Supplementary Materials

Dialkylboryl-Substituted Cyclic Disilenes Synthesized by Desilylation-Borylation of Trimethylsilyl-Substituted Disilenes

Kaho Tanaka, Naohiko Akasaka, Tomoyuki Kosai, Shunya Honda, Yuya Ushijima, Shintaro Ishida, and Takeaki Iwamoto*

Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramakiazaaoba, Aoba-ku, Sendai 980-8578, Japan Correspondence: takeaki.iwamoto@tohoku.ac.jp; Tel.: +81-22-795-6558 (T.I.)

Contents

1. NMR Spectra	S2
Boryldisilene 3	S2
Diboryldisilene 4	S5
DMAP-coordinated Boryldisilene 5	S8
Reaction of 5 and BPh ₃	S11
Reaction of 5 and Me ₃ SiCl	S12
Reaction of 4 and DMAP Followed by Me ₃ SiCl	S14
Reaction of DMAP and BBNC1	S16
2. Details of Theoretical Study	S20
Optimized Structures of 3, 4, and 5	S20
Natural Bond Orbital (NBO) Analysis	S21
GIAO Calculations	S22
TD-DFT Calculations	S22
3. Temperature-Dependent UV-vis Spectrum of 4	S30

1. NMR Spectra

Figure S1. ¹H NMR spectrum of **3** in C₆D₆ at 295 K (\triangle = C₆D₅H, *= hexane).

Figure S2. ¹³C{¹H} NMR spectrum of **3** in C₆D₆ at 296 K (\triangle = C₆D₆, *= hexane).

Figure S3. ¹³C{¹H} NMR spectrum of 3 using DEPT 135 pulse sequence in C₆D₆ at 295 K.

Figure S4. ²⁹Si{¹H} NMR spectrum of 3 using the inverse-gated pulse sequence in C₆D₆ at 295 K.

Figure S5. 11 B NMR spectrum of 3 in C₆D₆ at 295 K.

Figure S6. ²⁹Si-¹H 2D HMBC NMR spectrum of 3 in C₆D₆ at 296 K.

Diboryldisilene 4

130

120

110

100

90

Figure S8. ¹³C{¹H} NMR spectrum of **4** using DEPT 135 pulse sequence in C₆D₆ at 296 K (\triangle = C₆D₆).

50

40

30

20

70

60

80

SFO1 NUC1 P1 P13 PLW0 PLW1 SPNAM SPOAI SPOFF SPW5

SF02 NUC2 CPDPRG[2 P3 P4 PCPD2 PLW2 PLW2 PLW12

ppm

10

HANNEL f1 _______ 125.7703633 M 13C 2000.00 u W 74.0000000 W Crp60comp.4 0.500 Hz 11.30599976 W

CHANNEL f2 === 500.1315995

17.00000

 PLM12
 0.38249999 W

 F2
 - Processing parameters

 SF
 125.7577279 MHz

 SF
 125.7577279 MHz

 MSB
 0

 LB
 1.00 Hz

 GB
 0

 PC
 1.40

Figure S9. ¹³C{¹H} NMR spectrum of **4** in C₆D₆ at 297 K (\triangle = C₆D₆).

Figure S10. ¹¹B NMR spectrum of 4 in C₆D₆ at 296 K.

Figure S11. 29 Si{ 1 H} NMR spectrum of 4 using the inverse-gated pulse sequence in C₆D₆ at 297 K.

Figure S12. ²⁹Si-¹H 2D HMBC NMR spectrum of 4 in C₆D₆ at 297 K.

DMAP-coordinated Boryldisilene 5

Figure S14. ¹³C{¹H} NMR spectrum of **5** using DEPT 135 pulse sequence in toluene-*d*⁸ at –40°C.

Figure S15. ¹³C{¹H} NMR spectrum of **5** in toluene-*d*₈ at -40° C (\triangle = toluene-*d*₈).

Figure S16. ²⁹Si{¹H} NMR spectrum of 5 in toluene-*d*₈ at -40 °C.

Figure S17. ¹¹B NMR spectrum of 5 in C₆D₆ at 296 K.

Figure S18. ²⁹Si-¹H 2D HMBC NMR spectrum of 5 in C₆D₆ at 297 K.

Reaction of 5 and BPh₃

Figure S19. ¹H NMR spectrum of DMAP adduct **5** in C₆D₆ at 296 K (\triangle = C₆D₅H).

Figure S20. ¹H NMR spectrum of the reaction mixture after addition of $B(C_6H_5)_3$ in C_6D_6 at 296 K (\triangle = C_6D_5H).

Figure S21. ¹H NMR spectrum of reaction mixture of **5** and Me₃SiCl in C₆D₆ at 296 K (\triangle = C₆D₅H, ×=Mes*H).

Figure S22. ¹¹B NMR spectrum of reaction mixture of 5 and Me₃SiCl at 295 K.

Figure S23. ²⁹Si-¹H 2D HMBC NMR spectrum of reaction mixture of **5** and Me₃SiCl in C₆D₆ at 297 K.

Figure S24. ¹H NMR spectrum of the reaction mixture of **4** and DMAP (2 equiv) in C₆D₆ recorded at 296 K (\triangle = C₆D₅H).

Figure S25. ¹H NMR spectrum of the reaction mixture of **4**, DMAP and Me₃SiCl after heating 60 °C in C₆D₆ recorded at 296 K (\triangle = C₆D₅H, \times = Mes*H, * = unidentified byproduct).

Figure S26. ¹¹B NMR spectrum of reaction mixture of **4**, DMAP and Me₃SiCl after heating 60 °C in C₆D₆ recorded at 297 K.

Reaction of DMAP and BBNCl

Figure S27. ¹H NMR spectrum of **6** in C₆D₆ at 295 K (\triangle = C₆D₅H).

Figure S28. ¹³C{¹H} NMR spectrum of **6** in C₆D₆ at 296 K.

