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Abstract: Electric double-layer capacitors (EDLCs) are an excellent electrochemical energy storage
system (ESS) because of their superior power density, faster charge–discharge ability, and longer
cycle life compared to those of other EES systems. Activated carbons (ACs) have been mainly used
as the electrode materials for EDLCs because of their high specific surface area, superior chemical
stability, and low cost. Petroleum pitch (PP) is a graphitizable carbon that is a promising precursor
for ACs because of its high carbon content, which is obtained as an abundant by-product during the
distillation of petroleum. However, the processibility of PP is poor because of its stable structure.
In this study, pre-oxidized PP-derived AC (OPP-AC) was prepared to investigate the effects of pre-
oxidation on the electrochemical behaviors of PP. The specific surface area and pore size distribution
of OPP-AC were lower and narrower, respectively, compared to the textural properties of untreated
PP-derived AC (PP-AC). On the other hand, the specific capacitance of OPP-AC was 25% higher than
that of PP-AC. These results revealed that pre-oxidation of PP induces a highly developed micropore
structure of ACs, resulting in improved electrochemical performance.

Keywords: pre-oxidation; petroleum pitch-based activated carbons; supercapacitors; electric double-
layer capacitors (EDLCs); microporous

1. Introduction

With the sharply increasing human population and the life expectancies with advanced
technology, energy shortages and global warming are becoming serious issues [1]. The iden-
tification of renewable energy sources and the development of efficient energy storage de-
vices for low-carbon and sustainable economic development have become important [2–5].
Electrochemical energy storage and conversion systems, such as fuel cells, metal/air bat-
teries, supercapacitors, etc., have attracted great attention as promising technologies to
address the rapid energy demands and environmental concerns [6].

Electric double-layer capacitors (EDLCs) have been regarded as the most important
energy storage devices with potentially excellent power densities, safeties, and specific
capacitances, as well as fast charge–discharge rates and long-cycle lives for practical appli-
cations [7,8]. Since the 19th century, when von Helmholtz [9] first proposed the concept
and model of double layers, EDLCs have been extensively utilized for various applications,
including uninterruptible power supplies and memory backup systems [10]. However,
their low energy density limits their adoption in a wider range of applications. The en-
ergy storage behaviors of EDLCs are mainly limited by the accumulation of electronic
and ionic charges at the interface between the electrode and electrolyte; therefore, it is
well-documented that a large specific surface area of the electrodes is crucial to obtaining a
high specific capacitance [11,12].

Recently, several researchers have reported that the pore size distribution also plays
an important factor in determining the excellent electrode materials for EDLCs. Qu et al.
have discussed in detail the relationship between the intrinsic pore size distribution and
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their electrochemical performance for EDLCs [13]. Chmiola et al. also reported that energy
storage capacitance was increased abnormally in non-aqueous solvents when the pore size
was less than 1 nm [14]. This result was attributed to the high level of ionic motion and the
reduced dielectric constant in pores smaller than the size of their solvated shell under the
action of potential. When the ions are compressed through the pores, the solvated shell is
highly distorted, which brings the ion center closer to the electrode surface, thus leading to
increased capacitance.

To achieve high specific capacitances, many researchers have therefore focused on
various carbonaceous materials, such as carbon nanotubes (CNTs), graphene, carbon sphere,
and activated carbons (ACs), which have been known to have a large specific surface area
and high porosity [15–17]. CNTs-based supercapacitors are relatively lower than that of
amorphous carbons or porous carbons [18]. The surface of CNTs has some impurities that
are hard to be removed and have difficulty to dispersion in solvents due to high van der
Waals forces. Thus, CNTs can achieve high power density and high specific capacitance by
means of additional treatments, including a multiple-step purification using a mixed strong
acid and harsh oxidation, but the processes are quite expensive, and the long-term stability
of such materials has not been reached so far. These results have restricted the large-scale
applications of EDLCs, and the accompanied numerous environmental pollutions are also
serious matters to be considered. In the case of graphene, graphene has been regarded as the
most promising candidate for the electrode materials for EDLCs since it has high electrical
conductivity and a high theoretical specific surface area of over 2600 m2 g−1. However,
the specific surface area of graphene is usually much lower than the theoretical one, and
above all things, there is a big challenge in solving the problems for the commercialization
of adequate EDLCs [19].

