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Abstract: Removing methylene blue (MB) dye from aqueous solutions was examined by the use
of nickel molybdate (α-NiMoO4) as an adsorbent produced by an uncomplicated, rapid, and cost-
effective method. Different results were produced by varying different parameters such as the pH,
the adsorbent dose, the temperature, the contact time, and the initial dye concentration. Adsorbent
dose and pH had a major removal effect on MB. Interestingly, a lower amount of adsorbent dose
caused greater MB removal. The amount of removal gained was efficient and reached a 99% level
with an initial methylene blue solution concentration of ≤160 ppm at pH 11. The kinetic studies
indicated that the pseudo-second-order kinetic model relates very well with that of the obtained
experimental results. The thermodynamic studies showed that removing the MB dye was favorable,
spontaneous, and endothermic. Impressively, the highest quantity of removal amount of MB dye
was 16,863 mg/g, as shown by the Langmuir model. The thermal regeneration tests revealed that the
efficiency of removing MB (11,608 mg/g) was retained following three continuous rounds of recycled
adsorbents. Adsorption of MB onto α-NiMoO4 nanoparticles and its regeneration were confirmed by
Fourier transform infrared spectroscopy (FTIR) analysis and scanning electron microscopy (SEM)
analysis. The results indicated that α-NiMoO4 nanosorbent is an outstanding and strong candidate
that can be used for removing the maximum capacity of MB dye in wastewater.

Keywords: nanosorbent; regeneration; α-NiMoO4; methylene blue; removal

1. Introduction

Dyes have recently been extensively utilized in several industrial and manufacturing
applications, e.g., printing, textile, paper, carpet, and cosmetics. Dyes are considered toxic,
hazardous pollutants and require removal before their discharge into the environment [1–7].

Numerous methods have been developed for dye removal from wastewater and
industrial waste matter, including adsorption, coagulation, photodegradation, floccula-
tion, membrane separation, ion exchange, biological treatment, chemical oxidation, and
extraction [8–15].

Adsorption application is extensively employed due to its ease of process and guaran-
tee of superb minimal cost from among those above-mentioned methods [1,16–21]. Several
natural adsorbents have been successful in the elimination of color from aqueous waste
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matter [22–25]. A universally used example is activated carbon owing to the presence
of its large surface area [26,27]. There are still some difficulties that limit its use, such as
its high cost of production, low-quality mechanical properties, regeneration issues, and
phase separation strain [28]. The challenge faced by the researchers is to develop novel
adsorbents with boundless adsorption capabilities that are capable of being regenerated
for the recovery of reusable compounds.

In recent years, researchers have shown a great interest in binary metal oxides due to
their potential performances for different materials [29]. In recent years, scientists have paid
extensively studied the group of metal molybdates which has given the most favorable
examples of mixed metal oxides [30–33]. Nickel molybdate (NiMoO4) has various applica-
tions in catalysis such as hydrodesulfurization and hydrodenitrogenation reactions [34,35],
oxidative dehydrogenation of light alkanes [36–40], partial oxidation of hydrocarbons [41],
and microwave applications [42]. It is also used in humidity sensors [43], supercapac-
itors [44,45], optical fibers, and military devices [46]. Nickel molybdate has attractive
structures and electrochemical and magnetic properties [47,48], and it can be found in two
crystalline forms, α-NiMoO4 and β-NiMoO4.

Various methods of NiMoO4 synthesis have been presented in the literature, in-
cluding sonochemical [49,50], hydrothermal [46,51,52], precipitation [53,54], sol–gel [53],
mechanochemical synthesis [55], solid state at high temperature [56,57], and microwave-
assisted methods [58].

Recently, molybdate compounds have attracted great interest for their utilization
in environmental applications such as the photocatalytic oxidation of dyes [59–62], the
oxidation of methylene blue (MB) dye [63], and the sorption of water-soluble dyes [30,61].

