figure 7 shows the structures of some unusual ring-cleaved tyrosine derivatives,
triglochinin (31) and its derivatives. Triglochinin and isotriglochinin (32) were first reported
from Triglochin maritimum L. and Triglochin palustris L. [34] and Alocasia macrorrhizos (L.) G.
Don [35] (Araceae). Thalictrum aquilegifolium L. (Ranunculaceae) yielded isotriglochinin
monomethyl ester (33) [36].
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Figure 3. Cyanogenic glycosides group A-2, isoleucine-derived compounds 5–13: (R)-lotaustralin (5), 2-[(3′-isopropoxy-O-β-
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V (13).
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Figure 7. Cyanogenic glycosides group A-6, aliphatic compounds derived from the aromatic amino
acid tyrosine 31–33: triglochinin (31), isotriglochinin (32) and isotriglochinin monomethyl ester (33).

2.2. Group B: Cyanogenic Glycosides 34–53 Derived from Cyclopentenyl Glycine

This group currently comprises 20 compounds. The first compound reported from this
group was gynocardin (48), described in 1905 [37]. The latest one is passiguatemalin (53),
reported in 2002 [38]. Almost all compounds in this group of cyanogenic glycosides were
first isolated from members of the Passifloraceae. Only two were first isolated from the
Achariaceae and Flacourtiaceae, respectively. The simplest cyanogenic glycoside structure
in this group is deidaclin (34) [39], first named deidamin, isolated from Deidamia clematoides
(C.H.Wright) Harms (Passifloraceae) [40]. Figure 8 shows the structures of deidaclin (34),
tetraphyllin A (35), volkenin (36), tetraphyllin B (45) and their corresponding sulfate deriva-
tives. Tetraphyllin A (35) and tetraphyllin B (45) were first isolated from Tetrapathea tetrandra
(Banks ex DC.) Raoul (Passifloraceae) [41]. Volkenin (36) was originally isolated from Adenia
volkensii Harms (Passifloraceae) as epitetraphyllin B [42], but later renamed volkenin [43].
Volkenin sulfate (37) and tetraphyllin B sulfate (46) were isolated from Passiflora caerulea L.
(Passifloraceae) [44]. Taraktophyllin (38) and epivolkenin/passicoriacin (40) were isolated
from Passiflora coriacea Juss. (Passifloraceae) [45]. 6′-O-α-L-rhamnopyranosyltaraktophyllin
(39) and 6′-O-α-L-rhamnopyranosyl-epivolkenin (41) were found in Hydnocarpus pentandrus
(Buch.-Ham.) Oken (Flacourtiaceae) [46].

Figure 8 also displays the structures of some cyanogenic glycosides group B with un-
usual sugar residues (6-deoxyallose, initially assigned as rhamnose, in 43, 6-deoxygulose,
initially also assigned as rhamnose, in 44 and 44aand boivinose in 42) attached to the
glycone part. There had been some confusion about the correct structures of some com-
pounds from this group [47–50]. Compounds with the trivial names passitrifasciatin (43),
passibiflorin (44) and epipassibiflorin (44a) (presumably the C-1 epimer of passibiflorin),
were initially assigned other structures regarding the identity (see above) and position
[O-4′ (compound 43) or O-6′ (compounds 44, 44a) of the glucose moiety instead of O-4 of
the aglycone moiety as in the revised structures] of the unusual sugar moieties [47–50].
Passitrifasciatin (43) was isolated from Passiflora trifasciata Lem. (Passifloraceae) [47,48].
Passibiflorin (44) and and its presumed 1-epimer epipassibiflorin (44a) were isolated from
Passiflora biflora Lam. and Passiflora talamancensis Killip (Passifloraceae) [47,49]. Passicapsin
(42) was isolated from Passiflora capsularis L. (Passifloraceae) [50]. Figure 8 furthermore
shows a cyclopentene cyanogenic diglycoside with unresolved stereochemistry in the
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cyclopentene part of the molecule, containing rhamnose and sulfate moiety, passicoccin
(47), which was isolated from Passiflora coccinea Aubl. (Passifloraceae) [51].
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Figure 8. Cyanogenic glycosides group B-1, cyclopentene derivatives with one (compounds 34–35) or two (compounds 36–
47) hydroxy groups: (R)-deidaclin (34), (S)-tetraphyllin A (35), (1R,4R)-volkenin (36), (1R,4R)-volkenin sulfate (37), (1R,4S)-
taraktophyllin (38), (1R,4S)-6′-O-α-L-rhamnopyranosyl taraktophyllin (39), (1S,4R)-epivolkenin/passicoriacin (40), 6′-O-α-
L-rhamnopyranosyl epivolkenin (41), passicapsin (42) passitrifasciatin (43), (1S,4R)-passibiflorin (44), (1S,4S)-tetraphyllin B
(45), (1S,4S)-tetraphyllin B sulfate (46) and passicoccin (47).