Among the various carbonaceous materials for EDLC electrodes, ACs have generally
been the choice for producing the electrodes because of advantages such as a large specific
surface area, stable physical and chemical properties, good electrical conductivity, and
low cost. To prepare excellent porous ACs with high micropore volume and specific
surface area, many attempts have recently been made via activation processes, including
physical and chemical activation. In physical activation, suitable oxidizing gasifying agents
(O2, CO2, and H2O) are employed to produce porosity, generally at a high temperature.
Physical activation is an inexpensive and simplified method, but ACs were produced with
low specific surface area, resulting in low capacitances. On the other hand, in chemical
activation, carbonaceous materials are mixed with chemical agents (NaOH, KOH, ZnCl2,
and H3PO4). KOH is most widely used due to the highest specific surface area that can be
obtained compared to other chemical agents. Although both activation processes develop
the porosity of carbon materials, forming small mesopores and micropores, chemical
activation exhibits excellent performance in terms of developing porosity. In addition, it
requires a lower activation temperature and shorter activation time than physical activation.

Carbon source as a precursor of ACs was a consideration factor for high specific
surface area and excellent electrochemical performance. Various raw materials have been
used as precursors to obtain ACs, including biomass, plants, and polymers [20–22]. Pitch,
a by-product of coal cracking or crude oil distillation industry, is regarded as one of the
most promising precursors for ACs because of its low-ash, high-carbon yields and easily
graphitizable feature. Therefore, pitch-based ACs offer numerous advantages over other
raw carbonaceous materials.

Petroleum pitch (PP), as one of the pitch-based carbons, is considered a promising
precursor candidate because of its high carbon content, low price, as well as different
characteristic structures and properties [23–27]. However, PP is limited in exhibiting
high specific surface area and microporosity because of its stable micro-graphite structure,
low softening point, and hard-to-create micropores due to their structural firmness [28].
Therefore, PP requires additional treatments to be used as an ACs precursor, including
pre-heat treatments, solvent extractions, and melt filtrations [29–32]. Surface oxidation is
another simple strategy to overcome the limitations of PP. Wu et al. synthesized mesoporous
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carbon from rice husks for supercapacitors using the pre-oxidation method in the air [33].
This result showed that their specific capacitance reached 176 F g−1 at a current density
of 50 mA g−1, with a high specific surface area of 2009 m2 g−1. Xing et al. have also
examined the effects of pre-oxidizing ACs in air, demonstrating that the pre-oxidation of
ACs accelerates the decomposition of aromatic structures during activation, resulting in the
formation of abundant oxygen-containing groups on the carbon surface [34]. Kierzek et al.
summarized a variety of ACs as electrode materials for EDLCs [35]. Many research studies
of EDLCs have been conducted using various carbon sources. However, few reports have
described the use of pre-oxidized PP-derived ACs for EDLCs.

In this study, pre-oxidized PP-derived activation carbon (OPP-AC) was successfully
prepared by oxidation at 300 ◦C in oxygen and subsequent chemical activation to obtain
highly developed microporous carbons. The elemental compositions, surface chemical
state, crystalline structural properties, surface morphologies, textural properties, and
electrochemical performances were investigated by characterizing the prepared samples
using elemental analysis, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD),
Raman spectroscopy, scanning electron microscopy (SEM), N2 adsorption–desorption mea-
surement, and galvanostatic measurement, respectively. The experimental data revealed
that OPP-AC exhibits a higher (357 F g−1) specific capacitance than untreated PP-based
AC (PP-AC) (285 F g−1), whereas the specific surface area of OPP-AC (1246 m2 g−1) was
lower than that of PP-AC (1327 m2 g−1). The experimental data obtained in this study
suggested that pre-oxidation facilitates the development of micropores in the ACs, which
can be critical to forming nano-channels for rapid penetration of the electrolyte ions into
the porous structure, leading to improved electrochemical performance.

