Design, synthesis and pharmacological evaluation of three novel dehydroabietyl piperazine dithiocarbamate ruthenium (II) polypyridyl complexes as potential antitumor agents: DNA damage, cell cycle arrest and apoptosis inducing

Hao-Ran Wang ${ }^{1, \dagger}$, Jian-Hua Wei ${ }^{1, \dagger, *}$, Hong Jiang ${ }^{1}$, Ye Zhang ${ }^{1,2}$, Cai-Na Jiang ${ }^{1, *}$, Xian-Li Ma ${ }^{1,2,{ }^{*}}$
${ }^{1}$ School of Pharmacy, Guilin Medical University, Guilin 541004, China.
${ }^{2}$ Department of Chemistry \& Pharmaceutical Science, Guilin Normal College, Xinyi Road 15, Guangxi 541001, China

${ }^{+}$These authors contributed equally to this work.

1. Metal accumulation in T-24 cell

Figure S1: ICP-MS of T-24 cell uptake of complexes $\mathbf{6 a - 6 c}$. T- 24 cells incubated with complexes $\mathbf{6 a}-6 \mathrm{c}$ for 2 h at $37^{\circ} \mathrm{C}$ in a humidified atmosphere of $5 \% \mathrm{CO}_{2} / 95 \%$ air. All cells were collected, and then resuspended in 0.5 mL of PBS solution. Ruthenium concentrations were determined by ICP-MS (Inductively-Coupled Plasma Mass Spectrometry). Samples then treated with concentrated HNO_{3} overnight prior to analysis. Cellular concentrations of ruthenium were reported per $\mu \mathrm{g}$ of protein.

2. Cell cycle arrest analysis

Figure S2: Cell cycle distribution of T-24 cells exposed to the $\mathbf{6 a}$ and $\mathbf{6 c}(0.5,1,2 \mu \mathrm{M})$ for 24 h . Effects on cell cycle progression of these compounds were examined according to the procedures described in the experimental section.

Figure S3: HPLC chromatograms for $\mathbf{6 a} \mathbf{a} \mathbf{6} \mathbf{b}$ and $\mathbf{6 c}$ in aqueous solution ($\mathbf{1 ~ m g} / \mathrm{mL}$) in the time courses of $0 \mathrm{~h}, 12 \mathrm{~h}$ and 24 h , respectively. Column: reversed-phase C18 column (Agilent 5 TC-C18 250*4.6 mm.). Column temperature: $35^{\circ} \mathrm{C}$. Mobile phase: $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{H}_{2} \mathrm{O}$ (30:70). Flow rate: $1.0 \mathrm{ml} / \mathrm{min}$. Injection volume: $20 \mu \mathrm{M}$.

3. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{CNMR}$ and HRMS of compounds $6 \mathrm{a}-6 \mathrm{c}$.

tert-butyl 4-((1R,4aS)-7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene-1-carbonyl)piperazine-1-carboxylate (3).Compound 1 (1 equivalent, 15 mmol) was dissolved in dichloromethane (100 mL), and excess oxalyl chloride (3.5 equivalent, 52.5 mmol) was added. After the reaction, the oxalyl chloride was removed, Boc-piperazine (1.2 equivalent, 18 mmol) was dissolved in the reaction solution, and the product 3 was obtained by separation and purification. It is a white solid with a yield of $82.3 \% .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.13(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.96$ (d , $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 3.61(\mathrm{dd}, J=22.9,12.5 \mathrm{~Hz}, 4 \mathrm{H}), 3.40-3.30(\mathrm{~m}, 4 \mathrm{H}), 2.92(\mathrm{~d}, J=18.4 \mathrm{~Hz}$, 1 H), $2.85(\mathrm{~s}, 1 \mathrm{H}), 2.79(\mathrm{~s}, 1 \mathrm{H}), 2.27(\mathrm{t}, J=11.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.75(\mathrm{dd}, J=24.8,18.7 \mathrm{~Hz}, 6 \mathrm{H}), 1.58(\mathrm{~s}, 1 \mathrm{H})$, $1.43(\mathrm{~s}, 9 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.59$, $155.05,147.24,145.71,135.15,127.10,124.20,123.81,80.63,53.43,46.97,45.40,37.66,37.46$, 35.50, 33.45, 30.61, 28.40, 25.50. HRMS (m/z) (ESI): $\mathrm{C}_{29} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$calcd for: 469.3352 found: 469.3457.