In particular, α-NiMoO4 synthesized by the microwave-assisted method has shown
good photocatalytic activity for methylene blue photodegradation [58]. In addition, NiMoO4
nanostructures synthesized by the coprecipitation method were efficiently used as a catalyst
for methyl orange photooxidation under UV irradiation [64]. Furthermore, hydrothermally
synthesized β-NiMoO4 was recently used as a sono-photocatalyst for the degradation of
methylene blue (MB) under diffused sunlight [65]. However, α-NiMoO4 has not yet been
explored for the removal of dyes by adsorption.

In the present work, nickel molybdate nanoparticles, synthesized using a facile and
easy method without the use of any solvents, were evaluated for removing methylene
blue dye (MB) as adsorbents. MB dye was utilized as an ideal dye owing to its extensive
manufacturing uses as a food coloring agent and for cotton, wool, silk, and leather, to
name a few examples [60]. The influence of diverse parameters, namely solution pH,
initial concentration, adsorbent dose, and contact time, on the removal of methylene blue
by synthesized α-NiMoO4 nanosorbents was examined. The kinetics and adsorption
isotherms were evaluated. In addition, after the nanosorbent had been regenerated by
calcinating at high temperature, the removal efficiency was likewise investigated.

2. Results and Discussion
2.1. Removal of MB
2.1.1. pH Point of Zero Charge (pHpzc)

The pH point of zero charge (pHpzc) can provide information regarding the surface
charge of a material. The results found for this parameter are given in Figure 1. In fact, the
pHpzc of nickel molybdate was determined from graphs where the initial pH is equal to
the final pH (intersection of curves). As shown in Figure 1, the nickel molybdate presented
a surface charged negatively (pHpzc = 8.96). The surface of nickel molybdate became
negatively charged for a pH of solutions >8.96 and acquired a positive charge when the
pH was lower than 8.96. According to the literature, the cation uptake is favorable at a
pH > pHpzc, whereas the uptake of anions is encouraged at a pH < pHpzc of sorbent [66].
The obtained pH point of zero charge value is close to those obtained for some metal oxides
such as CuO and NiO, which are in the range of 9–10 [67].



Molecules 2021, 26, 1378 3 of 19

Figure 1. pHpzc for nickel molybdate.

2.1.2. Effect of pH

pH is essential in terms of controlling the removal of dyes. It has no effect on altering
the separation of the adsorbent site; nevertheless, it modifies the structure and the chemistry
of the dye [68]. Moreover, the charge and surface potential of the oxide are primarily pH-
dependent. It is possible, in some cases, to adjust the pH conditions of the slurry in such
a way that all the particles exhibit the same charge polarity [68]. Hence, the effect of pH
on the removal of MB by nickel molybdate (α-NiMoO4) nanosorbent was assessed by
varying pH values between 3 and 11 at a controlled temperature of 20 ◦C with the initial
concentration of 100 ppm. Figure 2 demonstrates that methylene blue removal depended
on the effect of pH. By increasing the pH from 3 to 7, the removal percentage did not
substantially change and remained at about 29%. The further increase of pH to 9 slightly
increased the removal percentage to 35%. The increase of pH to 11 led to the highly efficient
removal of MB, as the removal percentage reached 93%. Moreover, there was an increase
in the quantity of dye eliminated for every unit mass of the adsorbent at its equilibrium
(qe) from 25 to 93 mg/g.

Figure 2. Effect of pH on dye removal performance of α-NiMoO4 in a 100 ppm methylene blue
solution (mads = 0.1 g, T = 20 ◦C, t = 30 min).

Strong electrostatic interactions took place between the charges of the MB dyes and
those of α-NiMoO4 adsorbent, as demonstrated by the increase in removal percentage
obtained with the increase of the pH values. Furthermore, in the solution at pH 11, the
hydroxyl group (OH−) favors the direction of the positively charged MB as the pKa equals
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3.8 [69]. Nevertheless, the lower removal performance at acidic values may well be related
to the extra proton ions within the solution which are in concurrency with those of the basic
dye cations on the removal sites of α-NiMoO4. Comparable outcomes were reported by
Kooli et al. in the examination of waste bricks utilized as favorable agents for the removal
of basic blue 41 from liquid solutions [70].