2. Materials and Methods
2.1. Preparation of Precursor Sample

Petroleum pitch (PP) procured from Carbonix Co., Korea, and pre-oxidized petroleum
pitch (OPP) were both used as precursors to prepare ACs. The OPP sample was prepared
by the pre-oxidation of PP at 300 ◦C for 2 h at a heating rate of 5 ◦C min−1 under the flow
of oxygen (200 cc min−1).

2.2. Preparation of Activated Carbons

First, the KOH impregnation was initiated by adding 2 g of PP (or OPP) to a 50 mL
ethanol solution containing 6 g of KOH. The mixture was stirred at room temperature for
5 h and then dried at 110 ◦C for 24 h. The KOH-impregnated PP (or OPP) was heated to
800 ◦C at 5◦ C min−1 in an electrical furnace in a nitrogen atmosphere. After being held for
2 h at 800 ◦C and naturally cooled, the resulting mixture was neutralized in 1 M HCl and
washed with distilled water until neutralization. Finally, the pitch-based ACs were dried at
110 ◦C in a vacuum oven for 24 h. The prepared non-oxidized and pre-oxidized ACs are
denoted as PP-AC and OPP-AC, respectively.

2.3. Characterization

Elemental analysis was conducted to investigate the elemental compositions of sam-
ples using a FLASH EA 1112 (Thermo Electron Co., West Palm Beach, FL, USA). The
surface chemical states of the prepared samples were confirmed by X-ray photoelectron
spectroscopy (XPS, Thermo Scientific, Waltham, MA, USA). The structural characteristics
of the prepared samples were confirmed by X-ray diffraction (XRD, BRUKER/D2 PHASER,
Karlsruhe, Germany) using a CuKα (λ = 0.154 nm) radiation and Raman spectroscopy
(Raman, HORIBA, Kyoto, Japan). The XRD patterns were recorded between 10◦ and
80◦ at a scanning rate of 5◦ min−1. The surface morphologies of the prepared samples
were observed by scanning electron microscopy (SEM, Hitach S-4300, Tokyo, Japan). N2
adsorption–desorption isotherms were recorded using a BELSORP measuring instrument
(BEL Inc., Toyonaka, Japan) at 77 K to examine the porosities of the prepared samples. All
samples were degassed at 160 ◦C for 10 h before the measurement. The specific surface
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area was calculated using the Brunauer–Emmett–Teller (BET) equation [36]. The total pore
volume was estimated based on the N2 adsorption at a P P0

−1 of 0.99. The total micropore
volume was calculated by applying the Dubinin–Radushkevich (D-R) equation, and the
mesopore volume was determined by subtracting the total micropore volume from the total
pore volume [37]. Furthermore, the NLDFT method was used to examine the micropore
size distribution [38].

The electrochemical measurements were conducted in three-electrode cells, containing
a Pt wire as the counter electrode, Ag/AgCl as the reference electrode, and the prepared
samples coated onto nickel foam as the working electrode. For the working electrodes, the
samples, carbon black, and polyvinylidene fluoride (PVDF) (80:10:10, w/w), were mixed
and then dispersed in N-methyl-2-pyrrolidone (NMP). Subsequently, the mixture was
coated onto a nickel-foam current collector, approximately 1 × 1 cm2 in size, which was
dried at 100 ◦C for 12 h. Cyclic voltammetry (CV) and galvanostatic charge–discharge
behaviors were examined using an electrochemical analyzer (Iviumstat, Ivium Technologies,
The Netherlands) to estimate the electrochemical performance within the potential range
of 1.0–0 V in a 6 M KOH solution [39–41].