S2\#2-9 RT: 0.01-0.03 AV: 8 NL: 4.82E5 T: FTMS + p ESI Full ms [450.00-650.00]

((1R,4aS)-7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthren-1-yl)(piperazin-
1-yl)methanone (4). Compound 3 (1 equivalent, 15 mmol) was dissolved in dichloromethane (100 mL), and excess trifluoroacetic acid (3.5 equivalents, 52.5 mmol) was added. After the reaction, extract and adjust the pH to neutral to obtain product 4. It is a white solid with a yield of $76.5 \%{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.14(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 3.98(\mathrm{dd}, J=$ $32.2,14.9 \mathrm{~Hz}, 4 \mathrm{H}$), 3.17 ($\mathrm{s}, 4 \mathrm{H}$), 2.91 (dd, $J=50.3,23.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.27(\mathrm{t}, J=11.6 \mathrm{~Hz}, 2 \mathrm{H}$), 1.76 (dd, J $=22.3,16.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.67-1.39(\mathrm{~m}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.49$ (s$), 146.60$ (s$), 145.84$ (s$), 134.85$ (s$), 127.13$ (s$), 124.01$ ($\mathrm{d}, \mathrm{J}=18.7 \mathrm{~Hz}$), 46.80 (s), 45.49 (s$), 43.55$ (s$), 42.62$ (s$), 37.49$ (d, J $=19.5 \mathrm{~Hz}$), 35.75 (s), 33.46 (s$), 30.45$ (s$), 25.39$ (s), 23.98 (d, J = 2.9 Hz), 22.16 (s$), 18.66$ (d, $J=13.8 \mathrm{~Hz}$). HRMS (m/z) (ESI): $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$calcd for: 369.2828 found: 369.2919.

D:IDATAL WWJH20180920WWHRL20190910ISC
09/10/19 15:47:13
SC \#1 RT: 0.01 AV: 1 NL- 3.01E6
T: FTMS + P ESI Full ms [300.00-500.00]

sodium 4-((1R,4aS)-7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene-1-carbonyl)piperazine-1-carbodithioate (5). Compound 4 (1 equivalent, 15 mmol) was dissolved in dichloromethane (100 mL), and sodium hydroxide solution (1 equivalent, 15 mmol) and excess CS2 were added. Separate and purify after the reaction to obtain purified product 5 . It is a white solid with a yield of $63.2 \%{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.15(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{dd}, \mathrm{J}=8.2,1.6 \mathrm{~Hz}$, 1H), 6.89 (s, 1H), $4.14-4.06(\mathrm{~m}, 1 \mathrm{H}), 3.79$ (dd, J = 18.4, $13.4 \mathrm{~Hz}, 5 \mathrm{H}$), $3.04-2.73$ (m, 3H), $2.30(\mathrm{~d}, \mathrm{~J}$ $=11.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.04(\mathrm{~s}, 1 \mathrm{H}), 1.84-1.66(\mathrm{~m}, 5 \mathrm{H}), 1.56(\mathrm{dd}, \mathrm{J}=12.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{dd}, \mathrm{J}=13.3,10.4$ $\mathrm{Hz}, 1 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.29-1.24(\mathrm{~m}, 4 \mathrm{H}), 1.23(\mathrm{~d}, \mathrm{~J}=3.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right)$ (177.49, 146.60, 145.84, 134.85, 127.13, 124.10, 123.91, 46.80, 45.49, 43.55, 42.62, 37.59, 37.39, 35.75, 33.46, 30.45, 25.39, 23.99, 23.96, 22.16, 18.73, 18.59. HRMS (m/z) (ESI): $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{NaOS}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd for: 489.2088, found: 489.21.

(6a). Yield 56.2\%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 9.87$ (d, $J=5.3 \mathrm{~Hz}, 2 \mathrm{H}$), 8.83 (d, J=8.1 Hz, 2H), $8.50(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.37(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.26(\mathrm{dd}, J=15.3,7.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.93(\mathrm{~d}, J=4.1 \mathrm{~Hz}$, 2 H), $7.54-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.13$ (dd, J = 7.0, 3.8 Hz, 1H), 6.97-6.67 (m, 2H), $3.86(\mathrm{~s}, 4 \mathrm{H}), 3.65(\mathrm{~s}, 4 \mathrm{H})$, $2.76(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{ddd}, J=70.1,45.3,15.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.74(\mathrm{dd}, J=26.6,18.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.67-1.36(\mathrm{~m}$, 6 H), 1.26 (d, $J=8.1 \mathrm{~Hz}, 3 \mathrm{H}$), 1.13 (dd, $J=10.5,4.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 212.75$, $176.97,155.33,152.61,148.93,148.55,145.43,135.33,134.86,130.62,130.29,128.36,127.90$, 126.97 , 126.49, 125.59, 124.64, 124.10, 46.81, 46.31, 45.58, 44.76, 37.39, 33.34, 30.48, 29.50, 25.64, 24.38, 18.89, 18.43, 14.38. Anal. Calcd for [$\mathrm{C}_{49} \mathrm{H}_{51} \mathrm{~N}_{6} \mathrm{ORuS}_{2}$]Cl (940.2298): C, 62.57; H, 5.46; $\mathrm{N}, 8.93$. Found: C, 62.50; H, 5.39; N, 9.02. HRMS (m/z) (ESI) $905.2606\left[\mathrm{C}_{49} \mathrm{H}_{51} \mathrm{~N}_{6} \mathrm{ORuS}_{2}\right]^{+}$.

