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Abstract: Chronic neuropathic pain, particularly peripheral pain, is a cause of great concern for
diabetic patients. Current treatments include numerous agents such as capsaicinoids, a known
deterrent of neuropathic pain despite the inconvenience associated with local side effects. In this
context, the current work aims to elucidate the potential mechanisms involved in cytotoxicity
by capsaicin and proposes an efficient formulation of capsaicin in alginate microcapsules, which
significantly reduces side effects from capsaicin topical administration. For this, human dermal
fibroblast cells were treated with alginate-microencapsulated capsaicin extracts and screened for
potential cytotoxic effects produced by the treatment. Cell viability and morphology were examined,
as well as oxidative stress status and anti-inflammatory potential. Our results show that the alginate
encapsulated formulation of capsaicin exerted lower cytotoxic effects on human dermal fibroblasts as
measured by cell viability and reactive oxygen species (ROS) production. Furthermore, the expression
profiles of inflammatory cytokines were significantly altered by the treatment as compared with the
control culture.
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1. Introduction

The use of capsaicinoids for the treatment of pain goes as far back as 4000 BC [1].
However, it was only introduced to the Western world in the 15th century, on Columbus’
return to Europe from his successful discovery trip to the Americas, and chilies were one
of the wonder products he brought over. First only used as a very attractive spice, the
medicinal powers of chilies (and capsaicinoids) were discovered much later in the middle of
the 19th century, when their peculiar capacity to alleviate pain by topical application turned
them into a very appreciated remedy against burns or itches in the extremities [2]. Also
known as “green peppers”, this fruit’s name is rather improper, since they are a member
of the genus Capsicum. They owe their hot and pungent taste not so much to capsaicin as
to piperines, the usual and defining component of the Piperaceae family [3]. From over
20 known major non-endogenous capsaicinoids, most (as much as 90%) naturally occurring
ones are capsaicin and dihydrocapsaicin [4]). Others include homodihydrocapsaicin,
nordihydrocapsaicin, and homocapsaicin [4].
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As a result of continued research, further medicinal properties of capsaicinoids were
discovered, and they are currently studied for their potential as analgesics, antioxidants,
anticarcinogens [5], and pharmacological agents against obesity [4,6–8].

Capsaicin intended for trade purposes is an oily extract, authorized as a cream or
patch, which is used in the treatment of chronic pain syndromes as postherpetic neuralgia,
musculoskeletal pain, arthrosis, rheumatoid arthritis, rash, psoriasis, bladder conditions
(neurogenic bladder), and, last but not least, diabetic neuropathy [9,10]. Capsaicin (trans-8-
methyl-N-vanillyl-6-nonenamide), known as chili pepper fruit, is a natural alkaloid derived
from plants of the genus Capsicum. Like other vanilloids, capsaicin has a benzene ring and
a long hydrophobic carbon tail with a polar amide group. Capsaicin is not water-soluble,
and for its solubilization, different alcohols and other organic solvents are used in topical
preparations and sprays. In order to keep capsaicin stable for a long time and to increase
its solubility, this compound has been encapsulated by different biomaterials, such as
alginate, which is recognized for its low toxicity. From a chemical point of view, alginate is
a linear copolymer containing blocks of (1, 4)-linked β-D-mannuronate and α-L-guluronate
residues. Alginate is useful as a matrix for cell immobilization, as well as for the entrapment
of bioactive compounds and drugs. Encapsulated drugs are released from alginate pellets
by diffusional processes through pores in the polymeric network [11].

Chronic neuropathic pain, particularly peripheral pain related to diabetes, is a cause
for concern for several reasons, including the worsening of pain at night, which causes
sleep deprivation and an entire range of related subsequent effects such as fatigue, poor
performance, and poor social integration.

