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Abstract: Residual antibiotics in wastewater have gained widespread attention because of their
toxicity to humans and the environment. In this work, Cu-doped ZIF-8s (Cu-ZIF-8s) were successfully
synthesized by the impregnation of Cu2+ in ZIF-8 and applied in the removal of ofloxacin (OFX)
from water. Remarkably, excellent adsorption performance was obtained in Cu-ZIF-8s, especially for
Cu-ZIF-8-1, in which the adsorption capacity (599.96 mg·g−1) was 4.2 times higher than that of ZIF-8
and superior to various adsorbents reported previously. The adsorption kinetics and adsorption
isotherm follow the pseudo-second-order model and the Langmuir model, respectively. Furthermore,
the removal efficiencies of OFX in Cu-ZIF-8-1 reached over 90% at low concentrations. It was revealed
that electrostatic interaction and complexation play important roles in the adsorption process. In
addition, the material can be regenerated by simple methods. Therefore, the obtained Cu-doped
MOFs may have a promising application in the treatment of antibiotic-containing wastewater.

Keywords: adsorption; complexation; metal-organic frameworks; ofloxacin

1. Introduction

With the continuous development of science and technology as well as the industrial-
ization process, various kinds of drugs are widely used for the treatment and prevention of
diseases [1]. However, most antibiotics are not fully metabolized in humans and cannot
be biodegraded in the natural environment, which has led to a series of water pollution
problems [2,3]. Antibiotics can be detected in sewage from wastewater treatment plants,
surface water, and groundwater. With the increase in public awareness of environmental
protection, water security has received increased attention [4]. Ofloxacin (OFX) is reported
to be one of the most used antibiotics in poultry and aquaculture worldwide, and its
massive usage poses a huge threat to the environment [5]. It inhibits the physiological
processes of the natural photochemical and antioxidant systems of algae and reduces algal
cell growth, chlorophyll content, and the photosynthetic rate. More importantly, increased
OFX residues in the environment can lead to increased drug resistance. In addition, OFX
can cause acute toxicity to aquatic organisms at mg·L−1 levels and chronic toxicity at
µg·L−1 levels [6,7]. Therefore, it is necessary to efficiently remove OFX from the water.

Several methods have been used for the removal of OFX from water, such as
biological [8], sonochemical [9], and ozonation methods [10]. Unfortunately, the disad-
vantages of low efficiency, high cost, and the generation of toxic by-products limit the
widespread application of these methods. By contrast, adsorption is considered to be
promising in water treatment. Several kinds of adsorbents have been used to adsorb OFX
from water, including clay [11–13], activated carbon [8,14–19], carbon nanotubes [20–23],
graphene oxide [24–27], and biochar [28–30]. However, most of these still present the prob-
lem of low adsorption capacity. Thus, there is an urgent need to develop new adsorbents
for capturing this antibiotic.
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Metal-organic frameworks (MOFs) are a new class of porous materials composed of
inorganic metals and organic ligands. Due to their high specific surface area, high porosity,
and easy chemical modifiability, they have been successfully used for the adsorptive
removal of pollutants from water [31–34]. However, owing to the lack of active sites, the
adsorption performances of many MOFs need to be further improved. Toward this target,
an efficient strategy is to incorporate metal elements into MOFs to increase the number of
active sites. Herein, the Cu element was adopted to synthesize a Cu-doped ZIF-8 using the
impregnation method to remove OFX from water. Compared with that of the pristine ZIF-8,
the adsorption capacities in Cu-doped ZIF-8s were increased by up to 4.2 times owing
to the complexation of Cu with OFX. Specifically, Cu-ZIF-8-1 showed a high adsorption
capacity of 599.96 mg·g−1, which is superior to various adsorbents reported previously.
The adsorption behaviors, including adsorption kinetics, isotherm, the effect of pH, the
effect of coexisting ions, and reusability, were also investigated. These results indicate
that the obtained Cu-ZIF-8s not only have great potential to efficiently remove OFX from
water but also provide a way to apply metal-doped MOF adsorbents in the adsorption of
pharmaceuticals.

2. Experimental Section
2.1. Chemicals

Zinc nitrate hexahydrate (Zn(NO3)2·6H2O, 99.99%) was purchased from Shanghai
Aladdin Reagent Co., Ltd. (Shanghai, China). Copper nitrate trihydrate (Cu(NO3)2·3H2O,
99%) and 2-Methylimidazole (C4H6N2, 99%) were purchased from Beijing J&K Scientific
Co., Ltd. (Beijing, China). Methanol (CH4O, ≥99.5%) and anhydrous ethanol (C2H6O,
≥99.7%) were purchased from Tianjin Fuyu Fine Chemical Co., Ltd. (Tianjin, China). OFX
(C18H20FN3O4, 98%) was provided by Shanghai Maclean Biochemical Technology Co., Ltd.
(Shanghai, China). All chemical reagents were used without further purification.

