Supplementary Materials

Determination of Cd, Pb, and Cu in the atmospheric aerosol of Central East Antarctica at Dome C (Concordia Station)

Silvia Illuminati¹, Anna Annibaldi^{1*}, Cristina Truzzi^{1*}, Caterina Mantini¹, Eleonora Conca², Mery Malandrino², Matteo Fanelli¹, Giada Giglione¹, and Giuseppe Scarponi¹

- ¹ Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; <u>s.illuminati@univpm.it</u> (S.I.); <u>a.annibaldi@univpm.it</u> (A.A); <u>c.truzzi@univpm.it</u> (C.T.); <u>caterina.mantini@libero.it</u> (C.M.); <u>m.fanelli@univpm.it</u> (M.F.); <u>g.giglione@univpm.it</u> (G.G.); <u>g.scarponi@univpm.it</u> (G.S.)
- ² Department of Analytical Chemistry, University of Torino, Via Giuria 5, 10125 Torino, Italy; <u>eleonora.conca@unito.it</u> (E.C.); <u>mery.malandrino@unito.it</u> (M.M.)
- * Correspondence: <u>a.annibaldi@univpm.it</u> (A.A.); <u>c.truzzi@univpm.it</u> (C.T.); Tel.: +39-071-2204981 (A.A., C.T., S.I.)

Contents

From "Results and Discussion"

- Section S1. Backward trajectories (Figure S1)
- Section S2. Principal component analysis (Tables S1-S2, Figure S2; Tables S3-S4, Figure S3; Tables S5-S6, Figure S4)
- **Section S3.** Regression analysis for the whole dataset and the two subsets of background and contamination data (Figure S5)

From "Materials and Methods"

- **Section S4.** Map of the sampling site (Figure S6)
- Section S5. Images from sampling activities (Figure S7)
- Section S6. Decontamination of filters (Table S7)
- **Section S7.** Images from the treatment and analysis of filters in the Antarctic and Italian laboratories (Figure S8)
- Section S8. Potential-time waveform applied in voltammetric analysis (Figure S9)
- Section S9. Original data (Tables S8-S9)

Section S1. Backward trajectories

Figure S1. NOAA Hysplit five-day air backward trajectories run for arrival heights of 100 m (red), 500 m (blue) and 1000 m (green) a.g.l. at 12 a.m. of each day recorded at Dome C during the summer 2005-2006. (a) Period Dec 7-20, 2005. Continue.

Figure S1. Continuation. (b) Period Dec 21, 2005, to Jan 1, 2006.

Figure S1. Continuation. (c) Period Jan 2-14, 2006.

Section S2. Principal component analysis

Principal Component Analysis (PCA) was used to study the possible relationships between samples (score plots), between metals (loading plots) and between samples and metals (PCA biplots). PCA was carried out on standardized data using as variables the contents of the three metals expressed either in mass fraction, or in atmospheric concentration, or in both measurement units. The UNISTAT Statistical Package Version 10, 2017 (Unistat Ltd., 9 South Close, Highgate, London N6 5UQ, UK) was used for all these analyses. The cross-validation of PCs was made by the SIMCA-P package, version 8.0, 1999 (Umetrics AB, Ume å Sweden; today from Sartorius AG, Gottingen, Germany) in accordance with Wold's procedure ([163] Wold, 1978). The PCA biplots with arrowheads at the ends of the vectors, see e.g. [134] (pp. 90-110), were obtained by the S-PLUS package, version 6.2 Professional Edition (Lucent Technologies, Inc., Murray Hill, NJ, USA, 2003; from 2010 TIBCO Software Inc., Palo Alto, CA, USA).

S2.1. PCA from mass fraction data

Results obtained using mass fraction as expression of the metal contents are reported in Tables S1 and S2 and in Figure S2. The first two PCs are significant at the cross-validation criterion (Table S2), together they account for ~98% of the total variation (PC1 ~75%, PC2 ~23%), and are dicussed here. The first PC expresses the overal metal loading, while the second PC contrasts Cd on one hand with Pb and Cu on the other (Figure S2). The scatter plot of samples (see in particular Figure S2b) shows a clear separation between samples with low metal contents (AT1-2, AT1-3, AT2-2, CS2) and those with generally much higher values, but with particular reference to Cd (CS1, CS3, AT2-1), or to Pb and Cu (AT1-1).

