Novel Fast Chromatography-Tandem Mass Spectrometry Quantitative Approach for the Determination of Plant-Extracted Phytosterols and Tocopherols.

George Gachumi¹, Alice Demelenne², Asmita Poudel¹, Zafer Bashi³, and Anas El-Aneed^{1*}.

¹Drug Design and Discovery Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada

²Laboratory for the Analysis of Medicines, Department of Pharmacy, CIRM, University of Liège, Belgium

Supplementary materials

Table S1: Summary for some reported studies outlining analyte-to-analyte interferences for the analysis of plant sterols.

Analyte	$[M+H-H_2O]^+$	MS Condition	m/z value of	Reference
	m/z		corresponding	
			interference ion	
campesterol	383	APCI (+)-MS/MS	395 matching [M + H –	[1]
			H ₂ O] ⁺ of stigmasterol	
			and,	
			397 matching [M + H –	[1,2]
			H ₂ O] ⁺ of sitosterol	
sitosterol	397	APCI (+)-MS/MS	409 matching [M + H -	[1]
			H ₂ O] ⁺ of cycloartenol	
stigmasterol	395	APCI (+)-MS	383 matching [M + H –	[3]
-			$H_2O]^+$ of campesterol	
			and,	
		APCI (+)-MS/MS	409 matching [M + H -	[2]
			H ₂ O] ⁺ of cycloartenol	

Concentration	Delta tocopherol		Stigmasterol	
(µg/mL)	Benchtop	Autosampler	Benchtop	Autosampler
0.25	102.70 ± 2.72	110.75 ± 1.06	-	-
0.75	106.91 ± 1.29	102.68 ± 5.85	-	-
5.5	92.81 ± 3.10	101.25 ± 2.62	91.50 ± 2.12	97.23 ± 1.73
8	101.25 ± 2.62	100.23 ± 5.01	104.50 ± 0.71	98.50 ± 2.12

Table S2. Benchtop and autosampler stability in matrix spiked QCs shown as mean ± SD.

Figure S1. Cholestanol as an internal standard showed analyte interferences, where insert chromatograms shown by \rightarrow is extracted ion chromatogram for brassicasterol and \rightarrow for campesterol.

Figure S2. Cholestanol interfering ion at m/z 383 shows a similar MS/MS spectrum as that of campesterol monitored ion $[M + H - H_2O]^+$ at m/z 383

Figure S3. Brassicasterol MS/MS of interfering ion $[M + H - 4H]^+$ at m/z 395 showing similar MS/MS spectrum as that of Stigmasterol monitored ion $[M + H - H_2O]^+$ at m/z 395.

Figure S4. Campesterol MS/MS of interfering ion $[M + H - 4H]^+$ at m/z 397 showing similar MS/MS spectrum as that of β -sitosterol monitored ion $[M + H - H_2O]^+$ at m/z 397.

Figure S5. Merging of the interfering peak from campesterol m/z 397 \rightarrow 161/135 with β -sitosterol peak at high concentration (using 2.7 µm guard column).

Figure S6. Campesterol (m/z 383 \rightarrow 161/147) interference peak (insert) from d₆-cholesterol.

Figure S7. Interfering peaks are distinguishable at both low (A1, A2) and high (B1, B2) concentration when 1.9 µm guard column was employed.

Figure S8. Calibration curves for tocopherols (A) and phytosterols (B).

References.

- 1. Bedner, M.; Schantz, M.M.; Sander, L.C.; Sharpless, K.E. Development of liquid chromatographic methods for the determination of phytosterols in standard reference materials containing saw palmetto. *J. Chromatogr. A* **2008**, *1192*, 74-80.
- 2. Rozenberg, R.; Ruibal-Mendieta, N.L.; Petitjean, G.; Cani, P.; Delacroix, D.L.; Delzenne, N.M.; Meurens, M.; Quetin-Leclercq, J.; Habib-Jiwan, J.-L. Phytosterol analysis and characterization in spelt (triticum aestivum ssp. Spelta I.) and wheat (t. Aestivum I.) lipids by lc/apci-ms. *Journal of cereal science* **2003**, *38*, 189-197.
- 3. Ishida, N. A method for simultaneous analysis of phytosterols and phytosterol esters in tobacco leaves using non aqueous reversed phase chromatography and atmospheric pressure chemical ionization mass spectrometry detector. *J. Chromatogr. A* **2014**, *1340*, 99-108.