Gynocardin (48) (Figure 9), the so far only cyclopentene derivative featuring three hy-
droxy moieties in the cyclopentene part of the molecule, was isolated from Gynocardia odorata
R.Br. (Achariaceae) [37].
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Figure 9. Cyanogenic glycosides group B-2, cyclopentene derivative with three hydroxygroups:
(1R,4S,5R)-gynocardin (48).

Similar to the situation described above, compounds from Passiflora suberosa L. de-
picted in Figure 10 were also isolated in a brief period of time by two competing groups.
As again, the first description is not very reliable regarding stereochemistry, we adhere
to the publication from Jaroszewski and his team [7] and only mention that Spencer
and Seigler [52] were probably the first to isolate compounds 49 and 51 (initially named
passisuberosin and epipassisuberosin). However, here we follow Jaroszewski and co-
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workers [7] and name the compounds (which were first fully elucidated in reference [7])
suberin A (49) and B (51). The β-D-gentiobiosides additionally described by Spencer and
Seigler are tentatively assigned structures 50 and 52. These should be named 6′-O-β-
D-glucopyranosylsuberin A (50) and 6′-O-β-D-glucopyranosylsuberin B (52), instead of
passisuberosin diglycoside and epipassisuberosin diglycoside, respectively. As a number of
compounds allegedly containg rhamnose, isolated by the same authors, proved later to con-
tain other rare sugars, a re-investigation of this compound using modern two-dimensional
NMR experiments seems warranted.
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Figure 10. Cyanogenic glycosides group B-3, cyclopentane derivatives 49–53: suberin A (49), 6′-O-β-D-glucopyranosyl-
suberin A (50), suberin B (51), 6′-O-β-D-glucopyranosylsuberin B (52) and passiguatemalin (53).

Passiguatemalin (53) (Figure 10), which could be envisaged as a ring-opened epoxide,
was isolated from Passiflora hahnii (E.Fourn.) Mast. [as Passiflora guatemalensis S.Watson]
(Passifloraceae) [38]. Though a full set of spectral data was provided, the stereochemistry
of this compound has not been established yet [38].

2.3. Group C: Cyanogenic Glycosides 54–108 Featuring an Aromatic Aglycone

A total of 55 cyanogenic glycosides containing an aromatic aglycone have been de-
scribed. Amygdalin (65) isolated from bitter almond in 1830 was the first cyanogenic
glycoside with an aromatic aglycone to be reported [1]. The latest compound is a deriva-
tive of prunasin, prunasin methacrylate (71), reported in 2018 [3]. An experiment by
Fischer in 1895 yielded a derivative compound of amygdalin and was named Fisher’s
glycoside [53]. Later on, this glycoside was also isolated from other plant species, such as
Prunus padus L. (Rosaceae), as prulaurasin (a mixture of prunasin and sambunigrin) [54]
and Prunus serotina Ehrh. (Rosaceae) [55]. The name prunasin was then introduced in 1912
for compound 54 [56].
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Figure 11. Cyanogenic glycosides group C-1, phenylalanine-derived cyanogenic glycosides 54–57 featuring a single, unsub-
stituted sugar moiety: (R)-prunasin (54) and (S)-sambunigrin (55) (2R)-passiedulin (56) and (2S)–β-D-allopyranosyloxy-2-
phenylacetonitrile (57).

