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Abstract: Over the last years, scientific interest in noncovalent interactions based on the presence of
electron-depleted regions called σ-holes or π-holes has markedly accelerated. Their high directionality
and strength, comparable to hydrogen bonds, has been documented in many fields of modern
chemistry. The current review gathers and digests recent results concerning these bonds, with a
focus on those systems where both σ and π-holes are present on the same molecule. The underlying
principles guiding the bonding in both sorts of interactions are discussed, and the trends that emerge
from recent work offer a guide as to how one might design systems that allow multiple noncovalent
bonds to occur simultaneously, or that prefer one bond type over another.

Keywords: molecular electrostatic potential; halogen bond; pnicogen bond; tetrel bond; chalcogen
bond; cooperativity

1. Introduction

The concept of the σ-hole, introduced to a wide audience in 2005 at a conference in
Prague by Tim Clark [1], influenced a way of thinking about noncovalent interactions
that prevails to this day. Early experimental findings [2–5] of unusual halogen·halogen
contacts were explained in part by the anisotropic distribution of electronic density around
a halogen atom when linked to an electron-withdrawing group. Already in 1992, it had
been learned that electronegative atoms from Groups 14–17 have regions of positive
molecular electrostatic potential (MEP) on their outer surfaces, along an extension of a
covalent bond, which may attract an incoming Lewis base [6]. This observation led to
the further computational studies which resulted in formulation of the σ-hole idea [7]
which was further generalized in later works [7–17]. These ideas concerning the halogen
bond were successfully adapted to atoms from other families of the periodic table, which
were later grouped into the category of σ-hole bonds. This general sort of noncovalent
bond has been subdivided by the specific family from which the bridging atom is drawn,
i.e., chalcogen [18–23], pnicogen (pnictogen) [24–28], or tetrel bonds [29–31]. The former,
along with the halogen bond, has been formally recognized and detailed in recent IUPAC
recommendations [32,33].

Quite the opposite from representing exotic or unusual contacts, these bonds make
important contributions to numerous fields of chemistry and biology. As examples, un-
derstanding the forces behind crystal engineering and supramolecular chemistry benefits
from a knowledge of σ-hole interactions due to their directionality, strength, and self-
organization properties which promote formation of adducts in the solid state [34–52]. The
importance of σ-hole bonding has also been verified in the context of anion recognition
processes [53–61], materials chemistry [62–72], or biochemistry [73–81]. An early work
connecting σ-hole bonds with crucial concepts in chemistry occurred when Grabowski

Molecules 2021, 26, 1740. https://doi.org/10.3390/molecules26061740 https://www.mdpi.com/journal/molecules

https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-4038-5959
https://orcid.org/0000-0002-6495-6963
https://orcid.org/0000-0003-0793-0369
https://doi.org/10.3390/molecules26061740
https://doi.org/10.3390/molecules26061740
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/molecules26061740
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules26061740?type=check_update&version=1


Molecules 2021, 26, 1740 2 of 21

recognized that tetrel bonds can be thought of as a preliminary stage of the very important
SN2 reaction [82].

As ideas concerning the σ-hole were proliferating, it was recognized that density
depletion is not necessarily limited only to the extensions of covalent bonds. Depletions
can also occur above planar groups as well, as for example above a carbonyl or phenyl
group. Linear systems such as HCN can also suffer from low density off the molecular
axis. Because of their location and association with π-electronic systems, these regions
of density depletion and positive electrostatic potential have come to be called π-holes.
As one specific example, tricoordinated triel atoms typically occur at the center of a planar
triangle, with a π-hole located above the central triel atom [13,83–87], and the resulting
triel bond [88–95] falls into the category of a π-hole bond. The π-hole situated above
the C atom of a carbonyl group offers another common example, whose presence was
manifested in early work of Burgi and Dunitz [96]. Protein structures can also involve
participation of π-hole bonds [97,98], as is also true of self-assembling systems [99]. As work
has progressed, there has been recognition of π-holes as providing a means by which an
aerogen bond (involving rare gas atoms) can form [100–104]. Other newly introduced
types of σ/π- hole directed interactions are alkali and alkaline earth bond (e.g., beryllium
bond, magnesium bond) in which atoms of 1st and 2nd groups contribute [105–109] or
regium and spodium bonds which employ transition metals from 11th (regium [110–115])
or 12th (spodium [105,116–119]) groups of the periodic table. The full range of these sorts
of bonds, along with their designations, is summarized in Figure 1.
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There have been a number of earlier reviews addressing the issue of σ-hole and π-
hole bonds [13,49,51,52,81,84,105,120,121]. However, little attention has been devoted to
situations where both hole types are present on a single molecule, and the competition
between the two for a nucleophile. Indeed, it is also of intense interest to examine the result
when both of these bonds are present at the same time. As has already been explored, the
tunability of single σ or π-holes enables the construction of interesting assemblies with
desired properties [122–124]. The possibilities multiply when both types of bonds are
present and influence one another.