S2.2. PCA from atmospheric concentration data

Results obtained using atmospheric concentrations as expression of the metal contents are reported in Tables S3 and S4 and in Figure S3. The first two PCs are significant at the cross-validation criterion (Table S4), together they account for ~98% of the total variation (PC1 ~84%, PC2 ~14%), and are dicussed here. The first PC expresses the overal metal loading, the second PC contrasts Cd on one hand with Cu on the other, while Pb has no influence on PC2 (Figure S3). The different structure of the loading plot with respect to the previous case of mass fraction data can be ascribed to the fact that in this case we analyse the metal contents referred to the atmospheric volume instead of to the mass of the particulate matter. Here the aerosol concentration in the atmosphere enter in the expression of the metal content, in addition to the mass fraction measured in the solid particulate matter. The scatter plot of samples (see in particular Figure S3b) shows again a clear separation between samples with low metal contents (AT1-2, AT1-3, AT2-2), where however the CS2 sample is not included as in the previous case, and those with generally much higher values, with particular reference to Cd (CS1, CS3, AT2-1), to Cu (AT1-1, CS-1, CS-2), or to Pb (CS-1, AT1-1, CS-3).

S2.3. PCA from mass fraction plus atmospheric concentration data

Here to distinguish between the two kinds of measurements units we used for mass fractions the symbols Cd.F, Pb.F, Cu.F, and for atmospheric concentrations Cd.C, Pb.C, Cu.C. Results obtained using both mass fractions and atmospheric concentrations as expression of the metal contents, are reported in Tables S5 and S6 and in Figure S4. Here the first three PCs are significant at the cross-validation criterion (Table S6), together they account for ~98% of the total variation (PC1 ~62%, PC2 ~26%, PC3 ~10%), and are dicussed here. The first PC expresses again the overal metal loading. The second PC contrasts Pb and Cu mass fractions (Pb.F, Cu.F), on one hand, with Pb and Cd atmospheric concentrations (Pb.C, Cd.C), on the other (Figure S4b). The third PC contrasts Pb and Cd mass fractions (Pb.F, Cd.F), on one hand, with Pb and Cd atmospheric concentrations (Pb.C, Cu.C), on the other (Figure S4d). The scatter plot of samples (see in particular Figure S4b,d) definitely confirms the separation of four samples with low metal contents (AT1-2, AT1-3, AT2-2, CS2) from those with generally much higher values, considering mass fractions and atmospheric concentrations together.

Table S1. PCA results from mass fraction data (Unistat package).

Varia	ince	Table									
Component No Eiger		genv	alue	Cumulative Variance		Pe	ercent	Cumulative %			
1	1 2.24		247	8	2.24	78		7	4.93	74.93	
2 0		0.	696	1	2.94	40		2	3.20	98.13	
3	3 0.05		056	0	3.00	000			1.87	100.00	
Eiger	iveci	tors									
	Corr	nponent	1	Con	npone	ent 2	Со	mponent 3			
Cd	0.44	491		0.8	855		0.1	1193			
Pb	0.64	445		-0.2	286		-0.	7296			
Cu	0.6	188		-0.4	045		0.6	5734			
Princ	ipal	Compor	nen	ts							
		Compor	nen	t 1	Comp	ooner	nt 2	Component	: 3		
CS-1	-	0.3761			0.83	93		0.4215			
CS-2		-0.7330			-0.61	80		0.2285			
CS-3		-0.4597			0.65	27		0.0718			
AT1-	-1	3.3917			-0.77	40		-0.0412			
AT1-	AT1-2 -0.9614 -0.4913			-0.1230							
AT1-	-3	-0.9121			-0.62	25		-0.1484			
AT2-	-1	0.4673			1.40	65		-0.3361			
AT2	-2	-1.1689)		-0.39	928		-0.0730			

Table S2. Cross-validation (Significance) and PCA results from SIMCA package: mass fraction data.