Figure S29. ${}^{13}C{}^{1}H$ NMR spectrum of 6 using DEPT 135 pulse sequence in C₆D₆ at 296 K.

Figure S30. ¹³C{¹H} NMR spectrum of **6** using DEPT 90 pulse sequence in C₆D₆ at 296 K.

Figure S31. ¹¹B NMR spectrum of 6 in C₆D₆ at 296 K.

Figure S32. ¹³C-¹H 2D HSQC NMR spectrum of 6 in C₆D₆ at 296 K.

Figure S33. ¹H NMR spectrum of **6** in C₆D₆ at 295 K (low concentration, $\triangle = C_6D_5H$, $\square =$ silicon grease).

2. Details of Theoretical Study

Optimized Structures of 3, 4, and 5

Figure S34. Optimized structures of 3, three conformers of 4 and 5.

Table S1. Selected Structural Parameters and Energy Levels of Frontier Orbitals of 3 and 5Optimized at the B3PW91-D3/6-31(d) Level of Theory

Comment	di	distance/Å			angle sum/°		twist angle/°		Energy ^a /eV		IOP
Compound	Si=Si	Si–B	B–N	=Si(-Si)	=Si(-B)	Si=Si	Si–B	HOMO	LUMO	(<i>f</i>)ª	JOB
3 _{opt}	2.19225	1.97039	_	359.10	358.8	20.2	2.5	-4.79	-2.03	487.86 (0.3132)	ti522SiB_2
3 (solid)	2.1990(8)	1.994(3)	-	359.16(6)	359.15(8)	10.0	5.0	-	-	-	XRD
3 (solution)	-	-	-	-	-	-	-	-	-	$\begin{array}{c} 490 \\ (\varepsilon \ 1.9 \times 10^4) \end{array}$	in hexane
5 _{opt}	2.19009	2.10907	1.62786	359.69	359.14	8.1	-	-4.06	-0.63 (LUMO+2, π*)	404.4 (0.2108) ($\pi \rightarrow \pi^*$)	ti522SiBDMAP

a) Excitation energy and oscillator strength were calculated at the B3LYP/6-311(2df)[Si], 6-311G(d)[C, B, H] level of theory (solvent = hexane).

Table S2. Selected Structural Parameters and Energy Levels of Frontier Orbitals of **4** Optimized at the B3PW91-D3/6-31(d) Level of Theory

Compound	dista	distance/Å			gle	Energy ^a /eV		$\lambda_{\max,a}$ /nm	$\Lambda C / (1 \cdot I / m \cdot a)$	IOB
Compound	Si=Si	Si–B	Si=Si Si–B Si–B		HOMO	LUMO	(<i>f</i>) ^a	$\Delta G/(KJ/IIIOI)$	JOD	
4aopt	2.20152	1.98758 1.99036	27.7	8.3	8.1	-4.90	-2.53	581.07 (0.2599)	0.0	ti552B2conf3
4b _{opt}	2.20285	1.98078 2.00371	18.9	13.2	42.6	-4.86	-2.29	539.35 (0.3119)	0.34	ti552B2conf1
4copt	2.19394	1.96273 2.03035	22.2	0.4	72.3	-4.70	-2.08	623.42 (0.0506)	11.68	ti552B2conf2
4 (solid)	2.2114(5)	1.9851(14) 2.0156(15)	17.7	15.5	41.2	-	-	-	-	XRD
4 (solution)	-	-	-	_	-	-	-	576 (ε 5260)	-	in hexane

a) Excitation energy and oscillator strength were calculated at the B3LYP/6-311(2df)[Si], 6-311G(d)[C, B, H] level of theory (solvent = hexane).

If the ratio of the molecular number of conformers 2 relative to conformer 1 (N_2/N_1) obeys the Bolzmann distribution, N_2/N_1 should be

$$\frac{N_2}{N_1} = e^{-\frac{E_2 - E_1}{kT}} = e^{-\frac{340 \text{ J/mol} + 6.02 \times 10^{23} \text{ mol}^{-1}}{1.381 \times 10^{-23} \text{ J K}^{-1} \times 298.15 \text{ K}}} = e^{-0.137} = 0.872$$

, where Boltzmann constant $k = 1.381 \times 10^{-23}$ J·K⁻¹, Avogadro constant = 6.02 × 10²³ mol⁻¹, and temperature *T* = 298.15 K. This value suggests that both conformers 1 (**4a**) and 2 (**4b**) can be observed.

Natural Bond Orbital (NBO) Analysis

Table S3.NBO Analysis

Compound (R1, R2)	_	NPA o	charge		bond ord [distar	ler (WBI) nce/Å]	second order perturbation analysis donor NBO → acceptor NBO, stabilization energy in kcal/mol
	Si1	Si2	B1	B2	Si=Si	Si–B	
1 (SiMe3, SiMe3)	0.32	0.32	-	-	1.7972 [2.17640]	-	-
3 (BBN, SiMe 3) [JOB:ti5552SiB_2_NBO2]	0.43	0.60	0.30	-	1.6581 [2.19225]	1.1127 [1.97039]	BD2(Si1–Si2)→LV(B2), 25.62
4 (BBN, BBN)	0.69	0.67	0.33	0.35	1.5826	1.0647	BD2(Si1–Si2)→LV(B1), 22.01
conformer 1 [JOB:ti5552B2conf3_NBO2]					[2.20152]	[1.98758] 1.0672 [1.99036]	BD2(Si1–Si2)→LV(B2), 22.03
4 (BBN, BBN)	0.64	0.68	0.33	0.38	1.6069	1.0816	BD2(Si1–Si2)→LV(B1), 22.83
Conformer 2 [JOB:ti5552B2conf1_NBO2]					[2.20285]	[1.98078] 1.0419 [2.00371]	BD2(Si1–Si2)→LV(B2), 15.52
4 (BBN, BBN) conformer 3 [JOB:ti5552B2conf2_NBO2]	0.56	0.72	0.28	0.45	1.6121 [2.19394]	1.1344 [1.96273] 0.9765 [2.03035]	BD2(Si1–Si2)→LV(B1), 28.56 BD2(Si1–Si2)→LV(B2), 0.91
12 (BBN·DMAP, SiMe ₃ ,)	0.74	0.19	0.17	_	1.7721 [2.19009]	0.9060 [2.10907]	-