The driving goal for this work is to review with a critical eye what is known about
systems offering both σ and π-holes to an approaching nucleophile. Are there rules that
can be used to predict which will be preferred? Is there a distinction depending on whether
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both holes lie on the same atom or on different atoms of the same molecule? Different
combinations are discussed where π-hole bonds of various types are combined with other
noncovalent bonds, whether aerogen, halogen, tetrel, pnicogen, or chalcogen.

2. Origin of π-Holes

The σ-hole has been well documented in the literature, along with its explanation
as emanating from the pull of electron density along the axis of a covalent bond. The
origin of a π-hole is similar in some ways, as it too relies on anisotropic distribution of
charge. The fundamental origin and nature of a π-hole can be understood using F2GeO
as an example. This molecule is planar with C2v symmetry. The NBO localized orbitals
representing the σ and π bonding orbitals of the Ge=O bond exhibited in the top half of
Figure 2 both show a bias toward the more electronegative O. The region above the Ge
atom and on its right, toward the two F atoms, thus suffers from a depletion of electron
density. This shift is reflected by the drop in the total electron density as the point of
reference moves up and out of the molecular plane, culminating in the minimum of the
black ρ curve in Figure 3 for θ ~ 60◦. Such a density depletion above the molecular plane is
commonly referred to as a π-hole, which is in turn responsible for a maximum of the red
molecular electrostatic potential (MEP) curve in Figure 3, which occurs at roughly θ = 75◦.
Figure 4a illustrates this π-hole in the MEP as the blue region lying above (and below) the
Ge and shifted slightly toward the two F atoms. It is thus natural for a nucleophile to
then approach this π-hole from this direction, as exemplified by the complex with NH3
displayed in Figure 4b. It might be noted as well that the π* orbital in Figure 2 is perfectly
situated to act as electron acceptor from the lone pair of the NH3 nucleophile, another
trademark of π-hole interactions. Note finally the geometrical distortion of the originally
planar F2GeO in Figure 4b as the O and F atoms are shifted away from the approaching
nucleophile another common characteristic of π-hole bonds.
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Of course, the forgoing explanation of the origin of a π-hole can vary from one system
to the next. The presence of any lone electron pairs on the central atom can influence the
magnitude and actual location of any such π-hole. An example to be discussed shortly is
XeF2O where the central Kr atom contains two such lone pairs. The positive region that
appears above an aromatic ring of, e.g., C6F6, is not located directly above any one C atom
but lies rather above the ring’s center. Such a dislocation can at times make it problematic
to connect a π-hole with any particular atom, such as that above a C≡N group which lies
roughly midway between the C and N atom.
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to +0.05 and −0.05 au, respectively. (b) Optimized complex of GeF2O with NH3 at the mp2/aug-cc-
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It should be reiterated that the causality is as follows: depletion of electron density
causes a rise in the electrostatic potential [125]. In fact, sometimes a hole is labeled as
such even though the potential is not positive, just less negative than its surroundings.
For practical reasons, the magnitude of a hole is typically measured on the 0.001 au
electron isodensity surface and is quantified by the VS,max parameter developed for this
purpose [12,126]. The electron density can be accessed not only by quantum calculations
but also experimentally by diffraction methods [127].

It has been shown that the intensity of a σ-hole can be adjusted by changing the polariz-
ability of the central atom and the electron-withdrawing power of its substituents [13,84,127],
and the same considerations apply to π-holes as well [128]. However, it must be borne
in mind that the strength of a given interaction is not a function solely of electrostatic
considerations. Polarization and dispersion forces are important attractive forces as
well [13,17,129–131].
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3. σ-Hole and π-Hole on the Same Atom

There are only a few reports in the literature of systems where both σ and π holes
appear on the same atom. One example of such a situation is furnished by AeF2O where
Ae refers to an aerogen atom Kr or Xe [132]. As may be seen in Figure 5, the Ae atom of
this molecule contains a σ-hole along the O=Ae bond extension, while a π-hole opens up
above the molecular plane. As may be seen in the upper section of Table 1, the σ-hole is
quite a bit more intense than the π-hole. The weaker nature of the latter may be attributed
in part to the presence of lone pairs on the central Ae atom which share space with these
holes and would dilute any density depletion. It is interesting to note that whereas the
σ-hole is a bit more intense for Xe vs Kr, the reverse order is seen in their π-holes.
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Figure 5. MEP of the isolated KrOF2 and XeOF2 molecules on the 0.001 au contour of the electron
isodensity, at the MP2/aug-cc-pVDZ level. Color ranges, in kcal/mol, are red, greater than 40, yellow;
between 20 and 40, green; between 0 and 20, blue, less than 0 (negative). Selected surface critical
points Vs,max (σ and π-holes) are indicated as black dots. Reproduced from Reference [132] with
permission from the PCCP Owner Societies.

These two AeF2O molecules were allowed to react with a series of diazine nucleophiles
(with negative MEP minima on the N atoms) [132]. It was found that the intensity of these
various holes carries over into the interaction energies (Eint) of the corresponding dimers.
Complexation through the σ-hole was more stable than the corresponding π-hole dimers
by about 6 kcal/mol. The stability order was parallel to the hole intensities, as the Xe
complexes were slightly stronger than Kr atom analogues.