To organize the high diversity of aromatic cyanogenic glycosides, these were, some-
what superficially, subdivided in the following groups: compounds derived from phenylala-
nine, which feature only a single, unsubstituted sugar moiety (Figure 11), phenylalanine-
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derived cyanogenic glycosides with a disaccharide linked to the aglycone (Figure 12),
acyl derivatives of prunasin and sambunigrin (Figure 13), complex acyl derivatives of
phenylalanine with a disaccharide linked to the aglycone (Figure 14), para-hydroxyphenyl
cyanogenic glycosides (Figure 15), meta-hydroxyphenyl cyanogenic glycosides (Figure 16),
3-hydroxy-4-methoxyphenyl and 3,4-dimethoxyphenyl cyanogenic glycosides (Figure 17).

Prunasin (54) as the most widely distributed cyanogenic glycoside, has been isolated
from 14 different plant families: Adoxaceae, Asteraceae, Caricaceae, Dennstaedtiaceae,
Fabaceae, Lamiaceae, Melastomataceae, Myrtaceae, Passifloraceae, Penaeaceae (Olinieae),
Polypodiaceae, Rosaceae, Rubiaceae, and Salicaceae (Figure 11). In addition, there are
more derivatives of prunasin than for any other basic cyanogenic glycosides structures.
The (2S)-epimer of prunasin (54), sambunigrin (55), was first isolated from the leaves of
Sambucus nigra L. (Adoxaceae) [57]. The allopyranosides passiedulin (56) [58] and (2S)–β-
D-allopyranosyloxy-2-phenylacetonitrile (57) [59] were both reported from Passiflora edulis
Sims (Passifloraceae).
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Figure 12. Cyanogenic glycosides group C-2, phenylalanine-derived cyanogenic glycosides featuring an unsubsti-
tuted disaccharide in the sugar moiety: (S)-epilucumin (58), (S)-neoamygdalin (59), (7S)-phenylcyanomethyl 1′-O-α-
L-rhamnopyranosyl-(1→6)-β-D-glucopyranoside (60), (2S)-β-D-apio-D-furanosyl-(1→2)-β-D-glucopyranosylmandelonitrile
(61), oxyanthin (62), vicianin (63), lucumin (64), (R)-amygdalin (65), (7R)-phenylcyanomethyl 1′-O-α-L-rhamnopyranosyl-
(1→6)-β-D-glucopyranoside (66), (R)-eucalyptosin B (67), (R)-eucalyptosin C (68), (R)-eucalyptosin A (69).

Cyanogenic diglycosides with two different sugar moieties encompass (7R)-
phenylcyanomethyl 1′-O-α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranoside (66) from
Passiflora edulis Sims (Passifloraceae) [60]. This compound was later also isolated from
dried vines of Passiflora quadrangularis L. (Passifloraceae) along with its epimer (7S)-
phenylcyanomethyl 1′-O-α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranoside (60) [61]. Vi-
cianin (63) was first reported from Vicia sativa L. subsp. nigra (L.) Ehrh. (as Vicia angustifolia
L.) (Fabaceae) [62]. Lucumin (64) was isolated from Manilkara zapota (L.) P.Royen [as Lu-
cuma mammosa (L.) C.F.Gaertn.] [63], while epilucumin (58), anthemis glycoside A (90) and
anthemis glycoside B (91) were found in Anthemis retusa Delile (as Anthemis cairica Vis.)
and Cota altissima (L.) J.Gay (as Anthemis altissima L.) (Asteraceae) [64].