On the other hand, these results can be explained by the point of zero charge value
measured for nickel molybdate (pHpzc = 8.96). The literature reports that at lower pH
(pH < pHpzc), the surface charge may become positive, thus allowing H+ ions to compete
effectively with dye cations and causing a decrease in the amount of dye adsorbed [71].
At higher pH (pH > pHpzc), the nickel molybdate may become negatively charged, which
enhances the positively charged cationic dye through electrostatic forces of attraction.

Thus, pH 11 was found to be the best value for the removal of MB when employing
α-NiMoO4 nanosorbent.

2.1.3. Effect of Adsorbent Dose

One crucial parameter in adsorption processes is the adsorbent dose [72]. The MB
dye removal using α-NiMoO4 was explored with varying adsorbent doses of 0.001 to
0.5 g/L with an initial dye concentration of 160 ppm. As can be seen clearly in Figure 3, the
percentage (%) and the amount (mg/g) of MB removed were reduced as the nanosorbent
dose increased from 0.001 to 0.5 g/L. The decrease in the removal effectiveness might
be due to the performance of particle interaction (e.g., aggregation) as a result of the
high dosage of the adsorbent. Such aggregation could increase diffusional path duration.
Furthermore, the adsorption sites remain unsaturated throughout the course of sorption
under these conditions. In fact, all of these factors can lead to a decrease in available particle
size [73,74].

Figure 3. Effect of adsorbent dose on the dye removal performance of α-NiMoO4 in a 160 ppm
methylene blue solution (t = 30 min, T = 20 ◦C).

2.1.4. Effects of Initial Concentration and Contact Time

Figure 4 presents the effects of initial MB dye concentration and contact time on dye
removal. The removal of MB was enhanced with the increase in contact time, reaching
the highest value of 98% at around 30 min for initial methylene blue concentrations of
100 ppm. For MB concentrations of 120, 140, and 160 ppm, a maximum value of 99%
removal was reached at around 60 min. However, the removal percentage of MB decreased
from 99% to 76% as the Ci value was increased from 160 to 200 ppm. The removal amount
remarkably increased from 9993 mg/g to 15,900 mg/g when the initial dye concentration
increased from 100 to 160 ppm and remained stable when the concentration was increased
to 200 ppm. This showed that the concentration gradient is an essential factor that drives the
overcoming of the mass transfer resistances within the solid and liquid phases. The ratio of
the solution connected with the α-NiMoO4 surface was higher at lower MB concentrations,
which triggered a rise in removal efficiency. In contrast, at higher MB dye concentrations,
the decrease in the adsorption percentage was affected by the saturation of active sites on
the α-NiMoO4 surface [75].
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Figure 4. Impact of the initial dye concentration and contact time on the methylene blue (MB) dye
removal performance of α-NiMoO4 (madsorbent = 0.001 g, T = 20◦C, pH = 11).

2.1.5. Temperature Effect

The temperature is an essential factor that greatly affects the removal of dyes [76]. The
procedure for removing the methylene blue dye was examined from 20 to 70 ◦C, as shown
in Figure 5. The outcome of temperature experiments shows that the removal percentage
increased from 70% to 100% and the removal capacity increased from 14,047 to 19,990 mg/g
at an initial MB dye concentration of 200 ppm. The efficiency progression of MB removal
with a rise in temperature was due to the intensity of attractive forces between removal
sites and the MB, which shows an endothermic process [70]. In addition, increasing the
temperature improves the removal motion of the adsorbent sites and the dye molecule
motion [76].

Figure 5. The effect of temperature on the dye removal capacity of NiMoO4 in a 200 ppm methylene
blue solution (t = 30 min, pH = 11).

Thermodynamic factors are also important factors in adsorption processes [77,78].
The probability and the mechanism of adsorption can be predicted by the thermodynamic
factors [77]. The following equations are used to determine the thermodynamic parameters:

∆Go = −RTLnKd (1)

Kd =
Ca

Ce
(2)