Simca-P 8.0 Project Aerosol Dome C Model M1 Data set Mass Fractions (Cd, Pb, Cu) Type PC-X NObs 8 NVarX 3 NVarY 0 Components:									
A	R2X	R2X(cum)	Eigenvalues	Q2	Limit	Q2(cum)	Significance	Iterations	
00	-	0.000	-	-	-	-			
01	0.749	0.749	2.248	0.001	0.344	0.001	NS	8	
02	0.232	0.981	0.696	0.754	0.429	0.754	R1	5	
03	0.019	1.000	0.056	1.000	0.583	1.000	N3	1	

Figure S2. PCA biplots from mass fraction data on the plane of the first two PCs; (a) Unistat package and (b) S-Plus package (biplot version with directed line segments). Explained variances: PC1 ~75%, PC2 ~23%.

Table S3. PCA results from atmospheric concentration data (Unistat package).

Vario	ance T	able								
Component No Eige		nvalue	Cumulative Variance		e P	ercent	Cumulative %			
1	L 2.5165		165	2.51	65			83.88	83.88	
2	2 0.43		339	2.95	04			14.46	98.35	
3			0.04	496	3.00	00			1.65	100.00
Eigel	nvecto	ors						-		
	Comp	onent	1 C	ompone	ent 2	Со	mponent 3			
Cd	0.548	36	0).7357		0.	3972			
Pb	0.620)5	-0	0.0398		-0.	7832			
Cu	0.560)4	-0	0.6761		0.4	4783			
Princ	cipal Co	ompon	nents							
	Со	mpon	ent 1	Comp	onent	2	Componen	t 3		
CS-1	L 3.	.0665		0.286	59		0.2991			
CS-2	2 -0.	.1754		-0.597	76		0.0085			
CS-3	3 0.	6737		1.005	52		-0.3366			
AT1	-1 1.	2301		-1.138	34		-0.2190			
AT1	-2 -1.	.0597		-0.048	30		-0.1439			
AT1	-3 -1.	.5626		-0.091	19		0.2522			
AT2	-1 -0.	.7058		0.526	55		0.0353			
AT2	-2 -1.	.4668		0.057	'4		0.1044			

Table S4. Cross-validation (Significance) and PCA results from SIMCA package: atmospheric concentration data.

Simca-P 8.0 Project Aerosol Dome C Model M2 Data set Atm Conc (Cd, Pb, Cu) Type PC-X NObs 8 NVarX 3 NVarY 0 Components:									
А	R2X	R2X(cum)	Eigenvalues	Q2	Limit	Q2(cum)	Significance	Iterations	
00	-	0.000	-	-	-	-			
01	0.839	0.839	2.517	0.439	0.344	0.439	R1	6	
02	0.145	0.983	0.434	0.552	0.429	0.749	R1	13	
03	0.017	1.000	0.050	1.000	0.583	1.000	N3	1	

Figure S3. PCA biplots from atmospheric concentration data on the plane of the first two PCs; (a) Unistat package and (b) S-Plus package (biplot version with directed line segments). Explained variances: PC1 ~84%, PC2 ~14%. Note that the polarity of PC2 axis in S-Plus plot is reversed with respect to that in Unistat plot.

Table S5. PCA results from mass fraction data (Cd.F, Pb.F, Cu.F) and atmospheric concentration data (Cd.C, Pb.C, Cu.C) (Unistat package).