Cyanogenic glycosides featuring an apiose moiety are e.g., oxyanthin (62) and oxyan-
thin 5”-O-benzoate (85) from Psydrax livida (Hiern) Bridson and Oxyanthus pyriformis
(Hochst.) Skeels subsp. pyriformis (Rubiaceae) [65]; 2S-β-D-apio-D-furanosyl-(1→2)-β-D-
glucopyranosylmandelonitrile (61) from Sambucus nigra L. (Adoxaceae) [66]; hedyotoside
A (86) from Hedyotis scandens Roxb. (Rubiaceae) [67]; canthium glycoside (87) from Psydrax
schimperiana (A.Rich.) Bridson (as Canthium schimperianum A.Rich.) (Rubiaceae) [68];

The cyanogenic diglucoside amygdalin (65) was first reported from bitter almonds,
Prunus dulcis (Mill.) D.A.Webb [as Prunus amygdalus (DC.) Focke var. amara] (Rosaceae) in
1830 [1]. The epimeric compound neoamygdalin (59) has been reported from the racemic
mixture since 1903 [69]. Eucalyptosin A (69) was first isolated from Eremophila maculata
P.J.Müll. (Scrophulariaceae) [70]. Eucalyptosin A (69) [(R)-mandelonitrile β-sophoroside],
together with eucalyptosin B (67) (mandelonitrile β-cellobioside), and eucalyptosin C (68)
(mandelonitrile β-laminaribioside) have been isolated from Eucalyptus camphora F.Muell. ex
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R.T.Baker (Myrtaceae) [71]. Two amygdalin derivatives, amygdalin-6”-(4-hydroxy)benzoate
(88) and amygdalin-6”-p-coumarate (89) were first reported from Merremia dissecta (Jacq.)
Hall.f. (Convolvulaceae) [72].

Prunasin derivatives peregrinumcin A (70) from Dracocephalum peregrinum L. (Lami-
aceae) [73]; prunasin 6′-O-methacrylate (71) from Centaurea microcarpa Coss. & Durieu ex
Batt. & Trab. (Asteraceae) [3]; prunasin 6′-O-trans-2-butenoate (72) from Centaurea aspera L.
var. subinermis DC. (Asteraceae) [74]; prunasin-6′-O-malonate (73) from Merremia dissecta
(Jacq.) Hall.f. (Convolvulaceae) [75], Lotononis fruticoides B.-E.van Wyk and Lotononis falcata
(E.Mey.) Benth. (Fabaceae) [76] are displayed in Figure 13 with related compounds.
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Figure 13. Cyanogenic glycosides group C-3, acyl derivatives of prunasin (54) and sambunigrin (55): peregrinumcin A
(70), prunasin 6′-O-methacrylate (71), prunasin 6′-O-trans-2-butenoate (72), prunasin-6′-O-malonate (73) (2R)-prunasin
6′-O-gallate (74), grayanin (75), prunasin 4′-O-p-coumarate (76), prunasin 4′-O-caffeate (77), prunasin 4′,6′-di-O-gallate (78),
prunasin 3′,6′-di-O-gallate (79), prunasin 2′,6′-di-O-gallate (80), prunasin 3′,4′,6′-tri-O-gallate (81), prunasin 2′,3′,6′-tri-O-
gallate (82), prunasin 2′,3′,4′,6′-tetra-O-gallate (83) and (2S)-6′-O-galloylsambunigrin (84).

Gallate derivatives of prunasin encompass prunasin 6′-O-gallate (74), prunasin 4′,6′-
di-O-gallate (78), prunasin 3′,6′-di-O-gallate (79), prunasin 2′,6′-di-O-gallate (80), prunasin
3′,4′,6′-tri-O-gallate (81), prunasin 2′,3′,6′-tri-O-gallate (82), prunasin 2′,3′,4′,6′-tetra-O-
gallate (83) from Phyllagathis rotundifolia (Jack) Blume (Melastomaceae) [77], and 6′-O-
galloylsambunigrin (84) from Elaeocarpus sericopetalus F.Muell. (Elaeocarpaceae) [78].

Grayanin (75) was found in Prunus grayana Maxim. (Rosaceae) [79]. Coumaryl and caf-
feoyl derivatives of prunasin are prunasin 4′-O-p-coumarate (76) and prunasin 4′-O-caffeate
(77) and were reported from Microlepia strigosa (Thunb.) C.Presl (Dennstaedtiaceae) [80].