LnKd =
∆So

R
− Ho

RT
(3)

where R is the gas constant (J mol−1 K−1), ∆G◦ is the free energy, Kd is the distribution
constant, T is absolute temperature (K), Ca is the quantity of dye adsorbed by the adsorbent
at equilibrium (mol/L), Ce is the equilibrium concentration, ∆H◦ is the standard enthalpy,
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and ∆S◦ is the standard entropy. ∆S◦ and ∆H◦ values were obtained from the intercept and
slope of the ln Kd versus 1/T plot (Figure 6). ∆G◦ values were obtained from Equation (1)
and are shown in Table 1. The adsorption is favorable and spontaneous, and this is
revealed by the negative value obtained for ∆G◦. In fact, Gibbs free energy change (∆G◦)
values can discern whether a process is spontaneous or not, and negative values of ∆G◦

imply a spontaneous process. The enthalpy change (∆H◦) provides information about the
exothermic or endothermic nature of the process and differentiates between physical and
chemical adsorption processes. Therefore, the positive value of ∆H◦ (35.12 kJ mol−1) shows
that methylene blue removal followed an exothermic process. In addition, the (∆H◦) value
was found to be less than 40 kJ/ mol, which indicates that the adsorption of MB by nickel
molybdate is physisorption [79]. The present results are similar to the results reported by
Xia [80] for adsorption of congo red from aqueous solution by CTAB–hectorite and ODA–
hectorite composites. The enhanced anarchy and uncertainty in the solid solution interface
of methylene blue and α-NiMoO4 are shown by the positive values of ∆S◦. The adsorbate
molecules move the adsorbed water molecules; consequently, translational energy is gained
rather than lost, which indicates that this approach takes place randomly [81].

Figure 6. Van’t Hoff plot presenting the impact of temperature on methylene blue dye removal
utilizing α-NiMoO4.

Table 1. Thermodynamic parameters for the removal of MB dye utilizing α-NiMoO4.

Adsorbent Adsorbate Temperature (K) Kd ∆H◦ (kJ mol−1) ∆S◦ (kJ mol−1 K) ∆G◦ (kJ mol−1)

α-NiMoO4 MB

293 2.401

35.12 0.126

293K 313K 323K 333K 343K313 3.348

323 7.696

333 23.390 −2.134 −3.144 −5.480 −8.727 −14.822
343 180.818

2.2. Kinetic Study

Kinetic study of removal of methylene blue dye has been conducted as it provides an
indication regarding the adsorption system [82].
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The data found from the kinetics of removing MB dye using α-NiMoO4 nanosorbent
were examined by pseudo-first-order, pseudo-second-order, and intraparticle diffusion
models. Equations of the studied models are shown in Table 2.

Table 2. Kinetic model equations.

Model Equation Parameters

Pseudo-first-order (PFD) [83] Ln
(
qe − qt

)
= Lnqe + K1t (4)

K1: the rate constant of pseudo-first-order
adsorption (1/min)

qe: the removal capacity at equilibrium (mg/g)
qt: the removal capacity at time t (mg/g)

Pseudo-second-order (PSD) [83] t
qt

=
1

K2q2
e
+

t
qe

(5)

K2: the pseudo-second-order rate constant
(g·mg−1·min−1)

qe: the removal capacity at equilibrium (mg/g)
qt: the removal capacity at time t (mg/g)

Intraparticle diffusion (IPD) [77] qt = KIt0.5 + l (6)

qt: the removal capacity (mg/g) at time t
t: the contact time (min)

I (mg/g) and KI (mg/(g·min0.5)): the
intraparticle diffusion constants

Three model parameters, namely pseudo-first-order, pseudo-second-order, and intra-
particle diffusion, are presented in Table 3 and displayed in Figure 7, Figure 8, Figure 9
respectively. Regression correlation coefficients (R2) of the three models vary. Intra-
particle diffusion is 0.934 to 0.981, pseudo-first-order ranges from 0.952 to 0.988, and
pseudo-second-order is 0.999 to 1.000, varying with their concentrations used. The R2 for
pseudo-second-order is equal to or near 1, and hence this model fits very well.

Figure 7. Pseudo-first-order model plot showing the impact of contact time and initial dye concentra-
tion on methylene blue removal utilizing α-NiMoO4.
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Figure 8. Pseudo-second-order model plot showing the impact of contact time and initial dye
concentration on methylene blue dye removal utilizing α-NiMoO4.

Figure 9. Intraparticle diffusion model plot showing the impact of contact time and initial dye
concentration on methylene blue dye removal utilizing α-NiMoO4.