Varian	ce Table									
Comp	onent No	Eige	nvalue	Cumula	ative Variance	Percent	Cumu	ılative		
1		3.74	476	3.7476	5	62.46	62.4	16		
2		1.53	391	5.2868	3	25.65	88.2	11		
3		0.6	185	5.9053	3	10.31	98.4	12		
4		0.0	730	5.9783	3	1.22	99.6	54		
5		0.0	199	5.9982	2	0.33	99.9	97		
6		0.0	018	6.0000)	0.03	100.0	00		
Eigenv	rectors									
	Compone	nt 1	Compo	nent 2	Component 3	Compoi	nent 4	Component !	6 Component 6	
Cd.F	0.3916		0.1881	L	0.7637	-0.3394		-0.2675	0.2030	
Pb.F	0.3615		-0.5426	5	0.2911	0.1809		0.2834	-0.6141	
Cu.F	0.4055		-0.4881	L	-0.1455	0.1933		0.1369	0.7211	
Cd.C	0.3346		0.6075	;	-0.0002	0.2007		0.6908	0.0381	
Pb.C	0.4741		0.2508	3	-0.2334	0.5255		-0.5934	-0.1721	
Cu.C	0.4635		-0.0037	1	-0.5062	-0.7059		-0.0066	-0.1748	
Princiț	al Compor	nents								
	Compon	ent 1	Comp	onent 2	Component 3	3 Comp	onent 4	Component	5 Component 6]
CS-1	2.5875		1.865	57	-0.5970	-0.241	4	0.0899	-0.0193]
CS-2	-0.6107		-0.213	30	-0.9216	-0.185	3	-0.2363	0.0389	
CS-3	0.1820		1.341	10	0.3026	0.544	1	-0.0151	0.0299	
AT1-1	3.1668		-2.216	55	0.0716	0.120	1	0.0187	0.0037	
AT1-2	-1.4654		-0.248	36	-0.2792	0.155	3	-0.0873	-0.0900	
AT1-3	-1.8210		-0.589) 9	-0.1630	-0.096	5	0.2349	0.0010	
AT2-1	-0.1361		0.280)6	1.7055	-0.271	7	-0.0809	-0.0031	
AT2-2	-1.9030		-0.219) 5	-0.1189	-0.024	6	0.0760	0.0389	

Table S6. Cross-validation (Significance) and PCA results from SIMCA package: mass fraction plus atmospheric concentration data.

Simca-P 8.0 Project Aerosol Dome C Model M3 Data set Mass + Atm Conc (Cd, Pb, Cu) Type PC-X NObs 8 NVarX 6 NVarY 0 Components:										
A	R2X	R2X(cum)	Eigenvalues	Q2	Limit	Q2(cum)	Significance	Iterations		
00	-	0.000	-	-	-	-				
01	0.625	0.625	3.748	-0.119	0.250	0.000	NS	10		
02	0.257	0.881	1.539	0.471	0.286	0.471	R1	9		
03	0.103	0.984	0.619	0.429	0.333	0.698	R1	8		
04	0.012	0.996	0.073	0.540	0.400	0.861	N3	8		
05	0.003	1.000	0.020	0.879	0.500	0.983	N3	6		
06	0.000	1.000	0.002	1.000	0.667	1.000	N3	1		

Figure S4. PCA biplots from mass fraction data (Cd.F, Pb.F, Cu.F) and atmospheric concentration data (Cd.C, Pb.C, Cu.C) on the planes of components PC2 vs PC1 (a and b) and PC3 vs PC1 (c and d), respectively; (a, c) Unistat package and (b, d) S-Plus package (biplot versions with directed line segments). Explained variances: PC1 ~62%, PC2 ~26%, PC3 ~10%. Note that the polarity of PC2 axis in S-Plus plot is reversed with respect to that in Unistat plot.

Section S3. Regression analysis for the whole dataset and the two subsets of background and contamination data

Figure S5. Bivariate scatter plots of metal contents in the aerosol (in mass fractions and atmospheric concentrations), with in evidence the two subsets representative of the background (green) and contamination (red) samples. Dome C austral summer 2005-06.

Section S4. Map of the sampling site

Figure S6. Technical map of the sampling area, with locations of aerosol sampling points at Concordia Station (Concordia, CS), Astrophysics Tent 1 (AT1) and Astrophysics Tent 2 (AT2).

Figure S7. (a) Sampler location at sampling point Concordia Station (Concordia, CS). The arrow points to the sampler in the large photo. Note the direction of the smoke from the Station towards the sampler (enlarged in the insert). (b)The site of Astrophysics Tent (left), the location of the two samplers (AT1, AT2) in this site (centre), and one sampler in the foreground (right). Satellite images on the circles (from Figure 8).