GIAO Calculations

Table S4. ²⁹Si NMR Chemical Shifts Calculated at the B97-D3/def2-TZVP Level of Theory

	Calculated Chemic	cal Shift Relative to	Observed Chemical Shift Relative to		
Compound	TN	ЛS	TMS		
(R1, R2)	(absolute ch	emical shift)			
	Si-R1	Si-R2	Si-R1	Si-R2	
1 (SiMe3, SiMe3)	141.4756	141.9943	131.4	131.4	
[JOB:ti5552Si2_NMR15]	(184.4999)	(183.9812)			
3 (BBN, SiMe ₃)	136.2112	209.0724	128.7	187.2	
[JOB:ti5552SiB_2_NMR15]	(189.7643)	(116.9031)			
4 (BBN, BBN) conformer	201.0537	195.3660	166.2	166.2	
1	(124.9218)	(130.6095)			
[JOB:ti5552B2conf3_NMR15]					
4 (BBN, BBN) conformer	147.2043	184.2626	166.2	166.2	
2	(178.7712)	(141.7129)			
[JOB:ti5552B2conf1_NMR15]					
4 (BBN, BBN) conformer	107.5750	220.2537	166.2	166.2	
3	(218.4005)	(105.7218)			
[JOB:ti5552B2conf2_NMR15]					
5 (BBN·DMAP, SiMe ₃)	237.6736	73.0990	195.2	87.9	
[JOB:ti5552SiBDMAP_NMR15]	(88.3019)	(252.8765)			
Me4Si	0	0	0	0	
	(325.9755)	(325.9755)			

Figure S35. UV-vis absorption spectra of (a) **3**, (b) **4**, and (c) **5** in hexane at room temperature as well as band positions and oscillator strengths (vertical bars) calculated at the B3LYP-D3/B1//B3PW91-D3/6-31G(d) level of theory (B1: 6-311+G(2df) [Si], 6-311G(d) [others]).

Figure S36. Selected frontier orbitals of 1_{opt} , 3_{opt} , $4a_{opt}$, $4b_{opt}$, and 5_{opt} at the B3LYP-D3/B1//B3PW91-D3/6-31G(d) level of theory (B1: 6-311+G(2df) [Si], 6-311G(d) [others]).

Table S5. Transition Energy, Wavelength, and Oscillator Strengths of the Electronic Transition of **3** Calculated at the TD-B3LYP-D3/B1 [hexane] Level of Theory (The 151st orbital is Highest Occupied π (Si=Si) Orbital Shown in Figure S36.)

Excited Sta 151 ->1 151 ->1	te 1: 52 53	Singlet-A 0.69518 0.11330	2.9872 eV	/ 415.04 nm	f=0.2877	<s**2>=0.000</s**2>	
Excited Sta 151 ->1 151 ->1	te 2: 52 53	Singlet-A -0.11190 0.69246	3.5992 eV	/ 344.48 nm	f=0.0313	<s**2>=0.000</s**2>	
Excited Sta 150 ->1 151 ->1	te 3: 52 55	Singlet-A 0.69312 0.10065	4.1258 eV	/ 300.51 nm	f=0.0030	<s**2>=0.000</s**2>	
Excited Sta 151 ->1 151 ->1	te 4: 55 59	Singlet-A 0.68555 0.11591	4.3196 eV	/ 287.03 nm	f=0.0002	<s**2>=0.000</s**2>	
Excited Sta 149 ->1 151 ->1 151 ->1	te 5: 52 54 56	Singlet-A 0.19749 0.66633 0.10291	4.4761 eV	/ 276.99 nm	f=0.0424	<s**2>=0.000</s**2>	
Excited Sta 149 ->1 151 ->1 151 ->1	te 6: 52 54 56	Singlet-A 0.62840 -0.22112 0.20837	4.5836 eV	/ 270.50 nm	f=0.0111	<s**2>=0.000</s**2>	
Excited Sta 149 ->1 151 ->1 151 ->1	te 7: 52 56 61	Singlet-A -0.24322 0.64220 0.10210	4.7063 eV	/ 263.44 nm	f=0.0194	<s**2>=0.000</s**2>	
Excited Sta 151 ->1 151 ->1	te 8: 57 59	Singlet-A 0.64418 0.24822	4.7498 eV	/ 261.03 nm	f=0.0028	<s**2>=0.000</s**2>	
Excited Sta 147 ->1 148 ->1 151 ->1	te 9: 52 52 58	Singlet-A 0.18348 0.56741 0.35633	5.0169 eV	/ 247.13 nm	f=0.0144	<s**2>=0.000</s**2>	
Excited Sta	te 10:	Singlet-A	5.0728 eV	/ 244.41 nm	f=0.0086	<s**2>=0.000</s**2>	