3. Results and Discussion
3.1. Characterization

The elemental compositions of the prepared samples are listed in Table 1. The oxygen
contents of OPP (4.0 wt%) and OPP-AC (11.2 wt%) were found to be higher than those
of untreated PP (0.6 wt%) and PP-AC (9.9 wt%) because pre-oxidation introduces oxygen
moieties onto pitch molecules [42]. Meanwhile, the hydrogen contents in OPP (4.1 wt%)
and OPP-AC (5.5 wt%) were found to be reduced by the pre-oxidation than those of PP
(5.3 wt%) and PP-AC (6.0 wt%). Lower H/C atomic ratios of pre-oxidized samples (OPP
and OPP-AC) indicated an increased degree of aromaticity [43]. To further explore the
surface chemical compositions of the prepared samples, we performed XPS measurements,
as shown in Figure 1. All the samples exhibited the C 1s core-level spectrum of graphitic
carbon at 285.0 eV, which also has a broad and asymmetric tail towards higher binding
energy due to satellite peaks in the range of 288.5–292.5 eV. The peaks of O 1s at 532.1 eV
were also observed. The oxygen content of OPP was found to be 5.6 at.%, which is seven-
time higher than that of PP (0.8 at.%). This means that the pre-oxidization process provided
considerable oxygen moieties onto the PP surfaces. After the chemical activation, the
oxygen contents of PP-AC and OPP-AC increased to 13.2 and 15.2 at.%, respectively. These
results indicated that KOH activation introduced new oxygen-functional groups onto
the carbon surfaces. It is interesting to note that the KOH rapidly entered the carbon
frameworks of OPP due to a possible pathway between KOH and surface defects (e.g.,
oxygen moieties and voids), resulting in a further increase in oxygen content (~15.2 at.%)
in OPP-AC [44].

Table 1. Elemental analysis of PP, OPP, PP-AC, and OPP-AC.

Specimens C (wt%) N (wt%) H (wt%) S (wt%) O (wt%) H/C

PP 89.0 0.1 5.3 0.5 0.6 0.7
OPP 88.5 0.1 4.1 0.5 4.0 0.6

PP-AC 83.7 0.1 6.0 0.3 9.9 0.9
OPP-AC 82.9 0.1 5.5 0.3 11.2 0.8
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Figure 1. XPS spectra of PP, OPP, PP-AC, and OPP-AC.

The XRD patterns of the prepared samples are shown in Figure 2a. Two broad diffrac-
tion peaks were observed at approximately 25◦ and 43◦, corresponding to the C(002) and
C(100) planes, respectively [45]. The C(002) peak of OPP-AC was found to be relatively
lower than that of PP-AC, which can be attributed to the disruption of the microcrystalline
structure during pre-oxidation, resulting in a reduction of the C(002) peak [46]. The in-
terplanar distance (d) and crystallite thickness (Lc) of samples calculated by Bragg and
Scherrer equations [47,48]:

n λ = 2d sinθ (1)

Lc =
K λ

β cosθ
(2)

where n is diffraction order, λ represents the wavelength of the X-rays (0.154 nm),
θ indicates the angle of the chosen peak, K is the Scherrer constant, and β is the full width
at half-maximum.
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As shown in Table 2, the pre-oxidized samples (1.644 nm of OPP and 1.017 nm
of OPP-AC) had slightly lower Lc values than their corresponding non-treated samples
(1.728 nm of PP and 1.270 nm of PP-AC), respectively. This indicated that pre-oxidation
influences the microcrystalline structures, thereby decreasing the crystallinity [49]. The
d002 value of the activated carbons (0.371 nm of PP-AC and 0.375 nm of OPP-AC) increased
compared to their corresponding precursors (0.360 nm of PP and 0.363 nm of OPP) because
of the disordering of the microstructures by chemical activation [50,51]. In addition to
XRD, Raman spectroscopy was carried out to observe the microcrystalline properties of the
prepared samples (Figure 2b). These results exhibited two characteristic peaks of 1340 and
1579 cm−1 corresponding to the D-band and G-band, respectively. The D-band is caused
by a defect of graphitic structures, whereas the G-band is associated with the in-plane
bond-stretching of sp2 hybridized graphitic structure. The relative intensity of D- and
G-band (ID/IG) is often used to estimate the degree of defects in carbon frameworks [52,53].
The ID/IG ratios of PP and OPP were 0.82 and 1.05, respectively. The increase is attributable
to pre-oxidization, resulting from the introduction of the oxygen-function groups on the
carbon surfaces. The increased ratios of PP-AC and OPP-AC showed 1.17 and 1.19, respec-
tively, meaning the highly disordered graphitic structures due to the chemical activation.
These are consistent with the XRD results.