Table 3. Kinetic parameters for removal of methylene blue utilizing α-NiMoO4.

Cimg/L Pseudo-First-Order Pseudo-Second-Order Intraparticle
Diffusion Model

qexp
(mg/g)

qe
(mg/g)

k1
(1/min) R1

2 qe
(mg/g)

k2
(g/mg min) R2

2 I
(mg/g)

ki
(mg/g min0.5) R3

2

100 10,000 584 0.020 0.988 9964 0.00015 1.000 9311 65 0.981

120 11,981 2101 0.048 0.966 12,200 0.00004 1.000 10,027 218 0.946

140 13,970 4770 0.062 0.982 14,436 0.00002 1.000 10,426 403 0.934

160 15,900 4218 0.028 0.952 16,136 0.00002 0.999 11,036 501 0.959

2.3. Adsorption Isotherms

When planning adsorption methods, adsorption isotherms, which are known to be
essential, are taken into consideration due to their perfect explanation [84]. Four adsorption
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models have been examined, namely Dubinin–Radushkevich, Temkin, Freundlich, and
Langmuir models. Equations of the four examined models are presented in Table 4.

Table 4. Adsorption isotherm models for the removal of methylene blue dye utilizing α-NiMoO4.

Model Equation Parameters

Freundlich [78] Lnqe = LnqF +
1
n

LnCe (7)

Ce: concentration of MB at equilibrium (ppm)
n: the heterogeneity factor (g/L)

qF: the Freundlich constant (mg(1−1/n) L1/n g−1)
qe: the methylene blue dye quantity adsorbed by α-NiMoO4

at equilibrium (mg/g)

Langmuir [85]

Ce

qe
=

1
qmKL

+
Ce

qm
(8)

qe: the methylene blue dye quantity adsorbed by α-NiMoO4
at equilibrium (mg/g)

Ce: concentration of MB at equilibrium (ppm)
qm: the maximum quantity of methylene blue dye removed

by α-NiMoO4 (mg/g)
KL: Langmuir constant of adsorption (L/mg)

RL =
1

1 + KLCi
(9)

Ci: the initial concentration of methylene blue
KL: the Langmuir constant

RL: values indicate that the removal of methylene blue dye
could be linear (RL = 1), irreversible (RL = 0), favorable (0 <

RL< 1), or unfavorable (RL > 1)

Dubinin–Radushkevich (D-R) [84]
Lnqe = Lnqm − Kε2 (10)

ε = RTLn
(

1 +
1

Ce

)
(11)

K: constant for the sorption energy (mol2/kJ2)
ε: the Polanyi potential
T: the temperature (K)

R: the universal gas constant (8.314 J.mol−1 K−1)
qm: the theoretical saturation capacity

Ce: the equilibrium concentration of the methylene blue dye
left in the solution (ppm)

Temkin [86] qe = BTLnAT + BTLnCe (12)

bT: the Temkin constant related to heat of sorption (J/mol)
BT = RT/bT

R: the gas constant (8.314 J/mol K)
AT: the Temkin isotherm constant (L/g)

T: the absolute temperature (K)

The models employed to match the investigational data were Freundlich, Langmuir,
Temkin, and D–R isotherm. Standards of regression correlation coefficients (R2) and the
model parameters are displayed in Figure 10 and contained in Table 5. Langmuir equation
demonstrated the highest value of R2 (0.999), and D–R model revealed the lowest value of
R2 (0.782), while intermediary values were attained for Temkin and Freundlich (0.960 and
0.948, respectively). The Langmuir model fits the experimental results well; the methylene
blue removal occurred on a homogeneous surface, establishing a monolayer on the α-
NiMoO4 adsorbent, with a high adsorption capacity of 16,863 mg/g. Methylene blue dye
removal by α-NiMoO4 is favorable and is revealed by the RL separation factor ranging
from 0.0004 to 0.0006.

Figure 10. Freundlich (a) and Langmuir (b) isotherm model plots presenting the results of initial dye
concentration and the removal of methylene blue dye utilizing α-NiMoO4.
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Table 5. Isotherm parameters for the removal of MB dye utilizing α-NiMoO4.