Treatment is typically aimed at pain modulation, patient education regarding pain
management, and restoration of motor function, all relying on constant and careful glycemic
control [11]. The treatments available have been limited by adverse reactions, leading to
suboptimal benefit/risk ratio. Furthermore, among the numerous agents researched, there
has been renewed interest in finding further means to use the analgesic action of capsai-
cinoids as a deterrent of neuropathic pain, resulting in the emergence on the market and
pharmaceutical development of a variety of capsaicin-containing products. These products
include quasi-traditional OTC capsaicin preparations and low (<1.0%) concentration cap-
saicin. Such efforts were proven necessary by the comparatively unsatisfactory efficacy
of existing products, which has been aggravated by poor patient compliance arising from
the need for multiple topical applications over extended periods as a result of insufficient
effectiveness. Among the solutions proposed and tested, the development of products with
increased capsaicin strength, i.e., the capsaicin 8% patch, have shown promising potential
to alleviate pain by a single topical application.

In regard to the management of diabetic neuropathic peripheral pain, studies suggest
that capsaicin may be effective to a certain degree, but its use is fraught with a frustrating
number of limitations. Inconveniences such as an unpleasant burning sensation on initial
application, the extended time needed for sufficient depletion of pain, the necessity for
multiple applications to maintain analgesic efficacy, problematic effects in case of discontin-
uation for longer than 24 h, and compelling sustained capsaicin application for substance P
replenishing all inflict upon the potential for the widespread use of current capsaicin phar-
maceutical formulations, aggravating the need to develop new formulations of enhanced
efficacy and limited adverse effects [12,13].

In this context, this work aims to elucidate the potential mechanisms involved in the
cytotoxicity of capsaicin and proposes an efficient formulation of capsaicin in alginate
microcapsules, which significantly reduces the side effects of the topical administration of
capsaicin.

2. Results and Discussion
2.1. Alginate Microcapsules and Capsaicin Encapsulation

The encapsulation efficiency (EE, %) is a variable that allows us to quantify the amount
of active principle (capsaicin, in this case) that is encapsulated and can be calculated by
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analyzing the amount that has not been encapsulated or the amount that is lost during
the microparticle consolidation stage. Quantification was carried out by UV-vis. Calcium
alginate spherical microcapsules, shown in Figure 1, were prepared by dropping a sodium
alginate solution containing a suspension of the gelatin microparticles into a CaCl2 solution.
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Figure 1. Microscopy image of alginate microcapsules loaded with capsaicin.

The encapsulation efficiency of capsaicin can be expressed by the Equation (1), pre-
sented in the Materials and Methods section. For these experiments, by applying the
above-mentioned formula, the obtained encapsulation efficiency was 87%.

2.2. In Vitro Cytotoxic Activity of Capsaicin-Loaded Alginate Microcapsules

The viability of CCD-1070Sk dermal fibroblasts was investigated after 24 h of treat-
ment with the collected extracts and different concentrations of free capsaicin. Cellular
mitochondrial activity was analyzed using the MTT quantitative assay. The obtained data
were statistically analyzed using GraphPad Prism software and are graphically represented
in Figure 2. The viability of dermal fibroblasts exposed to free capsaicin decreased signifi-
cantly after 24 h of treatment as compared to that of the untreated samples, regardless of
the concentration of capsaicin used. In comparison, extracts of AM (alginate microcapsules)
and AM loaded with capsaicin, collected at 30 min and 3 h, did not show any significant
effect on CCD-1070Sk cell viability after 24 h of treatment as compared with the untreated
samples. Furthermore, CCD-1070Sk cells exposed to capsaicin loaded AM extracts for 24 h
had a statistically significant increase in cellular viability for all concentrations of capsaicin,
demonstrating that the microencapsulation of capsaicin alleviates its cytotoxicity.