Table 2. Microcrystalline structural parameters of PP, OPP, PP-AC, and OPP-AC.

Specimens d002 (nm) a Lc (nm) b

PP 0.360 1.728
OPP 0.363 1.644

PP-AC 0.371 1.270
OPP-AC 0.375 1.017

a Interplanar distance (nm) determined from Bragg’s equation. b Crystallite thickness (nm) determined from
Scherrer’s equation.

The surface morphologies were observed using SEM measurements. As shown in
Figure 3a,b, OPP exhibits roughness on its surface, whereas PP has a smooth surface because
of the presence of oxygen moieties arising from the pre-oxidation [32]. The external surfaces
of the prepared AC samples shown in Figure 3c,d revealed newly developed macropores
caused by the external surface decomposition by KOH activation [54]. A higher number of
pores were observed in OPP-AC compared to those in PP-AC. This result indicated that
the pre-oxidation treatment facilitates the formation of new pores during the activation
reaction [55].
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In order to investigate the textural properties, N2 adsorption analysis was performed
at 77 K. As displayed in Figure 4a, all samples except PP have very steep initial N2 uptakes
at low relative pressures (P P0

−1 < 0.1). The steep rise in these isotherms followed by a
sharp knee is due to the capillary filling of micropores. These results also corresponded
with the Type-I isotherms based on IUPAC classifications, indicating typical microporous
carbon [56]. The textural properties of the samples are detailed in Table 3. Micropore
volumes of prepared samples were evaluated using the Dubinin–Radushkevich (D-R)
equation, which is well-fitted for microporous carbons [37]:

W = W0exp

[
−B
(

T
β

)2
Log2

(
P
P0

)]
(3)

where W represents the amount of liquid adsorbed at P P0
−1, W0 indicates the total amount

of adsorbate in the micropores, B is the adsorbent constant, and β is the affinity coefficient.
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Table 3. Porous structural parameters of PP, OPP, PP-AC, and OPP-AC.

Specimens SBET
a

(m2 g−1)
Vtotal

b

(cm3 g−1)
Vmicro

c

(cm3 g−1)
Vmeso

d

(cm3 g−1)
Vmicro/Vtotal

e

(%)

PP 2 0.03 0.01 0.02 33
OPP 118 0.12 0.07 0.05 58

PP-AC 1327 0.74 0.59 0.15 80
OPP-AC 1246 0.70 0.59 0.11 84

a SBET: specific surface area computed using BET equation at a relative pressure range of 0.001–0.01. b Vtotal: total
pore volume determined at P P0

−1 of 0.99. c Vmicro: micropore (0–2 nm) volume determined from the D-R method.
d Vmeso: mesopore (2–50 nm) volume determined by subtracting the micropore volume from the total pore volume.
e Vmicro/Vtotal: micropore volume ratio to total pore volume (%).

The equation has a semi-empirical origin and is based on the assumptions of a change
in the potential energy between the gas and adsorbed phases and the characteristic energy
of a given solid. This equation provides a macroscopic behavior of adsorption loading for a
given pressure.

After pre-oxidation, OPP has a specific surface area of 118 m2 g−1, which is approx-
imately 60 times higher than that of PP (2 m2 g−1). OPP also has a much higher total
pore volume (0.12 cm3 g−1) and micropore volume ratio to total pore volume (58%) than
those of PP (0.03 cm3 g−1 and 33%), as shown in Table 3. These results clearly indicated
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that pre-oxidation is crucial in improving the textural properties of PP. Notably, PP-AC
exhibited a higher specific surface area (1327 m2 g−1) and total pore volume (0.74 cm3 g−1)
than that of OPP-AC (1246 m2 g−1 and 0.70 cm3 g−1). However, PP-AC and OPP-AC
have an almost similar value of the micropore volumes (approximately 0.59 cm3 g−1), and
the pore size distribution of OPP-AC was much narrower than that of PP-AC, as shown
in Figure 4b. This indicated that pre-oxidation promotes a highly developed micropore
structure [57]. The pore size distributions also show that OPP-AC had a higher peak at
smaller pore width of 0.6 nm than that of PP-AC (0.7 nm). These results suggested that
pre-oxidation provided much smaller micropores in the carbon frameworks.