Taxiphyllin (92) was first isolated as phyllanthin from Phyllanthus gunnii Hook.f. (as
Phyllanthus gastroemii Müll.Arg.) (Phyllantaceae) [81]. The compound was later re-named
to taxiphyllin, because the same compound had been isolated from Taxus canadensis Mar-
shall (Taxaceae) [82]. Dhurrin (95) was first isolated from Sorghum bicolor (L.) Moench
(as Sorghum vulgare Pers.) (Poaceae); the name dhurrin originates from the Egyptian
name of the species, “dhurra shirshabi” [83]. Dhurrin 6′-glucoside (96) was isolated
from Sorghum bicolor (Graminae) [84] and Polyscias australiana (F.Muell.) Philipson (Arali-
aceae) [85]. Taxiphyllin 6′-O-gallate (93) was isolated from Syzygium samarangense (Blume)
Merr. & L.M.Perry (Myrtaceae) [86]. Glochidacuminoside D (94) was isolated from the
leaves of Glochidion acuminatum Müll.Arg. (Euphorbiaceae) [87]. Proteacin (97) was re-
ported from shoots of Thalictrum aquilegifolium L. (Ranunculaceae) [88].
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Figure 15. Cyanogenic glycosides group C-5, para-hydroxyphenyl derivatives: taxiphyllin (92), taxiphyllin 6′-O-gallate (93),
glochidacuminoside D (94), dhurrin (95), dhurrin 6′-glucoside (96) and proteacin (97).

The structures of meta-hydroxyphenyl cyanogenic glycosides (Figure 16) furthermore
include holocalin (98) from Holocalyx balansae Micheli (Fabaceae) [89], holocalin acetate
(99) from Sambucus nigra L. (Adoxaceae) [66]; zierin (100) from Zieria lævigata Sm. (Ru-
taceae) [90], and zierinxyloside (101) from Xeranthemum cylindraceum Sm. (Asteraceae-
Cardueae) [91]. One of the most complex cyanogenic glycosides, xeranthin (102) was
reported from Xeranthemum cylindraceum Sm. (Asteraceae-Cardueae) [92].

Figure 17 shows the structures of cyanogenic glycosides isolated from Hydrangea macro-
phylla (Thunb.) Ser. (Saxifragaceae), hydracyanoside A (103), (2R)-2-[α-D-glucopyranosyl
(1→6)-β-D-glucopyranosyloxy]-2-(3-hydroxy-4-methoxyphenyl) aceto- nitrile (104) and
(2R)-2-(β-D-glucopyranosyloxy)-2-(3,4-dimethoxyphenyl)] acetonitrile (108) [93], hydra-
cyanoside B (105), hydracyanoside C (106) [94], hydracyanoside D (107) [95].
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Figure 17. Cyanogenic glycosides group C-7, 3-hydroxy-4-methoxyphenyl and 3,4-dimethoxyphenyl derivatives: hydra-
cyanoside A (103) (2R)-2-[α-D-glucopyranosyl-(1→6)-β-D-glucopyranosyloxy]-2-(3-hydroxy-4-methoxyphenyl) acetonitrile
(104), hydracyanoside B (105), hydracyanoside C (106), hydracyanoside D (107) and (2R)-2-(β-D-gluco-pyranosyloxy)-2-(3,4-
dimethoxyphenyl) acetonitrile (108).

2.4. Group D: Cyanopyridone Glycosides 112–115

Cyanopyridone glycosides (Figure 18) encompass only four compounds: acalyphin
(112), epiacalyphin (111), noracalyphin (110) and epinoracalyphin (109). Acalyphin was
first isolated in 1937 from Acalypha indica L. (Euphorbiaceae), but its structure could
not be determined at the time [96]. Complete structure elucidation and naming of aca-
lyphin was accomplished in 1982 with material isolated from the same species [97]. Aca-
lyphin (112) also has been isolated from Acalypha fruticosa Forssk. [98]. A more detailed
study in 2009 of Acalypha indica yielded also epiacalyphin (111), noracalyphin (110) and
epinoracalyphin (109) [99].
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3. Bioactivity

Cyanogenic glycosides are foremost toxins, protecting the plant producing them from
herbivores [2]. Recent studies on the role of cyanogenic glycosides in plant development
have in addition revealed a function of cyanogenic glycosides as a nitrogen source for devel-
opmental processes and in playing a role in the adaption to environmental challenges [4].