Another study by Bauza and Frontera [104] of related complexes obtained a deeper
σ-hole on XeOF2 by a different computational procedure. XeOF2 complexes with ammo-
nia and CH3CN were characterized by similar interaction energies as in Reference [132].
Interaction energies were magnified by the use of an anion as nucleophile as would be
expected. Unfortunately, these authors did not consider π-hole complexes for purposes
of comparison.
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Table 1. Comparison between σ and π hole depths in molecules where they coexist on the same atom,
VS,max in kcal/mol.

Molecule Hole Source Hole Type VS,max References

Aerogen Bond Donors

KrOF2 Kr σ 58.7 [132]

KrOF2 Kr π 39.1 [132]

XeOF2 Xe σ 63.4 [132]

XeOF2 Xe σ 90 [104]

XeOF2 Xe π 36.2 [132]

Pnicogen Bond Donors

PF2C6H5 P σ 19.4 [133]

PF2C6H5 P π 36.2 *

AsF2C6H5 As σ 28.2 [133]

AsF2C6H5 As π 44.0 *

SbF2C6H5 Sb σ 38.4 [133]

SbF2C6H5 Sb π 56.6 *

BiF2C6H5 Bi σ 52.6 [133]

BiF2C6H5 Bi π 60.9 *

PF3 P σ 35.6 [134]

PF3 P π 9.7 [134]

AsF3 As σ 43.9 [134]

AsF3 As π 7.1 [134]

SbF3 Sb σ 51.6 [134]

SbF3 Sb π 10.6 [134]

BiF3 Bi σ 61.5 [134]

BiF3 Bi π 12.7 [134]

Chalcogen Bond Donors

SF4 S σ 41.7 [135]

SF4 S π 64.4 [135] **

SeF4 Se σ 51.2 [135]

SeF4 Se π 61.1 [135] **

TeF4 Te σ 59.2 [135]

TeF4 Te π 54.5 [135] **

PoF4 Po σ 76.3 [135]

PoF4 Po π 53.2 [135] **

Tetrel Bond Donors

SiF4 Si σ 127.3 [136]

SiF4 Si π 109.8 [136]

GeF4 Ge σ 120.9 [136]

GeF4 Ge π 106.1 [136]

SnF4 Sn σ 129.4 [136]

SnF4 Sn π 121.3 [136]

PbF4 Pb σ 127.3 [136]

PbF4 Pb π 104.1 [136]

* Value obtained by additional calculations for the purpose of the current review, at the same level as
in Reference [136]. ** Values obtained for monomer in deformed complex geometry.

The ability of XeOF2 to interact with a Lewis base through both hole types was con-
sidered [137] in connection with the nucleophile NCCH3, as displayed in Figure 6. The
σ-hole complex on the left has the a shorter Xe···N distance than the π-hole structure by
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nearly 0.4 Å, and is preferred by 2–4 kcal/mol. This energetic advantage occurs despite the
presence of a secondary C···O tetrel bond in the latter. The authors questioned the level of
covalency in the Xe···N bond, but their topological analyses were not conclusive. Unfortu-
nately, this work did not delve into the σ or π-hole depths as background information.
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Brock et al. [138] provided experimental crystal structural evidence of the XeOF2···NCCH3
binding wherein three different nucleophiles approached Xe from three different directions
simultaneously, two of π-hole character and one σ-hole, demonstrating the viability of
multiple bonds to different holes of the same atom. In a different vein, the σ-hole at Xe
atom in XeOF2 has also been a vehicle by which to illustrate cooperativity between regium
and aerogen bond in the ternary systems of C2H2···MCN···XeOF2, C2H4···MCN···XeOF2,
MCN···C2H4···XeOF2 and C2(CN)4···MCN···XeOF2 where M= Cu, Ag or Au [111]. The
σ-hole was able to interact with a N lone pair as well as the unsaturated π- system of a
C=C bond. It would have been particularly interesting had the authors considered similar
questions with regard to the Xe π-hole.

Within a hypervalent bonding situation, halogen atoms are also capable of containing
a π-hole. Within the context of the BrOF2

+ cation [139] an X-ray structure indicated the
central Br atom can be approached by three nucleophiles. Two KrF2 and one AsF6 molecule
attack electrophilic regions on the outer surface of the Br atom. While these three Lewis
bases appear to interact through σ-holes on the Br atom, it cannot be excluded that there is
a π-hole site on this cation which can attract another Lewis base.