To further explore the cytotoxicity of the collected extracts and different concentrations
of free capsaicin, the release of lactate dehydrogenase (LDH) in culture cell media was
measured after 24 h of treatment. As shown in Figure 3, a statistically significant increase
in LDH release was observed in response to 24 h exposure of CCD-1070Sk cells to free
capsaicin solutions for all screened concentrations, highlighting the cytotoxic potential
of free capsaicin on human dermal fibroblasts. Furthermore, the cytotoxic profile of
the extracts collected from unloaded AM revealed that the bare micro formulation did
not trigger any alteration in the LDH activity after 24 h of treatment. Also, the same
cytotoxic profile was noticed for the extracts collected from the capsaicin-loaded AM for
all concentrations tested, showing that the microencapsulation of capsaicin represents a
strong tool for modulating free capsaicin cytotoxicity.
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In order to obtain an overview of the potential cytotoxic effects of free and microencap-
sulated capsaicin on human dermal fibroblasts, cellular viability was evaluated by labelling
both live and dead cells using a Live/Dead assay. The images captured by fluorescence
microscopy investigation of the samples are presented in Figure 4. Our results show that all
concentrations of free capsaicin dramatically alter cellular viability, since almost exclusively
dead cells are scattered on the culture surface after the exposure of CCD-1070Sk cells to
treatment. However, no dead cells were detected in CCD-1070Sk cell cultures exposed to
24 h-collected extracts, showing that neither simple AM nor drug-loaded AM trigger cell
death in human dermal fibroblasts cells in vitro. The ratio and distribution of live cells
on the cell culture surface in CCD-1070Sk cells exposed to the tested extracts for 24 h are
similar to the control cell culture, showing that both bare and loaded AM lack cytotoxic
potential towards human dermal fibroblasts.
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The results revealed that the novel microformulation loaded with capsaicin presents
no significant cytotoxicity, irrespective of the loaded concentration of capsaicin. Therefore,
we selected the microformulation loaded with the highest concentration of capsaicin,
5.88 × 10−3 M, for further studies; in this view, extracts collected from 5.88 × 10−3 M
capsaicin AM after 24 h were further used as cell treatments.

2.3. CCD-1070Sk Cell Morphology after Capsaicin-Loaded AM Treatment

In order to investigate the potential differences in cellular morphology between human
dermal cells treated with capsaicin or capsaicin-loaded AM (24 h extracts), we investigated
the cytoskeleton actin filaments after FITC–phalloidin staining. As shown in Figure 5, a low
number of CCD-1070Sk cells were still adhered to the culture surface after 24 h of treatment
with 5.88 × 10−3 M capsaicin. Moreover, the few adhered cells presented with a polygon-
like shape and failed to develop long actin filaments. Regarding simple or capsaicin-loaded
AM treatments, it is clearly shown that none of the treatments adversely affected the
global morphology of human dermal fibroblasts. After 24 h of treatment, CCD-1070Sk
cells showed a typical spindle-like shape and a well-developed cytoskeleton characterized
by long actin filaments. Interestingly, CCD-1070Sk cells treated with capsaicin-loaded
AM presented with a better developed actin filament network compared to cells treated
with pristine AM. These results suggest that microencapsulated capsaicin stimulates actin
protein expression and promotes intercellular contacts.

2.4. Oxidative Stress Induced by Capsaicin-Loaded AM Treatment in CCD-1070Sk Cells

In order to evaluate the potential of capsaicin-loaded AM (24 h extracts) to induce
reactive oxygen species (ROS), the production of H2O2 was quantified as an indicator of
oxidative stress using a ROS–Glo H2O2 assay. The obtained data are graphically repre-
sented in Figure 6 and revealed that free capsaicin induces ROS generation, as significantly
enhanced levels of H2O2 were detected in treated CCD-1070Sk cell cultures compared
to control cultures. Moreover, free capsaicin induced a rapid generation of hydrogen
peroxide, as a significant increase in H2O2 levels was detected even after 6 h of treatment.
In contrast, alginate microencapsulated capsaicin suppressed ROS production as no mod-
ifications to H2O2 levels were observed in AM and capsaicin–AM treated CCD-1070Sk
cells compared to control cultures. Therefore, we conclude that alginate microcapsules and
capsaicin-loaded microcapsules lack the ability to trigger H2O2 production in CCD-1070Sk
cell cultures, as both treatments did not augment H2O2 levels after 6 h or 24 h of treatment.
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Lipopolysaccharide (LPS) from E. coli was used to stimulate RAW 264.7 macrophages
to produce NO. Griess reagent was used to determine NO production as an indicator of
oxidative stress. The obtained data are graphically represented in Figure 7 and revealed that
free capsaicin significantly increased NO generation even after 1 h of exposure compared
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to stimulated RAW cells. Capsaicin-loaded AM (24 h extracts), as well as unloaded AM
(24 h extracts), did not alter the production of NO in the stimulated cells during the first 6 h
of the experiment. However, after 24 h, capsaicin-loaded AM (24 h extracts) significantly
decreased NO production compared to the control.
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2.5. Evaluation of the Anti-Inflammatory Activity of Microencapsulated Capsaicin