147 148 151 151	->152 ->152 ->158 ->159		-0.16662 -0.32729 0.58163 -0.11517				
Excited 151 151 151	State ->157 ->158 ->159	11:	Singlet-A -0.26149 0.12306 0.63119	5.1184 eV	242.23 nm	f=0.0002	<s**2>=0.000</s**2>
Excited 151 151	State ->156 ->160	12:	Singlet-A 0.12630 0.68687	5.1917 eV	238.81 nm	f=0.0060	<s**2>=0.000</s**2>
Excited 147 148	State ->152 ->152	13:	Singlet-A 0.65314 -0.24144	5.2165 eV	237.68 nm	f=0.0156	<s**2>=0.000</s**2>
Excited 151 151	State ->156 ->161	14:	Singlet-A -0.10846 0.67346	5.3088 eV	233.55 nm	f=0.0096	<s**2>=0.000</s**2>
Excited 150 151 151	State ->153 ->162 ->163	15:	Singlet-A -0.26450 0.60636 -0.19038	5.3830 eV	230.33 nm	f=0.0356	<s**2>=0.000</s**2>
Excited 146	State ->152	16:	Singlet-A 0.70095	5.4542 eV	227.32 nm	f=0.0007	<s**2>=0.000</s**2>
Excited 151 151	State ->162 ->163	17:	Singlet-A 0.20779 0.65667	5.5401 eV	223.79 nm	f=0.0066	<s**2>=0.000</s**2>
Excited 150 151	State ->153 ->162	18:	Singlet-A 0.62037 0.26315	5.6165 eV	220.75 nm	f=0.0952	<s**2>=0.000</s**2>
Excited 151 151 151	State ->161 ->164 ->167	19:	Singlet-A -0.10249 0.66117 0.18322	5.7433 eV	215.88 nm	f=0.0109	<s**2>=0.000</s**2>
Excited 151 151	State ->165 ->169	20:	Singlet-A 0.67678 0.11657	5.7879 eV	214.21 nm	f=0.0088	<s**2>=0.000</s**2>
Excited 143 145 151	State ->152 ->152 ->166	21:	Singlet-A -0.12193 0.66444 -0.18095	5.8762 eV	210.99 nm	f=0.0010	<s**2>=0.000</s**2>
Excited 145 151 151	State ->152 ->166 ->169	22:	Singlet-A 0.18274 0.64184 0.15808	5.8940 eV	210.36 nm	f=0.0001	<s**2>=0.000</s**2>
Excited 144 151 151	State ->152 ->164 ->167	23:	Singlet-A -0.47087 -0.12994 0.47252	5.8957 eV	210.30 nm	f=0.0028	<s**2>=0.000</s**2>
Excited 144 151 151 151 151	State ->152 ->164 ->167 ->168 ->171	24:	Singlet-A 0.45319 -0.15663 0.43649 -0.19860 0.10422	5.9048 eV	209.97 nm	f=0.0108	<s**2>=0.000</s**2>
Excited 144 151 151 151	State ->152 ->167 ->168 ->171	25:	Singlet-A 0.22448 0.11550 0.61327 -0.17674	5.9386 eV	208.78 nm	f=0.0033	<s**2>=0.000</s**2>
Excited 141 143 145 151	State ->152 ->152 ->152 ->152 ->169	26:	Singlet-A 0.10158 0.66884 0.11864 -0.14401	5.9870 eV	207.09 nm	f=0.0013	<s**2>=0.000</s**2>
Excited 143 151 151 151	State ->152 ->165 ->166 ->169	27:	Singlet-A 0.14640 -0.11510 -0.16205 0.63941	5.9994 eV	206.66 nm	f=0.0059	<s**2>=0.000</s**2>
Excited 140 142 149	State ->152 ->152 ->153	28:	Singlet-A 0.11350 -0.10613 0.66477	6.0027 eV	206.55 nm	f=0.0645	<s**2>=0.000</s**2>
Excited 136 139 140 142 149	State ->152 ->152 ->152 ->152 ->152 ->153	29:	Singlet-A -0.17057 0.19405 0.45616 -0.42530 -0.15593	6.0462 eV	205.06 nm	f=0.0145	<s**2>=0.000</s**2>
Excited 151 151	State ->168 ->171	30:	Singlet-A 0.21139 0.63729	6.0632 eV	204.49 nm	f=0.0071	<s**2>=0.000</s**2>
Excited 151 151	State ->170 ->172	31:	Singlet-A 0.59042 0.32043	6.0800 eV	203.92 nm	f=0.0129	<s**2>=0.000</s**2>
Excited 136 140 142 144	State ->152 ->152 ->152 ->152 ->152	32:	Singlet-A -0.15067 0.41682 0.52167 0.12136	6.0993 eV	203.28 nm	f=0.0013	<s**2>=0.000</s**2>

JOB: ti552SiB_2_TD2

Table S6. Transition Energy, Wavelength, and Oscillator Strengths of the Electronic Transition of 4a_{opt} Calculated at the TD-B3LYP-D3/B1 [hexane] Level of Theory (The 177th orbital is