Turning to the pnicogen atom, interaction with NH3 [133] caused ZF2C6H5 (Z = P,
As, Sb, Bi) to take on two different arrangements. The first contained three σ-holes in the
range of 19-53 kcal/mol, the strongest for the most polarizable Bi atom. As indicated in
Figure 7, approach to this σ-hole places the NH3 opposite one of the F atoms. Internal
rearrangement of the ZF2C6H5 to a more planar structure opens up a π-hole above the Z
atom. As delineated in Table 1, this hole has a magnitude between 36 and 61 kcal/mol,
which can also attract the NH3 nucleophile, as depicted in the lower half of Figure 7. The
greater depth of the π-holes leads to their larger interaction energies by a factor of 2 to 8.
However, the internal rearrangement required to open up these π-holes is energetically
costly, requiring between 16 and 43 kcal/mol, so that despite the greater depth of the π
vs σ-holes, and their superior interaction energies, it is the set of structures in the top half
of Figure 7 that are energetically preferred by a margin between 1 and 11 kcal/mol. This
deformation energy diminishes with larger Z atoms, so that there is a closer competition
between the σ and π-hole complex binding energies.
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Another study of pnicogen bonded systems addressed the question of how many
Lewis base ligands can be attached to a single ZF3 molecule [134]. The ZF3 monomer
(Z = P, As, Sb, Bi) is characterized by three σ-holes, one opposite each Z-F bond, and a
much shallower one that lies directly opposite the Z lone pair, amongst the three F atoms.
Although ZF3 is pyramidal, the latter was considered a π-hole due to its placement. Table 1
documents the much lesser VS,max of the latter as compared to the three σ-holes on each
ZF3 unit. Because of its greater electrostatic attraction, it is the σ-hole that draws in the
approaching nucleophile, whether HCN, CN−, or NH3. A second nucleophile of any sort
occupies a second σ-hole, but such a triad is only possible for the two heavier Sb and Bi
atoms for the anionic CN− due to the large Coulombic repulsion required to form such
a dianion, and even so, the SbF3··(CN−)2 triad has a positive binding energy. HCN is
too weak a nucleophile to squeeze in a third pnicogen-bonded base, while such a tetrad
is possible for NH3. Addition of a fourth NH3 is possible only for Z = Bi. It seems to
occupy the π-hole mentioned above, but this weak interaction is reinforced by secondary
noncovalent bonding, reflecting the reluctance of these units to engage with their weak
π-holes.

Shifting attention to chalcogen bonding, the YF4 (Y = S, Se, Te, Po) monomer adopts a
see-saw equilibrium geometry [135] with a pair of σ-holes lying opposite each of the two
equatorial Y-F bonds, with VS,max magnitudes between 42 and 76 kcal/mol, as listed in
Table 1. A pair of NH3 nucleophiles can approach along these two σ-holes which would
lead to an overall octahedral arrangement with the two NH3 units cis to one another, as
depicted on the left side of Figure 8. An alternative trans positioning of the two nucleophiles
as shown on the right side of Figure 8 would place the central YF4 in a square pyramidal
configuration, closer to a square. As such, it would acquire a π-hole directly below the
Y atom. It may be observed from Table 1 that these π-holes are rather intense, between
53 and 64 kcal/mol, so can easily attract one of the two NH3 bases. The other side of the
nearly square YF4 unit contains a Y lone electron pair, which obstructs the second NH3
from approaching directly opposite the first, so it situates itself closer to a point opposite
one of the Y-F bonds, close to its σ-hole. The energetic comparison of the cis and trans
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geometries must again consider both interaction and deformation energies. Whereas the
interaction energies of the trans structure are much more negative than those for cis, the
deformation energies required to adopt the nearly square structure are much larger as well.
The net result is that the binding energies of the cis and trans conformations are comparable
to one another. Cis is favored for the two smaller S and Se chalcogen atoms, while the
heavier Te and Po, with their somewhat reduced deformation energy requirements, shift
the equilibrium toward trans.
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Similar considerations apply to tetrel bonds. TF4 (T = Si, Ge, Sn, Pb) is of course
tetrahedral, so is characterized by four equivalent σ-holes opposite each T-F bond [136].
In order to accommodate a pair of bases, TF4 distorts into an octahedron. Cis approach of the
two bases places the TF4 in a see-saw geometry with a pair of σ-holes, each lying opposite an
equatorial T-F. An alternate deformation into a square planar structure, allowing for trans
arrangement of the two bases, imparts a pair of π-holes to the TF4 unit. The lowermost
section of Table 1 shows the σ-holes of the former structure are slightly deeper than
the π-holes of the latter. It is worth stressing that either type of hole in these distorted
arrangements, whether see-saw or square, is considerably deeper than those in the original
undistorted tetrahedral geometry. The interaction energies of the pair of NCH bases with
the square was considerably more negative than for the see-saw, despite the larger VS,max
for the latter, by between 10 and 40 kcal/mol. On the other hand, the energy required
to deform the tetrahedral TF4 into a square far exceeded that needed for the see-saw,
particularly for the smaller T atoms. In quantitative terms, the deformation energies for
the squares varied from 22 all the way up to 66 kcal/mol for SiF4, as compared to only
0.4–15 kcal/mol for the see-saw. The net result is that it is the cis geometry that is favored,
and this preference varies from only 3 kcal/mol for PbF4 up to 23 kcal/mol for SiF4. In fact,
the large deformation energies for the square structures with small T make the binding
energy a positive quantity for both SiF4 and GeF4.