(6b). Yield 53.2\%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 10.57(\mathrm{~s}, 2 \mathrm{H}), 9.82(\mathrm{~d}, \mathrm{~J}=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 9.44-9.35$ $(\mathrm{m}, 1 \mathrm{H}), 9.00(\mathrm{~s}, 1 \mathrm{H}), 8.68(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.32(\mathrm{dd}, J=8.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.03-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.82$ $(\mathrm{s}, 1 \mathrm{H}), 7.47-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.02-6.83(\mathrm{~m}, 4 \mathrm{H}), 6.76(\mathrm{~s}$, 2H), 3.37 (s, 8H), $2.86-2.67(\mathrm{~m}, 3 \mathrm{H}), 1.29(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 6 \mathrm{H}), 1.21(\mathrm{~s}, 6 \mathrm{H})$, $1.19(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.22,168.66,155.06,153.79,149.47,135.07,130.43$, $127.78,127.36,106.54,106.08,100.00,56.12,50.44,41.49,41.02,37.40,33.31,33.03,28.27$, 27.05, 22.34, 11.76, 10.17, 4.03. Anal. Calcd for [$\mathrm{C}_{49} \mathrm{H}_{53} \mathrm{~N}_{8} \mathrm{ORuS}_{2}$]Cl (970.2516): C, 60.63; H, 5.50; $\mathrm{N}, 11.54$. Found: C, 62.55 ; H, 5.58; N, 11.46. HRMS (m/z) (ESI) $935.2820\left[\mathrm{C}_{49} \mathrm{H}_{53} \mathrm{~N}_{8} \mathrm{ORuS}_{2}\right]^{+}$.

D:DATAL...UHIWHRL20191020ICASE936.29	10/19/19 15:54:11
GASE936.29 \#30 RT: 0.10 AV: 1 NL- 1.04EB	

GASE936 29 \#30 RT: 0.10 AV: 1 NL- 1.04E8
T. FTMS + DESI sid=12.50 Full ms /450 00-1500.00

(6c). Yield 55.3\%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.53(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.68(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.57$ (d, J = $8.1 \mathrm{~Hz}, 2 \mathrm{H}$), 8.08 (s, 2H), $7.80(\mathrm{~s}, 2 \mathrm{H}), 7.66$ (ddd, J = 8.9, 4.6, $2.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.56 (d, J = 5.3 Hz , $2 \mathrm{H}), 7.12(\mathrm{dd}, \mathrm{J}=7.4,5.7 \mathrm{~Hz}, 3 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.66(\mathrm{~m}, 8 \mathrm{H}), 2.96-$ 2.77 (m, 3H), 1.86 - $1.60(\mathrm{~m}, 6 \mathrm{H}), 1.34(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.19(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 214.28,177.73,177.69,158.15,158.00,153.71,153.70,150.90$, $146.76,146.74,145.76,145.74,136.01,135.44,134.91,127.06,126.67,126.00,24.17,123.85$, $123.84,123.73,46.85,46.83,46.42,45.51,44.93,37.62,37.43,35.76,33.43,30.57,29.70,5.47$, 23.98, 22.19, 18.80, 18.73, 14.14. Anal. Calcd for [$\mathrm{C}_{45} \mathrm{H}_{51} \mathrm{~N}_{6} \mathrm{ORuS}_{2}$]Cl (892.2298): C, 60.55; H, 5.76; $\mathrm{N}, 9.42$. Found: C, 60.62; H, 5.68; N, 9.36. HRMS (m/z) (ESI) $857.2607\left[\mathrm{C}_{45} \mathrm{H}_{51} \mathrm{~N}_{6} \mathrm{ORuS}_{2}\right]^{+}$.

$\begin{array}{llllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

DIDATAL. NHWNHRL2019102012.2se
10/19/19 16:38:00
2-2se \#1 RT: 0.01 AV: 1 NL: 423E6
T: FTMS +pESI sid=12.50 Full ms [400.00-1500.00]