Excited 177 177 This st Total E	State -> 178 <- 178 ate for	1: optim E(TD-H	Singlet-A 0.71146 -0.12290 nization and/or HF/TD-KS) = -30	2.1337 eV second-order 47.66254997	581.07 nm correction	f=0.2599	<s**2>=0.000</s**2>	
Copying	; the ex	cited 2.	state density f	or this state	e as the 1-	particle R f=0 0017	hoCI density.	
176 Excited	-> 178	3:	0.70173 Singlet-A	3.3071 eV	374.91 nm	f=0.0124	<\$**2>=0.000	
175 Excited	-> 178	۸.	0.70139	3 5151 eV	352 72 nm	f-0 0059	<5**2>-0.000	
172 174	-> 178 -> 178	4.	0.10087 0.68892	5.5151 60	552.72 11	1-0.0000	(3 2)-0.000	
Excited 172 173 177	State -> 178 -> 178 -> 179	5:	Singlet-A 0.18565 0.63195 -0.22364	3.7508 eV	330.56 nm	f=0.0157	<s**2>=0.000</s**2>	
Excited 172 173 177	State -> 178 -> 178 -> 179	6:	Singlet-A 0.13670 0.19506 0.65266	3.7644 eV	329.36 nm	f=0.1827	<s**2>=0.000</s**2>	
Excited 171 172 173 174	State -> 178 -> 178 -> 178 -> 178 -> 178	7:	Singlet-A -0.16809 0.63288 -0.20551 -0.10623	3.8423 eV	322.68 nm	f=0.0204	<s**2>=0.000</s**2>	
Excited 171	State -> 178	8:	Singlet-A 0.68090 0.16133	4.1620 eV	297.90 nm	f=0.0111	<s**2>=0.000</s**2>	
Excited 170 177	-> 170 -> 178 -> 178 -> 180	9:	Singlet-A 0.69037 -0.12356	4.3799 eV	283.08 nm	f=0.0106	<s**2>=0.000</s**2>	
Excited 169 170 176 177 177	State -> 178 -> 178 -> 179 -> 180 -> 181	10:	Singlet-A -0.19202 0.13514 0.12049 0.62915 -0.15256	4.5325 eV	273.55 nm	f=0.0789	<s**2>=0.000</s**2>	
Excited 169 177 177 177	State -> 178 -> 180 -> 181 -> 184	11:	Singlet-A 0.62600 0.14528 -0.18827 -0.12111	4.6525 eV	266.49 nm	f=0.0047	<s**2>=0.000</s**2>	
Excited 168 177	State -> 178 -> 181	12:	Singlet-A 0.66497 -0.16138	4.7037 eV	263.59 nm	f=0.0065	<s**2>=0.000</s**2>	
Excited 168 169 177 177 177 177 177	<pre>State -> 178 -> 178 -> 180 -> 181 -> 183 -> 183 -> 184 -> 185</pre>	13:	Singlet-A 0.21313 0.19405 0.20451 0.54492 -0.10355 0.17589 0.12619	4.7277 eV	262.25 nm	f=0.0345	<s**2>=0.000</s**2>	
Excited 167	State -> 178	14:	Singlet-A 0.69624	4.7686 eV	260.00 nm	f=0.0003	<s**2>=0.000</s**2>	
Excited 166	State -> 178	15:	Singlet-A 0.68421	4.8317 eV	256.61 nm	f=0.0004	<s**2>=0.000</s**2>	
Excited 166 176 177	State -> 178 -> 179 -> 180	16:	Singlet-A -0.11080 0.66443 -0.11440	4.8510 eV	255.58 nm	f=0.0013	<s**2>=0.000</s**2>	
Excited 165	State -> 178	17:	Singlet-A 0.69408	4.8993 eV	253.07 nm	f=0.0010	<s**2>=0.000</s**2>	
Excited 161 162 163 164	State -> 178 -> 178 -> 178 -> 178 -> 178	18:	Singlet-A 0.12503 0.34147 0.40172 0.44388	4.9559 eV	250.18 nm	f=0.0098	<s**2>=0.000</s**2>	
Excited 162 163 164 177 177 177 177 177	State -> 178 -> 178 -> 178 -> 181 -> 181 -> 182 -> 183 -> 184 -> 185	19:	Singlet-A -0.13210 -0.37308 0.45367 0.15727 0.11375 0.19721 -0.17384 -0.13077	5.0321 eV	246.39 nm	f=0.0205	<s**2>=0.000</s**2>	
Excited 161 163 164 177 177 177 177 177	State -> 178 -> 178 -> 178 -> 181 -> 181 -> 182 -> 183 -> 184 -> 185	20:	Singlet-A -0.11605 0.23852 -0.25227 0.25157 0.18397 0.32573 -0.28641 -0.21969	5.0385 eV	246.07 nm	f=0.0293	<s**2>=0.000</s**2>	
Excited 162 163 164	State -> 178 -> 178 -> 178 -> 178	21:	Singlet-A 0.57242 -0.36583 -0.13322	5.0750 eV	244.30 nm	f=0.0035	<s**2>=0.000</s**2>	
Excited 161 162	State -> 178 -> 178	22:	Singlet-A 0.66970 -0.12445	5.1360 eV	241.40 nm	f=0.0007	<s**2>=0.000</s**2>	
Excited 175 177 177 177	State -> 179 -> 183 -> 184 -> 186	23:	Singlet-A 0.55260 0.19448 0.28072 -0.17877	5.1618 eV	240.20 nm	f=0.0097	<s**2>=0.000</s**2>	

Excited State 175 -> 179 177 -> 182 177 -> 183 177 -> 184 177 -> 186	24:	Singlet-A -0.34005 0.34022 0.16752 0.41579 -0.19517	5.1946 eV	238.68 nm	f=0.0005	<s**2>=0.000</s**2>
Excited State 158 -> 178 160 -> 178	25:	Singlet-A -0.15934 0.66542	5.2223 eV	237.41 nm	f=0.0010	<s**2>=0.000</s**2>
Excited State 175 -> 179 177 -> 182 177 -> 183	26:	Singlet-A 0.20927 0.55027 -0.35613	5.2342 eV	236.87 nm	f=0.0037	<s**2>=0.000</s**2>
Excited State 177 -> 182 177 -> 183 177 -> 185 177 -> 186	27:	Singlet-A 0.12785 0.34521 0.53086 0.23600	5.2769 eV	234.96 nm	f=0.0045	<s**2>=0.000</s**2>
Excited State 158 -> 178 159 -> 178 160 -> 178	28:	Singlet-A -0.12754 0.67236 -0.11587	5.3463 eV	231.90 nm	f=0.0071	<s**2>=0.000</s**2>
Excited State 158 -> 178 160 -> 178 177 -> 184 177 -> 185 177 -> 186	29:	Singlet-A 0.44861 0.10243 -0.16699 0.22850 -0.42106	5.3993 eV	229.63 nm	f=0.0006	<s**2>=0.000</s**2>
Excited State 158 -> 178 160 -> 178 174 -> 179 177 -> 184 177 -> 185 177 -> 186	30:	Singlet-A 0.45430 0.10047 0.27600 0.16239 0.14538 0.34912	5.4132 eV	229.04 nm	f=0.0164	<s**2>=0.000</s**2>
Excited State 158 -> 178 174 -> 179 177 -> 185 177 -> 186	31:	Singlet-A 0.18955 0.60294 0.14357 -0.17606	5.4242 eV	228.57 nm	f=0.0052	<s**2>=0.000</s**2>
Excited State 157 -> 178	32:	Singlet-A 0.69062	5.4979 eV	225.51 nm	f=0.0078	<s**2>=0.000</s**2>

JOB: ti552B2conf3TD2

Table S7. Transition Energy, Wavelength, and Oscillator Strengths of the Electronic Transition of **4b**_{opt} Calculated at the TD-B3LYP-D3/B1 [hexane] Level of Theory (The 177th orbital is Highest Occupied π (Si=Si) Orbital Shown in Figure S36.)