3.2. Electrochemical Performances of the Pitch-Based Activated Carbon Samples

As shown in Figure 5, the electrochemical performance of prepared samples was inves-
tigated based on cyclic voltammetry (CV) curves recorded in the range of 10–100 mV s−1

in a 6 M KOH electrolyte solution. The CV curves of all the samples exhibited a quasi-
rectangular shape, indicating ideal capacitance behaviors [58]. Moreover, all recorded CVs
retained their original shapes upon increasing the scan rate from 10 to 100 mV s−1. These
results suggest that all the samples exhibited good rate capability and high stability across
the scan rate range [59]. The CV curve area of OPP-AC was found to be larger than that of
PP-AC, indicating its higher electrochemical performance compared to that of PP-AC [60].
This can be attributed to the nano-channels formed by micropores due to pre-oxidation,
resulting in rapid penetration of the electrolyte ions [61].
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Figure 5. Cyclic voltammetry curves of (a) PP, (b) OPP, (c) PP-AC, and (d) OPP-AC at scan rates from
10 to 100 mV s−1 in 6 M KOH electrolyte.

The galvanostatic charge–discharge curves of the prepared samples were obtained
as functions of current density, as shown in Figure 6. The charge–discharge duration of
the prepared samples increased with a decrease in current density from 1.0 to 0.2 A g−1.
The charge–discharge curves of the prepared samples exhibited an almost triangular shape,
indicating their excellent rate capabilities and reversibility [62,63]. A longer discharging
time than the charging time observed in OPP-AC could be attributed to the oxygen moi-
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eties on the electrode surface, resulting from the interactions between the electrode and
electrolyte [64].
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current densities from 0.2 to 1.0 A g−1 in 6 M KOH electrolyte.

The specific capacitances (Csp) of the prepared samples are listed in Table 4. These
are calculated based on the galvanostatic charge–discharge method using the following
equation [65]:

Csp =
I∆t

m∆V
(4)

where Csp represents the specific capacitance (F g−1), I indicates the current, ∆t is the
discharge time, m represents the mass of the active material, and ∆V is the potential
window.

Table 4. Specific capacitances of PP, OPP, PP-AC, and OPP-AC.