Lipopolysaccharide (LPS) from E. coli was used to stimulate RAW 264.7 cells to pro-
duce cytokines. The expression of IL-1β, IL-6, IL-10, IL-12p70, MCP-1, MIP-1α, RANTES,
and TNF-α were determined after 3 h and 24 h of LPS stimulated RAW 264.7 cell expo-
sure to free capsaicin and capsaicin-loaded AM (24 h extracts) using a custom Mouse
Cytokine/Chemokine Magnetic Bead Panel 96-well plate assay (MCYTOMAG-70k, Merck
Millipore). The results are presented in Figure 8 and show that the treatments had a sig-
nificant impact, starting from 3 h of exposure for many cytokines. More specifically, the
expression of IL-1β, a pro-inflammatory cytokine involved in pain [14], was significantly
decreased after 3 h and 24 h of treatment with capsaicin-loaded AM compared to the
untreated LPS stimulated cells. IL-6 is an inflammatory cytokine responsible for regulating
a wide-range of biological pathways, including the development of acute pathological
pain [15]. Our results show that the expression of IL-6 was significantly decreased after
3 h of treatment with free capsaicin, unloaded AM, and capsaicin-loaded AM extracts.
However, after 24 h of treatment with free capsaicin, IL-6 levels were found to be sig-
nificantly increased, while treatment with encapsulated capsaicin revealed a significand
decrease in IL-6 expression. Similar patterns of expression were observed for MCP-1,
MIP-1α, RANTES, and TNF-α. Raised levels of MCP-1 have been observed in patients with
chronic muscle pain, while direct evidence for its role as an algogen is still lacking. MIP-1α
mediates the development of neuropathic pain following peripheral nerve injury through
IL-1β upregulation [16]. RANTES is a pro-inflammatory chemokine that directly interacts
with opioid receptors and modifies the nociceptive reaction [17]. No significant modifica-
tions were observed with respect to the expression of IL-10 and IL-12p70 anti-inflammatory
cytokines with these treatments.
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3. Materials and Methods
3.1. Alginate Encapsulation of Capsaicin

Capsaicin, 8-methyl-N-vanillyl-6-nonenamide, is a component of a wide variety of
red peppers of the genus Capsicum. Its chemical structure is shown in Figure 9.

Capsaicin is a hydrophobic, colorless, odorless, crystalline compound with the molecular
formula C18H27NO3; its melting point is 62–65 ◦C, and its molar mass is 305.4 g/mol [4,9].

The DrugBank database is a unique bioinformatics and cheminformatics resource that
combines detailed drug (i.e., chemical, pharmacological, and pharmaceutical) data with
comprehensive drug target (i.e., sequence, structure, and pathway) information.
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Figure 9. The chemical structure of capsaicin (CAS No.: 404-86-4).

Sodium alginate (SA), with a number-averaged molecular weight of 12,000–40,000,
was purchased from Sigma/Merk (Steinheim, Germany) and used as received. Calcium
chloride (CaCl2) was supplied from Sigma/Merck (Steinheim, Germany) and was used as
received. Deionized water was obtained from the lab. All reagents used in this research
were obtained as analytical grade.