The forgoing highlights the importance of considering π-holes, even for Lewis acids
whose undistorted monomer geometries are such that no such holes are present. The
deformations which the monomer undergoes in its interaction with one or more bases can
present the possibility of a π-hole whose interaction is comparable to, or even stronger
than, that with the original σ-holes.

4. σ-Hole and π-Hole on Different Atoms

More common than the presence of a σ and π-hole arising on the same atom is the
situation wherein these two holes are located on different atoms. Within this subgroup
there are several themes that are more common than others.
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4.1. Combination of σ-Hole on Halogen or Chalcogen with π-hole on Aromatic Ring

A number of works have considered situations wherein a σ-hole on a halogen (X)
atom coexists with a π-hole lying above the plane of an aromatic ring. When not directly
above the center of the ring, the π-hole is shifted so as to lie closer to the midpoint of a C-C
or C-N bond, a topic which has been discussed at some length elsewhere [140]. With this
understanding, this review subsumes all of these types into the category of π-hole. Values
of the MEP positive maxima are enumerated in Table 2.

One prominent example modeled functionalization of graphene sheets by C6H5Br [141]
and its physisorption on the graphene surface through either its Br σ-hole or phenyl π-hole.
The adsorption energy with electron-rich graphene regions was three times larger for the π-
hole interaction than for the σ-hole contact. Taking the analysis one step further, the authors
noted that the adsorption seriously affects the properties of graphene. Bromopentafluo-
robenzene also has the option of interaction through either its σ or π-hole [142], in this case
with pyridine. The latter nucleophile was able to interact either through its N lone pair or
the π-electron system of its aromatic ring. As in the previous case the π-hole···π interaction
yielded the more stable dimer, here by about 4 kcal/mol. As a fundamental point of dis-
tinction, energy decomposition suggested that whereas electrostatics is the dominant factor
in σ-hole complexation, this role is assumed by dispersion in π-hole bonding. Another
study of this type [143] involved homo-dimerization of 1,3,5-trifluoro-2,4,6-triiodobenzene
(TITFB) through its σ or π holes. The σ-hole on the iodine atom was roughly three times
deeper than the π-hole positioned above the benzene ring. However, the intermolecular
distance was shorter of about 0.1 Å in the case of π-hole interaction.

Table 2. Comparison between σ and π holes appearing on the same molecule, where σ-hole is coupled with halogen (or
chalcogen) atom and π-hole with an aromatic ring, VS,max in kcal/mol.

Molecule Hole Source Hole Type VS,max References

1,4-DITFB I σ 32.3 [140]

Carbon/Benzene ring π 15.1 [140]

C6H5Br Br σ up to ~15 [142]

Benzene Ring π up to ~15 [142]

TITFB I σ 30.1 [143]

Carbon/Benzene Ring π 11.4 [143]

Halogen Substituted 1,3,4-
oxadiazol-2IJ3H)-thiones S (Chalcogen), Cl, Br σ up to ~37 [144]

Oxadiazole and Benzyl Ring π up to ~37 [144]

Haloperfluorobenzene Cl, Br, I σ 20.9 to 32.8 [145]

Benzene Ring π 12.6 to 19.8 [145]

XC3H4N2
+; X = F, Cl, Br, I Cl, Br, I σ 105.9 to 117.5 [146]

Imidazolium Ring π 111.0 to 127.9 [146]

Shukla et al. [144] found that biologically active derivatives of halogen substituted
1,3,4-oxadiazol-2IJ3H)-thiones in the solid state contain a σ-hole on the S, Cl, and Br
atoms and a π-hole above the oxadiazole and benzyl rings all of which participate in
noncovalent interactions. The S···N σ-hole chalcogen bond manifested distinctive activity
in stabilization of these amalgams. This work fits into the idea that both σ and π-hole
bonding play a pivotal role in the 3D organization of crystalline structures and in various
molecular scaffolds.

Li et al. provided another example [145] in the context of interactions between halop-
erfluorobenzene with fluoroanthene (FA) which assemble into nine luminescent cocrystals.
These interactions involved the participation of the σ-hole of Cl, Br, or I atoms or the
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π-hole of the phenyl ring with aromatic π-electrons on the FA. The σ-holes were more
intense than the π-hole by as much as 17 kcal/mol. While the balance between σ and
π-hole bonding with FA varied as the σ-hole deepened and the π-hole weakened along
with the growth of the halogen atom, it was nonetheless the σ-hole···π interaction that was
universally favored.

Wang et al. [146] examined the interaction between protonated 2-halogenated imida-
zolium cation (XC3H4N2

+; X = F, Cl, Br, I) and the set of (CH3)3SiY (Y = F, Cl, Br, I) Lewis
bases. The acid contained both a σ-hole on its X atom and a π-hole above the imidazolium
ring. The π-holes were the deeper of the two, leading to stronger interactions. In these ionic
cases, both interaction types were driven mainly by electrostatic forces (the electrostatic
term was well correlated with the VS,max values found on monomers) with some addition
of polarization and dispersion. The dispersion term was somewhat more prominent for
the weaker σ-hole complexes while the polarization component towered over dispersion
for π-hole dimers.