Section S6. Decontamination of filters

Table S7. Results of a filter decontamination procedure. Standard deviations from three measurements at least.

Doto	Tractment	Metal concentrations (mean ±SD)					
Date	Treatment	Cd (ng 1-1)	Pb (ng 1 ⁻¹)	Cu (µg l ⁻¹)			
28 May 2005	24 h Ultrapure water	0.20±0.05	5.3±0.2	11.2±0.5			
30 May 2005	24 h Ultrapure HCl 1+1000	790±8	160±8	63±3			
01 June 2005	24 h Ultrapure water	0.51 ± 0.06	3.5±0.3	nd			
02 June 2005	24 h Ultrapure HCl 1+1000	7.4±0.2	4.2±0.4	7.4±0.3			
03 June 2005	24 h Ultrapure water	nd	nd	nd			
04 June 2005	24 h Ultrapure HCl 1+1000	nd	nd	nd			

nd = signal non detected.

Section S7. Images from the treatment and analysis of filters in the Antarctic and Italian laboratories

Figure S8. (a) Filter conditioning and weighing in the clean laboratory of Concordia Station, Antarctica. (b) Filter cutting and voltammetric analysis in our clean chemistry laboratory, Italy.

Section S8. Potential-time waveform applied in voltammetric analysis

Figure S9. Potential-time waveform and current sampling scheme (dashed areas) in square-wave voltammetry. Symbol meanings: ΔE_{step} = step height in mV; t_{step} = step time in ms; t_{wait} = waiting time in ms, i.e. time elapsing between the beginning of the potential step and the start of the SW potential modulation; E_{sw} = SW amplitude in mV; t_{meas} = current sampling time, equal in forward ($t_{meas,f}$) and reverse ($t_{meas,r}$) pulses, in ms; f= frequency in Hz; t_{pulse} = pulse time in ms = 1/(2f); τ = period 1/f; t_m in ms, see text. Redrawn from [53] Illuminati et al., 2015.

Section S9. Original data

	Cadmium blank		Lead blank		Copper blank		
Field blank filter	Concentration ^a ng 1 ⁻¹	Mean±SD ng l ⁻¹	Concentration ^a ng l ⁻¹	Mean±SD ng l ⁻¹	Concentration ^a µg l ⁻¹	Mean±SD µg l ⁻¹	
CS.1 (before)	10.3; 9.7; 10.1	10.0±0.3	90; 81; 85; 78	84±5	0.394; 0.390; 0.399; 0.357; 0.400	0.39±0.02	
CS.2 (after)	9.6; 8.6; 10.5; 9.1	9.4±0.8	83; 89; 71; 86	82±8	0.358; 0.320; 0.300; 0.365	0.34±0.03	
AT1.1 (before)	10.3; 10.9; 9.0	10.1 ± 1.0	70; 83; 72	75±7	0.325; 0.330; 0.365	0.34±0.02	
AT1.2 (after)	7.7; 11.2; 9.2	9.4±1.8	84; 86; 70	80±9	0.430; 0.393; 0.380	0.40±0.03	
AT2.1 (before)	10.6; 10.5; 11.0	10.7±0.3	79; 81; 87	82±4	0.358; 0.322; 0.360; 0.330	0.34±0.02	
AT2.1 (before)	11.4;10.5; 8.0	10.0±1.8	74; 65; 77; 86	76±9	0.412; 0.352; 0.360	0.37±0.03	
Weighted mean ±SD)	10±1		80±7		0.36±0.02	

 Table S8. Overall filter blanks (includes laboratory blanks).

(^a) Conditions: 1/8 filter, 100 ml final solution after digestion.

 Table S9. Original results from sample analyses.