Alginate solution was prepared by dissolving sodium alginate in distilled water and
the solution (2.5%) was stirred thoroughly. Stirring was continued after complete addition
until a uniform dispersion was obtained. Alginate microcapsules loaded with capsaicin
were obtained by ionotropic gelation. The microcapsules were prepared by mixing in
the active component (capsaicin extract in ethanol 20% m/v) followed by ultrafiltration
(calculated after filtration with CHROMAFIL O-45/15 MS filters (Machinery-Nagel GmbH,
Germany)), at the concentrations presented in Table 1. The resulting homogenous bubble-
free alginate dispersion was extruded using a 21 G syringe needle into the gelation medium,
which was kept under stirring to improve the mechanical strength of the beads and to
prevent aggregation of the formed beads. The rate of addition was 1.0 mL/min at 1100 rpm
of stirring speed. The gelation medium was prepared by dispersing different concentrations
of calcium chloride solution (5%).

Table 1. Treatment regimens.

Treatment Extracts

Alginate microcapsules (AM) Collected after 30 min, 3 h, and 24 h

1.99 × 10−3 M capsaicin-loaded AM Collected after 30 min, 3 h, and 24 h

2.94 × 10−3 M capsaicin-loaded AM Collected after 30 min, 3 h, and 24 h

5.88 × 10−3 M capsaicin-loaded AM Collected after 30 min, 3 h, and 24 h

1.99 × 10−3 M capsaicin −

2.94 × 10−3 M capsaicin −

5.88 × 10−3 M capsaicin −

Encapsulation evaluation has been calculated using Equation (1):

EE (%) = (Ploading − Pfiltration) / Ploading × 100 (1)

where EE = encapsulation efficiency, %; Ploading = amount of encapsulated capsaicin;
Pfiltration = amount of capsaicin in the ultrafiltrate.

A SPECORD M400 (Analytik Jena GmbH, Jena, Germany) and a NOVEX 100 (Novex,
Arnhem, The Netherlands) were used for analysis. UV-Vis absorption spectra and the de-
gree of sorption of capsaicin were monitored in solution with a SPECORD M400 spectropho-
tometer with a monochromator and double beam. Optical microscopy was performed with
a NOVEX 100 microscope using the correct magnitude [18,19].
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The microcapsules can be mechanically dispersed by agitation in an aqueous environ-
ment; they are sensitive to strong agitation, can be destroyed by large shear forces, and are
destroyed by exposure to environments with pH values lower than 5.5 or greater than 7.
The microcapsules prepared in this manner were maintained for 30 min in the gelling bath
with stirring, and then filtered, washed with distilled water, and dried in an oven at 40 ◦C.

3.2. Cell Culture Models and Treatments

The CCD-1070Sk human dermal fibroblast cell line (ATCC® CRL-2091™) was used as
an in vitro model for cytotoxicity investigations, as the proposed formulation is intended
for skin topical application, while the RAW 264.7 mouse monocyte macrophage cell line
(ATCC® TIB-71™, Manassas, VA, USA) was used to model in vitro inflammatory status.
Both cell lines were purchased from the American Type Culture Collection (ATCC). CCD-
1070Sk and RAW 264.7 cells were cultured in Eagle’s Minimum Essential Medium (MEM)
and Dulbecco’s Modified Eagle Medium (DMEM), respectively. Both media were supple-
mented with 10% fetal bovine serum (FBS) and 1% antibiotic–antimycotic solution (ABAM,
containing 100 U/mL penicillin, 100 µg/mL streptomycin, and 0.25 µg amphotericin B).
Both cell lines were sub-cultured weekly and maintained at 37 ◦C in a humidified air
atmosphere of 5% CO2 all throughout this study. Media renewal was carried out every
other day.

Unloaded alginate microcapsules (AM) and alginate microcapsules loaded with differ-
ent concentrations of capsaicin (Table 1) were washed with phosphate-buffered saline (PBS)
supplemented with 10% ABAM solution for sterilization purposes, and then immersed
in complete culture media for 24 h. After 30 min, 3 h, and 24 h, media samples were
collected (henceforth referred to as extracts). Collected extracts were stored at −20 ◦C until
use. Different capsaicin solutions were freshly prepared in complete culture media and
sterilized via 0.22 µm filtration, as presented in Table 1.