Langmuir Freundlich Temkin Dubinin–Radushkevich

qm
(mg/g)

KL (L/
mg) R2 Range

RL

qF(mg(1−1/n)

L1/ng−1)
1/n R2 AT

(L/g) BT R2 qm
(mg/g) R2 E (Kj/

mol)

16,863 16 0.999 0.0004–
0.0006 16,318 6 0.948 1220 2269 0.960 14,429 0.782 43

Table 6 presents previous reports of the maximum amount of methylene blue dye
removed. When compared with many nanosorbents, Nickel-based nanosorbents NiO
(Qmax = 10,585 mg/g) and α-NiMoO4 (Qmax = 16,863.00 mg/g) show a considerably higher
rate of adsorption for MB. The adsorption capacity of Fe2(MoO4)3 (Qmax = 6173.00 mg/g)
is lower than that obtained by α-NiMoO4, which can be related to the difference in their
specific surface area (8.03 versus 29.86 m2/g). Thus, α-NiMoO4 has the advantage of being
able to be synthesized at a rather low temperature via a relatively cost-effective, very simple
procedure for use in potential novel, more efficient decontamination processes aimed at
the removal of methylene pollutants.

Table 6. Previous reports of the maximum amount of methylene blue dye removed (qm).

Nanosorbent Qmax (mg/g) Reference

ZnMoO4 nanoparticles 217.86 [30]

Fe2(MoO4)3 nanoparticles 6173.00 [87]

α-MoO3 nanoparticles 152.00 [88]

Chemically reduced graphene oxide 1519.60 [89]

Magnetic β-cyclodextrin–chitosan nanoparticles 2783.30 [90]

ZnO 7918.02–9197.70 [91]

Fe2O3 1124.70 [92]

CoO 5501.93 [92]

NiO 10,585.00 [92]

Nickel molybdate (α-NiMoO4) 16,863.00 This work

2.4. Regeneration and Characterization of the α-NiMoO4 Nanosorbent
2.4.1. Regeneration Performance

The repeatability and regeneration of nanosorbents are quite important for their
practical applications. Regeneration techniques suggested in the literature include chemi-
cal extraction, thermal treatment, supercritical regeneration, microwave irradiation, bio-
regeneration, etc. [25,88,93–95]. The thermal regeneration, which has been applied for
molybdenum oxide nanosorbent, was described in our previously published work [88]. In
this investigation, the thermal treatment technique was examined for purposes of regenera-
tion testing, as the structure of the α-NiMoO4 removal agent was steady. The adsorbed MB
was completely oxidized and decomposed during the calcination process.

The results showed that α-NiMoO4 could be re-stimulated through thermal treatment.
Figure 11 indicates the reused performance of α-NiMoO4 in the removal of MB in three
cycles. As a matter of fact, the data show a decrease in dye removal from 99% to 73%
with a decrease in removal capacity from 15,900 to 11,608mg/g. The maximum adsorption
capacity obtained after four cycles of use (11,608 mg/g) was higher than that obtained
by several nanosorbents [30,87–92]. The high level of removal efficiency showed that the
adsorbent regeneration by way of calcination under atmospheric air at a temperature of
400 ◦C was extremely efficient and indicative of outstanding recycling capability.
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Figure 11. Recycled performance of α-NiMoO4 in the removal of MB dye.

2.4.2. Fourier Transform Infrared Spectroscopy

To completely recognize the method by which α-NiMoO4 nanosorbent removes MB
dye, the components subjected to MB dye were examined by FT-IR spectroscopy. Figure 12
shows the FTIR spectra for the α-NiMoO4 sample before and after the removal of methylene
blue dye. As observed, the characteristics of flexing and stretching vibrations of the metal–
oxygen bonds at 966 and 930 cm−1 and the broad, centered bonds at 650 cm−1 correspond
to nickel molybdate [96]. The FTIR spectrum of the pure methylene blue displayed bands
between 1700 and 1000 cm−1 [97]. The FTIR spectrum of NiMoO4 after adsorption of
methylene blue (NiMoO4-MB) displayed further bands located at 1600 cm−1, related to the
C=C stretching of methylene blue, because of the presence of the methylene blue attached to
the active sites of NiMoO4 [98]. The FTIR spectrum of the regenerated NiMoO4 (NiMoO4-
MB-Reg) after thermal treatment and the FTIR spectrum of fresh NiMoO4 were alike,
indicating thorough combustion of the attached methylene blue on the surface, and the
resulting spectrum showed the cleanness and performance of the regenerated adsorbent.