Excited 177 177	State -> 178 <- 178	1:	Singlet-A 0.70340 -0.10341	2.2988 eV	539.35 nm	f=0.3119	<s**2>=0.000</s**2>	
Excited 176	State -> 178	2:	Singlet-A 0.70140	3.1749 eV	390.51 nm	f=0.0023	<s**2>=0.000</s**2>	
Excited 177	State -> 179	3:	Singlet-A 0.69037	3.3693 eV	367.99 nm	f=0.1086	<s**2>=0.000</s**2>	
Excited 175	State -> 178	4:	Singlet-A 0.69622	3.5986 eV	344.54 nm	f=0.0201	<s**2>=0.000</s**2>	
Excited 173 174	State -> 178 -> 178	5:	Singlet-A 0.16291 0.67317	3.8080 eV	325.59 nm	f=0.0016	<s**2>=0.000</s**2>	
Excited 172 173 174	State -> 178 -> 178 -> 178	6:	Singlet-A -0.13988 0.65972 -0.15412	3.9283 eV	315.61 nm	f=0.0013	<s**2>=0.000</s**2>	
Excited 171 172 173	State -> 178 -> 178 -> 178	7:	Singlet-A -0.27680 0.61608 0.11272	4.1418 eV	299.35 nm	f=0.0001	<s**2>=0.000</s**2>	
Excited 177	State -> 180	8:	Singlet-A 0.67055	4.1854 eV	296.23 nm	f=0.0724	<s**2>=0.000</s**2>	
Excited 171 172	State -> 178 -> 178	9:	Singlet-A 0.63610 0.28142	4.3874 eV	282.59 nm	f=0.0249	<s**2>=0.000</s**2>	
Excited 170 176	State -> 178 -> 179	10:	Singlet-A 0.69429 -0.10165	4.5938 eV	269.89 nm	f=0.0001	<s**2>=0.000</s**2>	
Excited 169 174 176 177	State -> 178 -> 179 -> 179 -> 181	11:	Singlet-A -0.14114 0.10548 0.52707 0.36617	4.6792 eV	264.97 nm	f=0.0813	<s**2>=0.000</s**2>	
Excited 176 177 177	State -> 179 -> 180 -> 181	12:	Singlet-A -0.35174 -0.11459 0.58229	4.7253 eV	262.38 nm	f=0.0405	<s**2>=0.000</s**2>	
Excited 169 176	State -> 178 -> 179	13:	Singlet-A 0.68026 0.14878	4.9026 eV	252.89 nm	f=0.0090	<s**2>=0.000</s**2>	

Excited 167 168	State -> 178 -> 178	14:	Singlet-A -0.31838 0.61691	4.9725 eV	/ 249.34 nm	f=0.0033	<s**2>=0.000</s**2>
Excited 166 167 168	State -> 178 -> 178 -> 178	15:	Singlet-A -0.10891 0.60409 0.30998	5.0054 eV	/ 247.70 nm	f=0.0029	<s**2>=0.000</s**2>
Excited 166 174 175 176 177 177 177	State -> 178 -> 179 -> 179 -> 179 -> 179 -> 182 -> 183 -> 184	16:	Singlet-A -0.10553 -0.12651 0.54060 0.14485 -0.15984 0.26132 0.14055	5.0261 e	/ 246.68 nm	f=0.0168	<s**2>=0.000</s**2>
Excited 167 175 177 177 177 177	State -> 178 -> 179 -> 182 -> 183 -> 184 -> 186	17:	Singlet-A 0.10951 -0.34584 -0.32851 0.38240 0.25802 -0.10046	5.0488 eV	/ 245.57 nm	f=0.0169	<s**2>=0.000</s**2>
Excited 166 177 177 177 177	State -> 178 -> 182 -> 183 -> 184 -> 185	18:	Singlet-A -0.11153 0.55342 0.18614 0.31029 -0.11418	5.0851 eV	/ 243.82 nm	f=0.0088	<s**2>=0.000</s**2>
Excited 163 164 165 166 175 177 177	State -> 178 -> 178 -> 178 -> 178 -> 178 -> 179 -> 182 -> 183	19:	Singlet-A 0.10417 0.14410 0.29054 0.57074 0.10469 0.11369 0.10819	5.1061 eV	/ 242.82 nm	f=0.0018	<s**2>=0.000</s**2>
Excited 164 165 166	State -> 178 -> 178 -> 178	20:	Singlet-A 0.30628 0.49870 -0.35547	5.1409 eV	/ 241.17 nm	f=0.0011	<s**2>=0.000</s**2>
Excited 162 164 177 177 177 177	State -> 178 -> 178 -> 182 -> 183 -> 184 -> 185	21:	Singlet-A 0.11872 0.14626 -0.12901 -0.43451 0.46035 -0.10402	5.1824 eV	/ 239.24 nm	f=0.0131	<s**2>=0.000</s**2>
Excited 162 163 164 165 177 177	State -> 178 -> 178 -> 178 -> 178 -> 183 -> 184	22:	Singlet-A 0.40086 -0.29081 0.38274 -0.22652 0.14759 -0.15030	5.1936 eV	/ 238.73 nm	f=0.0056	<s**2>=0.000</s**2>
Excited 162 163 164 165	State -> 178 -> 178 -> 178 -> 178 -> 178	23:	Singlet-A -0.29460 0.36509 0.43185 -0.29055	5.2612 eV	/ 235.66 nm	f=0.0015	<s**2>=0.000</s**2>
Excited 162 163 172 173 174 175 177	State -> 178 -> 178 -> 179 -> 179 -> 179 -> 179 -> 179 -> 185	24:	Singlet-A -0.11196 -0.25183 0.12206 -0.12880 0.54204 0.13774 0.15664	5.2980 eV	/ 234.02 nm	f=0.0151	<\$**2>=0.000
Excited 162 163 164 165 174	State -> 178 -> 178 -> 178 -> 178 -> 178 -> 179	25:	Singlet-A 0.44875 0.42927 -0.15675 -0.10161 0.19478	5.2984 eV	/ 234.00 nm	f=0.0088	<s**2>=0.000</s**2>
Excited 161 174 177 177 177	State -> 178 -> 179 -> 184 -> 185 -> 187	26:	Singlet-A -0.16074 -0.23032 0.15844 0.58371 0.16239	5.3361 eV	/ 232.35 nm	f=0.0053	<s**2>=0.000</s**2>
Excited 161 177	State -> 178 -> 185	27:	Singlet-A 0.66760 0.14084	5.3620 eV	/ 231.23 nm	f=0.0047	<s**2>=0.000</s**2>
Excited 160 161 172 173 174 176 177	State -> 178 -> 178 -> 179 -> 179 -> 179 -> 180 -> 185	28:	Singlet-A 0.14152 0.11250 -0.25415 0.54395 0.17740 -0.10709 0.11566	5.4234 eV	/ 228.61 nm	f=0.0150	<s**2>=0.000</s**2>
Excited 173 177 177 177 177	State -> 179 -> 184 -> 185 -> 186 -> 187	29:	Singlet-A -0.10373 0.13771 0.10931 0.54331 -0.32740	5.4528 eV	/ 227.38 nm	f=0.0132	<s**2>=0.000</s**2>
Excited 158 160 173 177	State -> 178 -> 178 -> 179 -> 186	30:	Singlet-A -0.16886 0.64203 -0.12936 -0.12461	5.4621 eV	/ 226.99 nm	f=0.0014	<s**2>=0.000</s**2>
Excited 177 177 177 177 177 177 177 177	State -> 182 -> 185 -> 186 -> 187 -> 188 -> 189 -> 190 -> 191	31:	Singlet-A -0.10751 -0.17647 0.30164 0.45194 0.22287 0.21079 0.16525 -0.10689	5.5171 e	/ 224.73 nm	f=0.0090	<s**2>=0.000</s**2>
Excited 159	State -> 178	32:	Singlet-A 0.52163	5.5993 eV	/ 221.43 nm	f=0.0023	<s**2>=0.000</s**2>