Cadmium

Sample	Gross sample	Gross sample	Net sample	Mass	Atmospheric
reference	concentration (^a)	mean ±SD	concentration (b)	fraction	concentration
label	ng l ⁻¹	ng 1 ⁻¹	ng l ⁻¹	µg g⁻¹	pg m ⁻³
CS.1	86; 90; 98; 86	90±6	80±6	7.0±1.2	3.1±0.4
CS.2	21; 19; 17; 23	20±3	10±3	1.4±0.4	0.40±0.13
CS.3	59; 58; 53	56±3	46±3	5.2±0.5	2.0±0.2
AT1.1	24; 32; 25	27 ±4	17±4	6.6±1.6	0.70±0.18
AT1.2	15; 18; 14	16±2	6±2	1.3±0.4	0.25±0.09
AT1.3	12.1; 12.5; 11.9	12.2±0.3	2.2±1.0	1.0±0.5	0.09 ± 0.04
AT2.1	46; 50; 54	50±4	40±4	8.4 ± 1.0	0.98±0.14
At2.2	18; 15; 18	17±2	7±2	1.3±0.4	0.20±0.06

(^a) Conditions: 1/8 filter, 100 ml final solution after digestion. (^b) Blank subtracted 10±1 ng l⁻¹.

Lead

Sample	Gross sample	Sample	Net sample	Mass	Atmospheric
reference	concentration (^a)	mean ±SD	concentration (^b)	fraction	concentration
label	μg 1 ⁻¹	μg 1 ⁻¹	μg 1 ⁻¹	mg g⁻¹	pg m ⁻³
CS.1	1.64; 1.73; 1.68; 1.80; 1.55	1.68±0.09	1.60±0.09	0.14 ± 0.02	62±7
CS.2	0.81; 0.86; 0.89; 0.88	0.86 ± 0.04	0.78±0.04	0.11 ± 0.01	31±3
CS.3	1.18; 1.03; 1.00	1.07 ± 0.10	0.99±0.10	0.11 ± 0.01	44±6
AT1.1	1.47; 1.34; 1.35; 1.14; 1.30; 1.21	1.30±0.12	1.22±0.12	0.47±0.06	50±7
AT1.2	0.669; 0.638; 0.640; 0.670	0.65 ± 0.02	0.57±0.02	0.12±0.01	23±2
AT1.3	0.376; 0.372; 0.376	0.375 ± 0.002	0.295 ± 0.007	0.13 ±0.02	12±1
AT2.1	1.21; 1.07; 0.93; 1.02	1.06±0.12	0.98±0.12	0.20±0.03	24±4
At2.2	0.633; 0.542; 0.612	0.60 ± 0.05	0.52±0.05	0.10±0.01	15±2

(a) Conditions: 1/8 filter, 100 ml final solution after digestion. (b) Blank subtracted 0.080±0.007 µg l⁻¹.

Copper					
Sample	Gross sample	Gross sample	Net sample	Mass	Atmospheric
reference	concentration (^a)	mean ±SD	concentration (^b)	fraction	concentration
label	μg 1 ⁻¹	μg 1 ⁻¹	μg 1 ⁻¹	mg g ⁻¹	ng m ⁻³
CS.1	58.7; 57.1; 68.1; 63.6; 66.1	63±5	63±5	5.4±0.9	2.4±0.3
CS.2	31.2; 24.4; 29.0	28±3	28±3	3.9±0.6	1.1±0.2
CS.3	8.6; 8.5; 8.6; 8.4	8.5±0.1	8.1±0.1	0.92±0.06	0.36±0.04
AT1.1	52.4; 46.5; 56.6; 52.5	52±4	52±4	20±2	2.1±0.3
AT1.2	5.7; 5.2; 4.7	5.2±0.5	4.8±0.5	1.06±0.14	0.20±0.03
AT1.3	3.79; 3.93; 3.58	3.77±0.17	3.41±0.17	1.53±0.12	0.14 ± 0.02
AT2.1	5.8; 3.2; 4.8	4.6±1.3	4.2±1.3	0.88±0.28	0.10±0.03
At2.2	1.22; 1.31; 1.43	1.3±0.1	0.94±0.1	0.17±0.03	0.027 ± 0.004
(^a) Conditi	ons: 1/8 filter, 100 ml final so	olution after dige	estion. (b) Blank sub	stracted 0.36	±0.02 µg 1 ⁻¹ .

Έ με