Specimens 0.2 A g−1 0.5 A g−1 1.0 A g−1

PP 56 39 36
OPP 78 63 46

PP-AC 285 200 182
OPP-AC 357 228 195

The estimated Csp values of OPP-AC and PP-AC were found to be 357 and 285 F g−1,
respectively, at a current density of 0.2 A g−1. The higher Csp value of OPP-AC is because
of the well-developed micropores, which promote efficient ionic transfers between the
electrode and electrolyte [66]. The cyclic stability of the prepared samples was also evalu-
ated at a current density of 0.2 A g−1 in 6 M KOH electrolyte, as shown in Figure 7. The
specific capacitances of PP-AC and OPP-AC were maintained at more than 89% and 94%,
respectively, for the initial capacitances after 500 cycles. The OPP-AC showed superior
cycling stability, resulting from oxygen moieties due to the higher wettability [67].
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Several studies also reported this interesting phenomenon of higher specific capaci-
tance even though the electrodes exhibited a quite low specific surface area. A possesses
of the efficient pore sizes of electrode materials should facilitate the electrolyte ions to
access the pores, enhancing the electrochemical performance of EDLCs. You et al. prepared
lignin-based activated carbon fibers (LACFs) by electrospinning and subsequent steam
activation for electrochemical behaviors. They reported that LACF-105 and LACF-180 (here,
the numbers at the end of the specimen refer to the different amounts of water consumed
during the steam activation) exhibited specific surface areas of 2185 and 2447 m2 g−1, re-
spectively. The pore size distribution of LACF-105 was predominant in the pore size range
of 0.5–0.14 nm, whereas that of LACF-180 appeared in the range of 1.4–3.0 nm. Additionally,
the specific capacitance was found to be 133.3 F g−1 at the current density of 1 A g−1 in
LACF-105, which is approximately two times higher than that of 63.5 F g−1 in LACF-180.
It is clearly indicated that the smaller pore sizes that emerged from the steam activation
play a key role in enhancing the EDLCs’ performance [68]. Tian et al. investigated flute
type-microporous activated carbons (FTMAC) from cotton stalk via KOH activation as a
function of the KOH agent amount for electrochemical behaviors. The weight ratios of
KOH to the carbonized cotton stalk were denoted at the end of FTMAC. FTMAC-4 showed
the highest specific capacitance of 254 F g−1 at a current density of 0.2 A g−1, although
FTMAC-4 exhibited a lower specific surface area of 1964 m2 g−1 than that of FTMAC-5 of
2251 m2 g−1 [69]. Additionally, Chmiola et al. prepared carbide-derived carbons (CDC)
to study the effect of the pore sizes on the electrochemical behaviors. This result showed
that the specific surface area and specific capacitance do not have a linear relationship.
They demonstrated that micropores smaller than 1 nm have significantly influenced the
improvement of specific capacitances [14]. In the case of graphene materials for EDLCs, He
et al. synthesized porous graphene nanosheets (CGNSs) from petroleum pitch using KOH
activation as a function of activation temperature. The specific surface area of 2132 m2 g−1

in the CGNS3-1073 was found to be slightly lower than that of 2216 m2 g−1 in the CGNS3-1173.
However, the electrochemical performances, including specific capacitance and cycle stabil-
ity of the CGNS3-1073, were much higher than those of CGNS3-1173. This can be attributable
to the much smaller micropores formed in the CGNSs, facilitating the ions to access the
electrode surfaces [28]. Thus, as observed, it is suggested that the designing of carbon
materials with efficient pore sizes is critical to enhancing electrochemical performances.
In addition, we listed several reports of PP-based porous materials for EDLCs in order
to compare our results with others [23,29,70–74]. Table 5 lists the specific capacitances of
PP-based EDLCs and the specific surface areas at different evaluation conditions. It was
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found that our result exhibited among the highest in the comparison, even though it had a
quite lower specific surface area. A linear relationship between the specific surface area
and the specific capacitances is also not shown [75,76].

Table 5. Comparison of specific capacitances of petroleum pitch-based EDLCs.

Specimens Electrolyte Current Density
(A g−1)

Specific Surface Area
(m2 g−1)

Specific Capacitance
(F g−1) Ref

OPP-AC 6 M KOH 0.2 (1.0) 1246 357 (195) This work
PP/Polypyrrole 1 M Na2SO4 1.0 602 82 [23]

PP/MnO2 0.5 M Na2SO4 0.5 787 92 [29]
PP/Coal tar pitch 1 M TEABF4 1.0 2967 132 [70]

PP-based ACs 6 M KOH 0.05 2964 300 [71]
PP-based ACs 6 M KOH 0.05 3516 320 [72]
PP-based ACs 6 M KOH 0.05 1922 293 [73]
PP-based ACs 6 M KOH 0.05 2646 296 [74]

4. Conclusions

In this study, the pre-oxidized petroleum pitch (PP)-derived activated carbon (OPP-AC)
was successfully prepared for use in electric double-layer capacitors (EDLCs). These exper-
imental results revealed that OPP-AC and PP-AC exhibit specific capacitances of 357 and
285 F g−1, respectively, at a current density of 0.2 A g−1. These results can be attributed to
the narrower pore size distribution and the efficient pore sizes of OPP-AC. Therefore, this
study demonstrated that the pre-oxidation process affects the development of micropores
in the OPP-AC, providing efficient nano-channels to enhance electrochemical performance.
Consequently, pre-oxidation is a promising strategy to ensure the high performance of
EDLCs through effective micropore generation.
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