Figure 12. Fourier transform infrared spectra of NiMoO4, NiMoO4-MB, NiMoO4-MB-Reg, and MB.

2.5. Removal Mechanism of MB

The removal of MB by α-NiMoO4 nanoparticles was discovered to be due to the
adsorption mechanism. Moreover, FTIR spectroscopy revealed that the removed methy-
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lene blue cations were triggered by the adsorption method without any intermediate
compounds produced due to the absence of MB decomposition. Additionally, by using
α-NiMoO4 nanoparticles, the effectiveness of MB dye removal increased with the increase
in pH up to pH 11, and this may be credited to its basic media. A reasonable mechanism
can be proposed (Figure 13) on the basis of these findings. Furthermore, the positive charge
of the MB dye is sustained in the first step at pH 11 since the pKa is equal to 3.8 [69]. Addi-
tionally, α-NiMoO4 reacts with the hydroxyl groups (OH−) in the solution to generate the
ion nickel molybdate (NiMoO5

2−) with no intermediate compounds present [99]. Hence,
the adsorption is directed by the strong electrostatic interactions between the negatively
charged surface of nickel molybdate (NiMoO5

2−) and the positive charge of methylene
blue cations [88].

Figure 13. Schematic mechanism of the methylene blue dye removal by α-NiMoO4 nanosorbent.

It is important to adhere to the progression of the α-NiMoO4 morphology at different
phases of the adsorption study. The SEM micrograph in Figure 14A gives an idea about
how the particles form aggregates, showing a good porosity that can allow the improved
adsorption of the dye. Nevertheless, the micrographs in Figure 14B,D,F show much less
porous powder after the adsorption experiments; the methylene blue molecules filled
the pores present in the starting samples. Figure 14C,E,G shows that the morphology of
the sample did not change after the regeneration or the first and second reuses. In all
cases, the particles were less agglomerated, displaying exceptionally porous powder. The
morphology of α-NiMoO4 was not significantly altered, even after the second and third
reuses (Figure 14E,G).
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Figure 14. SEM micrographs: (A) the starting material, pure nickel molybdate (α-NiMoO4); (B) the
material after the MB dye had been removed; (C) the regenerated α-NiMoO4; (D) the material after
the second regeneration and/or removal cycle of the methylene blue dye; (E) the morphology of α-
NiMoO4 after the second regeneration process; (F) the material after the third regeneration/removal
cycle of methylene blue dye; (G) the morphology of α-NiMoO4 after the third regeneration.

3. Materials and Methods
3.1. Nickel Molybdate Nanosorbent Preparation

All synthetic compounds aside from the methylene blue (provided by Panreac, Barcelona,
Spain) were purchased from Sigma-Aldrich (St. Louis, MO, USA) and utilized as received
with no alterations.
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Nickel molybdate (NiMoO4) was formed by thermal breakdown of a nickel molybde-
num complex obtained from the reaction of oxalic acid dihydrate H2C2O4·2H2O, nickel
nitrate Ni(NO3)2·6H2O, and ammonium molybdate (NH4)6Mo7O24·4H2O in its solid form,
as defined previously in the literature [32]. Nickel nitrate, oxalic acid dihydrate, and
ammonium molybdate were blended jointly together in a molar proportion of 1/10/0.143.
The mixture was powdered homogeneously and placed on a hot plate at a temperature
of 160 ◦C for heating. The obtained nickel molybdenum complex was then decomposed
under the control with static air at 500 ◦C for 2 h inside a cylindrical furnace, which was
open at the two ends.