An experimental component was contributed by Zhang et al. [147], which paired
C6F5X (X = Cl, Br, I) with C6D6 in solution. As in the earlier cases, a σ-hole appeared on
the X atom while a π-hole occupied the space above the aromatic ring. For the strongest
σ-hole which was associated with the I atom, the interaction lay through its σ-hole, while it
was the π-hole link that dominated for the smaller halogens. This pattern was attributed
by the authors in large part to entropic contribution since enthalpy alone would not be
sufficient to stabilize σ-π over π-π. Comparable conclusions were drawn in another paper
by the same group [148], where Lewis acids participated in complexes with deuterated
solvent molecules with lone-pair electrons, including CD3CN, CD3COCD3, CD3OD, and
[D6]DMSO. Experiment and calculations showed that again σ-hole and π-hole bonds
compete with each other for the nucleophile’s lone pair, rather than the π-electron system
of C6D6 in the earlier work. The results indicated that only the iodine and a few bromine σ-
hole halogen bonds are strong enough to contend successfully with the π-hole interactions
in solution.

The biologically relevant ebselen derivative, 2-(2-bromophenyl)benzo[d][1,2]selenazol-
3(2H)-one homodimer [149] exhibited markers of simultaneous σ-hole and π-hole bonding.
The σ-hole lay along the C-Br covalent bond elongation and the π-hole was derived from
the phenyl ring. Shukla et al. postulated two simultaneous interactions: σ-hole bonding
from the Br σ-hole to the negative charge-concentrated C-C bond, as well as a π-hole bond
between a positively charged C atom and the lone electron pair of Br, confirmed by their
NBO analysis. This case represents an uncommon model wherein the same atom acts as
both σ-hole bond acceptor and π-hole bond donor.

Finally, Wang et al. [140] reviewed a comparison between complexes stabilized by
σ/π holes with various nucleophilic acceptors with particular emphasis on their potential
application to anion recognition and transport. Among numerous examples, one of especial
interest concerned 1,4-diiodoperfluorobenzene (1,4-DITFB) with both a σ and π-hole. The
former was twice as deep as the latter, and the authors underscored that this molecule can
act as σ/π hole donor and also by taking into account the high amount of electronic density
collected on F atoms, and on the belt around the central fragments of the I atoms surface, it
can serve as σ-hole or π-hole acceptor as well.

4.2. Combination of σ-Hole Halogen Bond with Other π-Hole Sources

Further exploration of the literature supplies examples where a X σ-hole is combined
with π-holes derived from groups other than aromatic rings. Instances of the halogen-
pnicogen combination are most numerous. Lang et al. [150] provided a textbook example
in that the surface of XONO/XONO2 (X = F, Cl, Br, I) contains both a typical σ-hole on
X and a π-hole localized on the N atom. The VS,max values for this set of systems are
listed in the first four rows of Table 3. The authors observed that the σ-hole intensity grew
in line with the increase of X atom size whereas the π-hole magnitude dropped in this
same order (similar picture as at Li et al. [145]). Binary complexes of these monomers
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with ClO and ammonia had interaction energies correlated to the MEP maxima. The
ternary ClO···XONO/XONO2···NH3 complexes revealed anti-cooperative effect between
the σ-hole halogen and π-hole pnicogen bond, as expected when the central unit acts as
double electron acceptor. Solimannejad et al. [151] examined adducts of NO2X (X = Cl,
Br) with HCN and HNC moieties. The π-hole was stronger than the σ-hole, contrary
to the Lang et al. results. Within four tested interaction schemes in binary complexes
(stabilized by σ-hole, π-hole and two different hydrogen bond approaches), those bonded
through the π-hole were the most stable, for the majority of the trimers displayed negative
cooperativity between the σ and π-hole interactions. Subsequent work of this research
group [152] deployed the NO2I monomer with a different Lewis base (ammonia). The I
atom showed a deeper σ than π-hole, which led to the expected outcome that the NO2I
dimer with ammonia was more strongly bound by its σ than by its π-hole. This study also
supported two conclusions formulated in earlier cited works: (i) both interaction types
showed a strong correlation between VS,max and interaction energy, and (ii) antagonistic
effect between σ and π-hole bonds was observed in trimers with two ammonia units.

Table 3. Comparison between σ and π holes appearing on the same molecule, where σ-hole is
coupled with halogen atom and π-hole with different sources (other than aromatic ring), VS,max in
kcal/mol.