3.3. Cytotoxicity Assays

CCD-1070Sk cells were seeded in 96-well culture plates in triplicate at a final density of
2.5 × 104 cells/cm2, or in 12-well culture plates under the same conditions for microscopy
investigation. After 24 h of incubation, the culture media was discarded and replaced with
the appropriate treatments (shown in Table 1). For experimental controls, the media culture
was refreshed at the time of treatment. Untreated samples were used as a reference and
were prepared under identical conditions for each assay.

Cell viability was investigated using the 3-(4,5-dimethilthiazol-2-il)-2,5-diphenilte-
trazolium bromide (MTT) reduction assay following 24 h of exposure to treatments [19].
Briefly, the cell medium was replaced with 1 mg/mL of freshly prepared MTT solution and
incubated at 37 ◦C for 4 h. Subsequently, the formed formazan crystals were solubilized
in 2-propanol and the absorbance was read at 550 nm using a Flex Station III microplate
reader (Molecular Devices, San Jose, CA, USA).

The cytotoxic potential of the screened treatments on CCD-1070Sk dermal fibroblast
cells was investigated by the spectrophotometric evaluation of lactate dehydrogenase
(LDH) activity in the culture media. Therefore, following 24 h of exposure to treatments,
the culture medium was harvested and mixed with the components of the TOX-7 kit
(LDH-Based In Vitro Toxicology Assay Kit, Steinheim, Germany) according to the man-
ufacturer’s instructions. After 30 min incubation at room temperature in the dark, the
absorbance of the samples was determined at 490 nm using a Flex Station III microplate
reader (Molecular Devices).

A live/dead fluorescence assay was employed to image cells under treatment con-
ditions. Briefly, CCD-1070Sk cells were stained with a two-color dye solution containing
calcein AM (green) and ethidium bromide (red), freshly prepared according to the instruc-
tions provided by the manufacturers, in order to highlight live and dead cells at the same
time. CCD-1070Sk cells were then incubated at room temperature in the dark for 20 min
with the staining solution and imaged after PBS washing using an Olympus IX73 inverted
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fluorescence microscope. Images were captured using the CellSense imaging software
(Olympus, Tokyo, Japan).

3.4. Cell Morphology Evaluation

The morphological changes induced by free capsaicin and microencapsulated cap-
saicin in CCD-1070Sk cell cultures were evaluated by the fluorescent labelling of F-actin
filaments. CCD-1070Sk cells were seeded in 12-well culture plates at a final density of
2.5 × 104 cells/cm2 and incubated for 24 h with AM, 5.88 × 10−3 M capsaicin-loaded
AM extracts collected at 24 h, and 5.88 × 10−3 M capsaicin solution. After exposure,
the test media was discarded and the monolayers were washed with PBS, fixed with 4%
paraformaldehyde for 20 min, and permeabilized with 0.1% Triton X-100/2% bovine serum
albumin for 1 h. Next, the samples were incubated for 1 h with Alexa Fluor 488–phalloidin
(Thermo Fischer Scientific) at 37 ◦C to label the actin filaments, and nuclei were coun-
terstained with 2 µg/mL 4′,6-diamidino-2-phenylindole dihydrochloride (DAPI; Sigma
Aldrich) for 15 min. The samples were then inspected by fluorescence microscopy using
an Olympus IX73 inverted microscope. Image capturing was performed using CellSense
software (Olympus).