JOB: ti552B2conf1TD2

Table S8. Transition Energy, Wavelength, and Oscillator Strengths of the Electronic Transition of 5_{opt} Calculated at the TD-B3LYP-D3/B1 [hexane] Level of Theory (The 151st orbital is Highest Occupied π (Si=Si) Orbital Shown in Figure S36.)

Excited 197 197	State -> 198 -> 199	1:	Singlet-A 0.69358 -0.12907	2.1140 eV	586.49 nm	f=0.0058	<s**2>=0.000</s**2>	
This st Total E Copying	ate for nergy, the ex	optin E(TD-H cited	mization and/or = HF/TD-KS) = -350 state density fo	second-order 01.15742787 or this stat	correction e as the 1-	particle M	RhoCI density.	
Excited 197 197 197	i State -> 198 -> 199 -> 200	2:	Singlet-A 0.12198 0.68452 -0.12089	2.4609 eV	503.82 nm	f=0.0715	<s**2>=0.000</s**2>	
Excited 197 197 197	i State -> 199 -> 200 -> 202	3:	Singlet-A 0.10605 0.67424 0.13396	3.0666 eV	404.30 nm	f=0.2108	<s**2>=0.000</s**2>	
Excited 196 197 197	i State -> 198 -> 200 -> 202	4:	Singlet-A 0.16015 -0.10923 0.66304	3.5937 eV	345.01 nm	f=0.0583	<s**2>=0.000</s**2>	3
Excited 196 197	i State -> 198 -> 202	5:	Singlet-A 0.66906 -0.14751	3.7123 eV	333.98 nm	f=0.1718	<s**2>=0.000</s**2>	3
Excited 196 196	i State -> 199 -> 200	6:	Singlet-A 0.67941 0.15017	3.8748 eV	319.97 nm	f=0.0061	<s**2>=0.000</s**2>	3
Excited 197 197	i State -> 201 -> 203	7:	Singlet-A 0.68234 -0.15081	3.9476 eV	314.08 nm	f=0.0376	<s**2>=0.000</s**2>	3
Excited 195 195 196 196	<pre>State -> 198 -> 200 -> 199 -> 200 -> 200</pre>	8:	Singlet-A 0.52892 0.10165 -0.13298 0.39575	4.1234 eV	300.68 nm	f=0.0288	<s**2>=0.000</s**2>	
Excited 194 195 196	State -> 198 -> 198 -> 200	9:	Singlet-A -0.10991 -0.42995 0.52358	4.1683 eV	297.45 nm	f=0.0124	<s**2>=0.000</s**2>	
Excited 197 197 197	i State -> 201 -> 203 -> 204	10:	Singlet-A 0.14512 0.66656 0.10600	4.2977 eV	288.49 nm	f=0.0049	<s**2>=0.000</s**2>	
Excited 195 197 197 197 197	<pre>State -> 199 -> 203 -> 204 -> 205 -> 206</pre>	11:	Singlet-A -0.13304 -0.10726 0.51734 -0.36504 -0.14692	4.3420 eV	285.55 nm	f=0.0194	<s**2>=0.000</s**2>	ð
Excited 195 197 197 197	i State -> 199 -> 204 -> 205 -> 206	12:	Singlet-A -0.30784 0.27080 0.43283 0.32880	4.4096 eV	281.17 nm	f=0.0005	<s**2>=0.000</s**2>	3
Excited 195 195 196 197 197 197	<pre>State -> 199 -> 200 -> 200 -> 204 -> 205 -> 206</pre>	13:	Singlet-A 0.56336 0.13361 -0.11727 0.30051 0.10992 0.14620	4.4125 eV	280.99 nm	f=0.0047	<s**2>=0.000</s**2>	3
Excited 194 195 195 195	<pre>State -> 198 -> 198 -> 198 -> 199 -> 200</pre>	14:	Singlet-A 0.63155 -0.11546 0.15233 -0.15831	4.5238 eV	274.07 nm	f=0.0046	<s**2>=0.000</s**2>	3
Excited 194 197 197 197	State -> 198 -> 204 -> 205 -> 206	15:	Singlet-A 0.10993 -0.12245 -0.36957 0.55217	4.5368 eV	273.29 nm	f=0.0087	<s**2>=0.000</s**2>	9
Excited 194 195 195 197 197 197 197	State -> 198 -> 199 -> 200 -> 204 -> 207 -> 208 -> 208 -> 209 -> 212	16:	Singlet-A 0.19808 -0.23005 0.51865 0.51865 0.11309 -0.14168 -0.12092 -0.19473 -0.19473 -0.11520	4.6767 eV	265.11 nm	f=0.0005	<s**2>=0.000</s**2>	3
Excited 194 195 197 197 197 197	State -> 199 -> 200 -> 204 -> 207 -> 208 -> 209	17:	Singlet-A -0.10021 0.29928 -0.11476 0.37131 0.22005 0.35151	4.7159 eV	262.91 nm	f=0.0130	<s**2>=0.000</s**2>	9