3.2. Adsorption Experiments

Experimental adsorption batches were set up for the removal of the MB dye [75]. The
elimination of MB dye by NiMoO4 was undertaken by the constant stirring of a precise
quantity of adsorbent into a 100 mL MB dye solution with known concentrations and varied
temperatures (such as T = 20, 50, and 70 ◦C) with various contact times (such as 10, 30, 60,
90, and 120 min). Toward the end of prearranged time intervals, before examination with a
UV-Visible spectrometer, 0.22 µm syringe filters (Whatman) were used for filtration. Using
0.01 N NaOH or 0.01 N HCl, the pH of the methylene blue solution was easily adjusted.
The removed quantity and percentage (%) of methylene blue dye at its equilibrium qe
(mg/g) were calculated by the following equations:

Removal % =
C0 − Ce

C0
× 100 (13)

qe =
(C0 − Ce)

M
× V (14)

where M stands for the mass of α-NiMoO4 (g) added; V is the quantity of solution used
(L); and Ce and C0 are equilibrium and initial concentrations of MB (ppm), respectively.
The results were tested three consecutive times, and the percentage uncertainty was found
to be around 3%.

3.3. Adsorbent Regeneration Method

A solution of 160 ppm was used for regeneration experiments, and the removal
equilibrium period was extended by 1 h. The fresh α-NiMoO4 used was filtered and
dried under a constant temperature of 100 ◦C and then calcined at 400 ◦C for 1 h under
atmospheric air. The calcined α-NiMoO4 was examined to assess the recycling objectives
under conditions similar to those for the freshly used α-NiMoO4. Once the first recycling
test worked well, the restoration process was replicated for three consecutive cycles under
consistent conditions.

3.4. pH Point of Zero Charge (pHpzc) Measure

The pH point of zero charge (pHpzc) of the material was measured by the electro-
chemical method reported by Altenor et al. [100]. First, 50 mL of a 0.01 M NaCl solution
was placed in a 100 mL beaker. Then, the pH was adjusted to successive initial values
between 2 and 12 by using either NaOH or HCl (0.1 M), and 0.001 g of nickel molybdate
was added to the solutions. After a contact time of 24 h, the final pH was measured and
plotted against the initial pH.

3.5. Characterization

Analysis of XRD patterns (X-ray diffractometer 6000, Shimadzu, Tokyo, Japan, in-
stalled with λCu-Kα = 1.5406 Ǻ and Ni filter) was conducted to characterize the phase
composition of the synthesized α-NiMoO4 nanosorbent, as presented in Figure 15.
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Figure 15. X-ray diffraction pattern of the synthesized NiMoO4 nanoparticle powder. The Joint
Committee on Powder Diffraction Standards (J.C.P.D.S) index file number is 31-0902.

The specific surface area characterization was completed by using nitrogen isotherm
adsorption in the same way as stated in our previous research work [32]. The recorded
specific surface area was 29.86 m2/g.

FTIR spectroscopy in the range of 400 to 4000 cm−1 (IR Affinity-1S Shimadzu appa-
ratus, Tokyo, Japan) using KBr pellets confirmed the existence of methylene blue dye on
α-NiMoO4 nanoparticles following the experimental adsorption and regeneration studies.

SEM analysis (Quanta Feg 250, Thermo Fisher Scientific, Hillsboro, OR, USA) was
conducted. UV-Visible spectrophotometer (Thermo Scientific Genesys 10S, Madison, WI,
USA) was used to determine the concentration at equilibrium.

4. Conclusions

α-NiMoO4 nanosorbent was synthesized and investigated as a material for the re-
moval of MB dye from aqueous solutions. Removal of MB was extremely reliant on the
pH, and this resulted in the achievement of 99% removal efficiency for initial dye con-
centrations between 100 and 160 ppm at pH 11. The kinetic findings suggested that the
removal of methylene blue followed the pseudo-second-order model, and the equilibrium
adsorption results were best fitted with the Langmuir isotherm model. The highest removal
amount achieved was 16,863 mg/g, as determined by the Langmuir model. Calcination at
400 ◦C was effectively sufficient to regenerate the adsorbent for further reuse. Even after
three cycles of reusing the adsorbent, the MB removal efficiency of NiMoO4 was still high.
The data proved that α-NiMoO4 could be an effective nanosorbent offering outstanding
performance in removing MB dye even after being recycled.
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