Molecule Hole Source Hole Type VS,max References

Halogen-Pnicogen

XONO (X = F, Cl, Br, I) X σ −6.3 to 51.1 [150]

XONO (X = F, Cl, Br, I) N π 20.8 to 29.5 [150]

XONO2 (X = F, Cl, Br, I) X σ 2.7 to 67.7 [150]

XONO2 (X = F, Cl, Br, I) N π 29.6 to 41.2 [150]

NO2X (X = Cl, Br) X σ 13.2 and 19.0 [151,152]

NO2X (X = Cl, Br) N π 28.1 and 29.8 [151,152]

NO2I I σ 29.4 [152]

NO2I N π 23.5 [152]

Halogen-Tetrel

NCX (X = F, Cl, Br) X σ 14.3 to 42.1 [153]

NCX (X = F, Cl, Br) C π 12.4 to 27.3 [153]

Halogen-Triel

BH2X (X = F, Cl, Br, I) Cl, Br, I σ 3.5 to 11.3 [154]

BH2X (X = F, Cl, Br, I) B π 28.8 to 39.4 [154]

Halogen-Beryllium

BeCl2 Cl σ 1.2 [109]

BeCl2 Be π 32.2 [109]

There are also examples in the literature combining a σ-halogen with a π-tetrel bond.
As one example, McDowell [153], analyzed complexes of NCX (X = F, Cl, Br) with H2O.
Besides the obvious appearance of a σ-hole on X, a π-hole region was noticed above and
below C. As in the previous cases, the intensity of the π-hole drops along with larger X as
its σ-hole deepens. Of the two potential binding modes illustrated in Figure 9, only NCF
was able to form complexes with water via both o modes a and b. Whereas the π-hole on
NCF was 2.5 times stronger than its σ-hole, the π-holes on NCCl and NCBr were too weak
to attract the incoming nucleophile. With regard to addition of a third entity, addition of
hydrogen and beryllium cations destabilized the σ-hole bond while improving binding in
the π-hole complexes.
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Bauza and Frontera [154] tested the ability of BH2X (X = F, Cl, Br, I) to establish various
sorts of interactions in their homodimers, depending on the attack angle between them.
Along with the presence of a σ-hole on X, a π-hole was also available over the central B,
perpendicular to the molecular plane. The strengths of these two holes followed expected
trends based on X atomic size, and the B π-hole was considerably more intense than the X
σ-hole. It was therefore no surprise to find a strong interaction energy of −34.7 kcal/mol
for π-hole(B)···σ-hole(I) interaction, much larger than that when I is replaced by Br, or even
the halogen bond between I σ-holes in a pair of BH2I molecules.

A particularly unusual combination of holes was examined by Alikhani [109]. The π-
hole on BeCl2 occurs as a narrow belt around the Be atom, with VS,max = 32.2 kcal/mol. The
magnitude of the σ-hole on Cl is only 1.2 kcal/mol, too weak to expect effective attraction of
a Lewis base. The author consequently focused on the nature and properties of the π-hole
beryllium bond in complexes with nucleophiles Cl2, NH3, and DMF (dimethylformamide),
all of which proved to be quite strong, with the Eint reaching up to −46.3 kcal/mol. One
might expect that the replacement of the Cl on BeCl2 by Br or I would intensify the X σ-hole
and perhaps also weaken the π-hole on Be. If that were the case, then a XB through the Br
or I σ-hole might be able to successfully compete with the Be π-hole interaction.

4.3. Other Examples

The literature contains a few other sorts of combinations of σwith π-holes. Pal et al. [155]
present the interplay between these binding sites in Fmoc-Leu-Ψ[CH2NCS] (Fmoc = fluo-
renylmethyloxycarbonyl protecting group, Leu = leucine) organic isothiocyanate which
act as an intermediate in the synthesis of bioactive peptides. The N=C=S group contains a
σ-hole on the S atom surface (along the extension of the C=S bond), and a π-hole perpen-
dicular to the C-N bond. The specific location of the π-hole makes it difficult to classify
as either a π-hole tetrel or pnicogen bond. For the purpose of the current review, it was
classified as π-hole tetrel/pnicogen bond (see Table 4). Between these positively charged
sections, there were also regions of negative potential derived from the lone electron pair
of the nitrogen (σ-hole acceptor) and sulphur (π-hole acceptor) atoms. N=C=S···N=C=S
contacts were observed in the crystal lattice that are associated with electrostatically driven
attractions between regions of opposite charge. These simultaneous σ and π-holes interac-
tions with the negative sites were cooperative, thereby magnifying the stabilization within
the crystal.

The specific location of the π-hole was more definitive [156] in CF2=CFZH2 (Z = P,
As, Sb) and CF2=CFPF2. The electron-deficient regions corresponding to π-holes were
positioned directly above the C atom, while the σ-hole was localized on the pnicogen
Z atom. The σ-hole became deeper in the sequence P < As < Sb attributed to rising Z
polarizability, while the π-hole magnitude lessens in the same order, as documented in
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Table 4. Switching -PH2 moiety to -PF2 boosted the magnitude of both holes. The prediction
of MEP extrema was verified by the energetic properties of the complexes formed between
these Lewis acids and NH3 or NMe3. The interaction energies of the dyads were generally
consistent with the MEP trends. However, some irregularity was found, as the σ-hole
complexes in each case were more stable than their π-hole counterparts, as might be
expected for Z = As, Sb but counter to MEP trends for P. It is worth emphasizing, however,
that the differences in energy between the two kinds of complexes were less than 0.5
kcal/mol. It might be concluded then that σ-hole and π-hole sites can compete with
one another in these systems. Further analyses (NBO, Eint decomposition) revealed that
the formation of the complexes is grounded not only in the electrostatic term (which
nevertheless governs) but also charge transfer between subunits which varied from 0.3 up
to 14.4 kcal/mol, for LP(N)→ σ*(C-Sb) donation. The scale of charge transfer was larger
for σ-hole dimers than in the case of π-hole adducts.