197 -> 211 197 -> 212	-0.15333 0.13954				
Excited State 18 197 -> 206 197 -> 207 197 -> 208 197 -> 208 197 -> 211 197 -> 211 197 -> 212 197 -> 214	: Singlet-A 0.11253 0.46515 0.19301 -0.31258 0.24218 -0.20579 -0.11613	4.8045 eV	258.06 nm	f=0.0037	<s**2>=0.000</s**2>
Excited State 19 197 -> 207 197 -> 208 197 -> 210 197 -> 211	: Singlet-A -0.27980 0.54063 0.24721 0.18314	4.8153 eV	257.48 nm	f=0.0113	<s**2>=0.000</s**2>
Excited State 20 194 -> 199 195 -> 199 195 -> 200	: Singlet-A 0.62851 -0.12786 0.23781	4.8402 eV	256.16 nm	f=0.0018	<s**2>=0.000</s**2>
Excited State 21 192 -> 198 193 -> 198 193 -> 199	: Singlet-A -0.28834 0.57866 0.18999	4.8738 eV	254.39 nm	f=0.0367	<s**2>=0.000</s**2>
Excited State 22 192 -> 199 193 -> 198 193 -> 199 194 -> 199 197 -> 212	: Singlet-A 0.35866 -0.13959 0.53231 -0.10076 0.10079	4.9506 eV	250.44 nm	f=0.0198	<s**2>=0.000</s**2>
Excited State 23 197 -> 208 197 -> 209 197 -> 210 197 -> 211 197 -> 212 197 -> 213	: Singlet-A -0.21632 0.42314 0.19789 0.22127 -0.36541 -0.12152	4.9603 eV	249.95 nm	f=0.0072	<s**2>=0.000</s**2>
Excited State 24 197 -> 208 197 -> 211 197 -> 212 197 -> 213	: Singlet-A -0.14566 0.45586 0.36576 0.28282	4.9838 eV	248.78 nm	f=0.0022	<s**2>=0.000</s**2>
Excited State 25 192 -> 198 193 -> 198 197 -> 210	: Singlet-A 0.59862 0.29684 -0.10590	5.0454 eV	245.74 nm	f=0.3240	<s**2>=0.000</s**2>
Excited State 26 192 -> 198 197 -> 207 197 -> 208 197 -> 210 197 -> 211 197 -> 212 197 -> 214	: Singlet-A 0.12329 0.12400 -0.13630 0.56827 -0.21441 0.19195 -0.14416	5.0573 eV	245.16 nm	f=0.0075	<s**2>=0.000</s**2>
Excited State 27 191 -> 198 192 -> 199 193 -> 199 193 -> 200 194 -> 200 197 -> 212	: Singlet-A 0.13238 0.36729 -0.19644 -0.13288 0.47823 -0.10056	5.1163 eV	242.33 nm	f=0.0038	<s**2>=0.000</s**2>
Excited State 28 192 -> 199 193 -> 199 197 -> 210 197 -> 212 197 -> 213 197 -> 214	: Singlet-A -0.17224 0.11591 0.12575 -0.21174 0.50748 0.31054	5.1586 eV	240.34 nm	f=0.0174	<s**2>=0.000</s**2>
Excited State 29 192 -> 199 192 -> 200 193 -> 199 193 -> 200 194 -> 200 197 -> 213	: Singlet-A -0.34128 -0.10490 0.24454 0.19734 0.47837 -0.13122	5.1631 eV	240.14 nm	f=0.0018	<s**2>=0.000</s**2>
Excited State 30 190 -> 198 191 -> 198 194 -> 200	: Singlet-A -0.14763 0.66104 -0.11909	5.1753 eV	239.57 nm	f=0.0124	<s**2>=0.000</s**2>
Excited State 31 196 -> 202 197 -> 210 197 -> 211 197 -> 212 197 -> 213 197 -> 214 197 -> 217	: Singlet-A 0.11010 0.14437 0.17634 0.12675 -0.29868 0.54246 -0.10251	5.2703 eV	235.25 nm	f=0.0020	<s**2>=0.000</s**2>
Excited State 32 196 -> 202 197 -> 216 197 -> 219	: Singlet-A 0.39779 0.50316 -0.18118	5.3287 eV	232.67 nm	f=0.0119	<\$**2>=0.000

JOB: ti552SiBDMAP_TD2

3. Temperature-Dependent UV-vis Spectrum of 4

Figure S36. UV-vis absorption spectrum 4 at various temperatures in 3-methylpentane.