3.5. Reactive Oxygen Species (ROS) Assessment

Reactive oxygen species (ROS) production was measured by the ROS–Glo H2O2 assay
(Promega, Madison, WI, USA), which quantifies the level of hydrogen peroxide released in
the culture medium. Briefly, 9.5 × 104 cells/well were seeded in a 12-well culture plate
and treated with the collected extracts and different concentrations of capsaicin. For the
final 6 h of treatment, H2O2 substrate was added at a final concentration of 25 µM and
incubated at 37 ◦C in a humidified atmosphere of 5% CO2. After 6 h and 24 h of treatment,
100 µL of ROS–Glo Detection Solution was added, and the plate was incubated for a further
20 min at room temperature. Finally, luminescence was determined with a Flex Station III
microplate reader (Molecular Devices).

3.6. Inflammatory Status Investigation

RAW 264.7 cells were seeded in 96-well culture plates at a final density of 2.5 × 104

cells/cm2 in triplicate. After 24 h of incubation, the culture media was discarded and
replaced with AM, 5.88 × 10−3 M capsaicin loaded AM extracts collected at 24 h, and
5.88 × 10−3 M capsaicin solution. Simultaneously, cells were stimulated with lipopolysac-
charide (LPS, 10 µg/mL). For the experimental controls, the culture media was refreshed,
and cells were also stimulated with LPS. After 2 h, 6 h, and 24 h, the culture medium was
harvested and stored at −20 ◦C until use.

The collected culture media was further used to quantify the nitric oxide (NO) con-
centration by a method described by Griess [20] using Griess reagent (Promega). Firstly,
50 µL of culture supernatant was mixed with 50 µL sulfanilamide solution and incubated
at room temperature in the dark for 20 min. After 10 min of incubation, 50 µL of N-1-
napthylethylenediamine dihydrochloride (NED) solution was added. The optical density of
the resulting solution was read at 550 nm using a Flex Station III microplate reader (Molec-
ular Devices). The concentration of NO was extrapolated from a nitrite standard reference
curve that was prepared according to the instructions provided by the manufacturer.

In order to evaluate the inflammatory status of RAW 264.7 cells after treatment, the ex-
pression of a panel of cytokines was assessed using a custom Mouse Cytokine/Chemokine
Magnetic Bead Panel 96-well Plate Assay (MCYTOMAG–70k; Merck Millipore, Stein-
hein, Germany). Concentrations of interleukin 1β (IL-1β); interleukin 6 (IL-6); interleukin
10 (IL-10); interleukin 12p70 (IL-12p70); monocyte chemoattractant protein-1 (MCP-1);
macrophage inflammatory protein 1α (MIP1α); regulated on activation, normal T cell
expressed, and secreted (RANTES); and tumor necrosis factor α (TNF-α) were measured
using the multiplex magnetic bead panel kit. Deposited aliquots (25 µL) of cell culture
medium were incubated with anti-cytokine or anti-chemokine antibody-immobilized beads,
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detection antibodies, and streptavidin–phycoerythrin according to the manufacturer’s in-
structions. If needed, samples were adequately diluted in order to fit the linear portion
of the standard curve. The plate was analyzed using a MAGPIX reader equipped with
xPONENT software (Sigma/Merk, Steinheim, Germany). Standards and quality controls
were assayed in duplicate as recommended by the manufacturer. The obtained data were
analyzed using MILLIPLEX analysis software (Sigma/Merck, Steinheim, Germany).

4. Conclusions

In this study, we showed that our proposed capsaicin encapsulation system alleviates
the compound’s cytotoxicity, as human dermal fibroblasts showed increased cell viability
and decreased LDH activity after 24 h of treatment with capsaicin-loaded AM compared
to control cells. Oxidative stress evaluation proved that the alginate microcapsules and
capsaicin-loaded microcapsules were not able to trigger H2O2 production in CCD-1070Sk
cell cultures. Furthermore, using a macrophage cell line for in vitro modeling of an in-
flammatory environment, we showed that the capsaicin-loaded AM extract significantly
decreased NO production compared to the control, while treatment with the same extracts
from the encapsulated capsaicin revealed a significand decrease in IL-6 expression com-
pared to the controls. Similar patterns of expression were observed for MCP-1, MIP-1α,
RANTES, and TNF-α.
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