Table 4. Comparison between other combinations of σ and π holes appearing on the same molecule, VS,max in kcal/mol.

Molecule Hole Source Hole Type VS,max References

Chalcogen-Tetrel/Pnicogen

Fmoc-Leu-Ψ[CH2NCS] S σ 3.9 (exp.), 7.8 (theory) [155]

Fmoc-Leu-Ψ[CH2NCS] C=N bond π no data [155]

Pnicogen-Tetrel

CF2=CFZH2 (Z = P, As, Sb) Z σ 19.4 to 28.9 [156]

CF2=CFPF2 C π 36.4 [156]

CF2=CFZH2 (Z = P, As, Sb) Z σ 25.7 to 28.2 [156]

CF2=CFPF2 C π 40.1 [156]

Tetrel-Tetrel

F2C=CFTF3 (T = C, Si, Ge) T σ 8.2 to 46.4 * [157]

F2C=CFTF3 (T = C, Si, Ge) C=C Bond π 30.7 to 35.1 * [157]

* In cited work, these values are probably given in wrong unit (eV instead of more reliable au).

Another work by this group [157] involved the F2C=CFTF3 (T = C, Si, and Ge) as
Lewis acid with water, ammonia, or formaldehyde as Lewis base, comparing the σ or
π-holes on the tetrel T atoms. The σ-hole was formed along the T-F bond while the π-hole
appeared perpendicular to the C=C double bond, coplanar to the σ-hole. The π-hole
maxima rose along with the T atom size, in contrast to the case in earlier studies. However,
the magnitudes were quite limited and for T = C and Si, the π-hole intensities were very
close to one another. One can assume that the π-hole connected with the C=C bond is
much less sensitive to the remainder of the molecule. The MEPs of the σ-holes were mostly
consistent with previous patterns and also increased with the enlargement of T. The π-hole
was stronger than the σ-hole in F2C=CFCF3 while the reverse was observed for T = Si
and Ge. In keeping with this MEP data, F2C=CFCF3 prefers to form a π-hole tetrel bond
whereas F2C=CFSiF3 and F2C=CFGeF3 were prone to a σ-hole tetrel bond. The strong
correlation between MEP and interaction energy of the dimers was confirmed.

5. Conclusions and Prospective

Molecular systems can contain both σ- and π-holes, and there is a growing literature
on both of them that allow some comparisons to be drawn. The presence of both sorts
of holes is reflected in an expansion of possible binding sites and an increased flexibility
in the noncovalent bonding with nucleophiles. The examination of crystals displays this
flexibility in an array of binding patterns [104,140–146,149,153,155] where the directionality
of σ/π-hole bonds is integral to arrangement, stabilization, and self-organization. There
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are numerous examples where these interactions are important to systems with biological
connections [144,149,155] or photophysical performance [141,143,145].

In addition to the crystallographic data and their supporting theoretical investigations,
examinations of systems in solution or model geometries in the gas phase provide addi-
tional insights into mutual presence of both σ and π-holes. The most-commonly observed
situation to date is the combination of a σ-hole on a halogen atom with a π-hole from a
variety of sources, most notably an aromatic ring. However, the full list is rather extensive,
as for example when both sorts of hole occur on a single tetrel atom. One interesting
conclusion is that a particular sort of hole does not have to be present in the isolated
monomer. For example, the approach of a nucleophile can induce geometric deformation
into the Lewis acid which in turn causes the appearance of a π-hole that is not present in
its isolated form.

Another pattern which has emerged from the studies is that a σ-hole typically deepens
as the atom on which it occurs grows larger, e.g., Si < Ge < Sn, whereas this same enlarging
atom can lead to a weakening of a π-hole. These opposing trends offer the opportunity
to guide an emerging complex geometry based on atom size. When both hole types are
present, they each offer an attractive site for binding by a nucleophile. However, since
both bonding types utilize the Lewis acid as electron acceptor, the two bonds weaken one
another in a negative cooperative manner.

Whether σ or π-hole type, the noncovalent bond appears to have a strong electrostatic
component, based on rigorous calculations of this component, as well as a tight correlation
of bond strength with the depth of the hole. However, these bonds rely to a large extent
also on polarization and charge transfer effects, complemented by dispersive forces, al-
though the precise mix of these different components varies from one bond to another.
A slightly different perspective on some of these bonds has been offered by the Bickel-
haupt group [22,23] in which emphasis is placed on the activation strain model of chemical
reactivity and the energy decomposition analysis combined with molecular orbital theory.

It is hoped that this review of the current state of knowledge concerning these σ
and π-hole bonds will motivate additional work to better refine our understanding of the
forces that undergird and control them. In a practical sense, this enhanced knowledge base
will hopefully lead to the development of new crystal packing motifs and to innovative
materials with improved properties.
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