Cyanide released from edible plants containing cyanogenic glycosides have been
reported to cause adverse health effects in humans, e.g., irreversible paralytic disorder,
tropical ataxic neuropathy, optical atrophy, angular stomatitis, sensory gait ataxia, neu-
rosensory deafness, goitre, and cretinism [100].

Due to their presence in numerous edible plants, there are many reports dealing
with the bioactivities of linamarin (1) and amygdalin (65). For decades, amygdalin (65)
has been investigated for its potential application in cancer treatment [101,102]. Targeted
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cancer therapy, such as suicide gene therapy, antibody-directed enzyme prodrug therapy
(ADEPT), and nanoporous imprinted polymers (nanoMIPs) gave particularly promising
results [103]. While amygdalin (65) has mainly been investigated as a potential anticancer
agent, studies focusing on linamarin (1) are mainly related to agriculture. Here, linamarin
(1), a side product from making cassava safe for human consumption, has been tested as
herbicides and bio-pesticides [104].

Additionally, some potential applications of cyanogenic glycosides in medicine have re-
cently been patented, e.g., the use of epicardiospermin-5-p-hydroxybenzoate (21) [105], (2S)-
cardiospermin-5-benzoate (23) [106], and (2S)-cardiospermin-5-cis-p-coumarate (25) [107]
against rheumatoid arthritis.

4. Materials and Methods

Literature was searched for cyanogenic glycosides using Google Scholar, PubChem,
Reaxys, and SciFinder. Keywords were “cyanogenic glycosides”, “cyanogenesis” as well as
individual names of known cyanogenic glycosides. Names of the known cyanogenic glyco-
sides compounds often led to articles reporting the isolation of related structures. All of the
references in this review were then accessed from the homepages of their respective journals
and for older articles, published between the years 1800–1930, from the Biodiversity Her-
itage Library website (https://www.biodiversitylibrary.org). After collecting the articles,
structures of individual cyanogenic glycosides were then sorted as described in the results
section, not only based on the precursor in the respective biosynthetic pathways [108], but
also based on superficial chemical similarity (e.g., group A6).

5. Conclusions

The overview provided above shows that currently, 112 distinct cyanogenic glyco-
sides are known from the plant kingdom. This is considerably more than the current
literature estimate of about 60 different compounds [109]. Cyanogenic glycosides with an
aromatic aglycone are the most diverse group with 55 individual natural products. The
most complex structure containing a cyanogenic glycoside moiety is canthium glycoside
(87) from Psydrax schimperiana (A.Rich.) Bridson (as Canthium schimperianum A.Rich.) (Ru-
biaceae). This compound, which also features an iridoid moiety, has a molecular formula
of C43H51NO21. In contrast linamarin (1) as the simplest known cyanogenic glycoside has
a molecular formula of only C10H17NO6. Many of the natural products compiled above,
have so far only been reported form a single source, while others are unusually widely
distributed in the plant kingdom. Some of the rare compounds have been isolated in times,
when structure elucidation of complex natural products was more difficult than today
and some re-assignments regarding exact positions of sugar moieties and stereochemistry
seem inevitable, when these compounds will be re-investigated. Looking at the enormous
possibilities how cyanogenic glycosides, such as e.g., prunasin (54) can be incorporated
into more complex natural products, makes it intuitively clear that many more natural
products encompassing a cyanogenic glycoside moiety still can be discovered.

This review is intended as a guide to get a quick overview, which compounds have
already been described and where in the plant kingdom to look for potentially new natural
products. The lack of detailed bioactivity reports on any other cyanogenic glycosides other
than amygdalin and linamarin are also potential research topics.
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