2.2. Preparation of Materials

For the synthesis of ZIF-8, 5.95 g (20 mmol) of Zn(NO3)2·6H2O and 6.16 g of (75 mmol)
2-methylimidazole were first dissolved in 150 mL of methanol and recorded as solution A
and solution B, respectively. Then, solution B was slowly added to solution A by stirring
at room temperature for 24 h. The white precipitate was collected by centrifugation at
10,000 rpm for 10 min and washed with methanol at least 6 times in 2 days. Finally, ZIF-8
was obtained overnight at 60 ◦C under vacuum.

Cu-ZIF-8s were synthesized according to the previous method with slight modifica-
tions [35]. First, 0.5 g of ZIF-8 was added to 40 mL of ethanol solution containing 0.12 g
(0.5 mmol), 0.24 g (1 mmol), or 0.36 g (1.5 mmol) of Cu(NO3)2·3H2O. The solution was
stirred at room temperature for 3 h. The light blue precipitate was obtained by centrifuga-
tion at 10,000 rpm for 10 min and washed with ethanol at least 6 times in 2 days. Finally, the
obtained Cu-ZIF-8-x was dried overnight at 60 ◦C under vacuum; x represents the added
amounts of copper salt, which were 0.5, 1, and 1.5.

2.3. Characterization of Materials

The 77 K N2 adsorption–desorption was determined using a 3H-2000BSD-PS1/2A
series of automatic surface and aperture analyzers (Beishide Instrument Technology Co.,
Ltd. (Beijing, China)). PXRD patterns were performed on a D8 Advance X diffractometer
equipped with Cu Kα radiation (λ = 1.54178 Å) at room temperature. FT-IR data were
collected using a Nicolet 6700 FT-IR spectrophotometer. X-ray photoelectron spectroscopy
(XPS) data were collected by a Thermo Fisher ESCALAB (Shanghai, China). A Zetasizer
Nano ZS90 zeta potential analyzer was used to measure the zeta potential data. The
concentration of OFX was analyzed by a TU-1901 UV–vis spectrophotometer (Purkinje
General Instrument Co., Ltd., Beijing, China). Scanning electron microscopy (SEM, TES-
CAN MIRA LMS) was applied to characterize the morphology, and energy-dispersive
X-ray spectroscopy (EDS, Xplore) elemental mapping spectrum of materials was obtained
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using SEM analysis. An inductively coupled plasma optical emission spectrometer (ICP–
OES) (Thermo Fisher iCAP PRO (OES) (Shanghai, China)) was used to measure the metal
contents in the samples.

2.4. Experiments of Adsorption

All adsorption experiments in this work were performed in 20 mL glass vials at 303 K.
During the adsorption process, except for the adsorption isotherm, the other experiments
were conducted by adding 10 mg of adsorbents into 10 mL of aqueous solution of OFX.
These glass vials were then placed in a thermostatic shaking oscillator at 150 rpm for a
predetermined time. After the adsorption experiment, the suspension was filtered through
a polyethersulfone microporous filter membrane with a 0.22 µm pore size (Beijing Zhuoxin
Hongye Instruments & Equipment Co., Ltd. (Beijing, China)), and the concentration of
OFX of the collected clarified filtrate was determined. To evaluate the effect of pH, the pH
value of the OFX solution was adjusted using 0.1 M NaOH and 0.1 M HCl. The amount of
adsorbed OFX (qe mg·g−1) was calculated using the following equation:

qe =
(c0 − ce)× V

m

where qe (mg·g−1) is the adsorption amount; c0 (mg·L−1) and ce (mg·L−1) are the initial
and equilibrium concentrations of OFX, respectively; V (L) is the volume of the solution;
and m (g) is the mass of the adsorbent.

3. Results and Discussion
3.1. Characterization of MOFs

The crystal structures of ZIF-8 and Cu-ZIF-8s were analyzed by PXRD, and the results
are shown in Figure 1a using Cu-ZIF-8-1 as an example. ZIF-8 had eight major characteristic
peaks at 2θ of 7.3, 10.4, 12.7, 14.7, 16.4, 18.0, 24.5 and 26.7◦, which matched well with the
simulated ones, indicating successful synthesis. When Cu was doped into ZIF-8, the
diffraction peaks in the PXRD patterns were almost the same as those of ZIF-8, as shown
in Figure 1a. No diffraction peaks of Cu species could be observed, indicating that the
addition of Cu did not change the basic structure of ZIF-8, and the Cu element was probably
incorporated into the framework (Figures 1a and S1). Moreover, the PXRD patterns of
Cu-ZIF-8-1 remained almost unchanged even after immersion in water for 15 days, which
indicates that Cu-ZIF-8-1 has good water stability (Figure S2).

Figure 1. Powder X-ray diffraction (PXRD) patterns (a); N2 adsorption-desorption isotherms and
pore size distribution (b) of ZIF-8 and Cu-ZIF-8-1.

To investigate the effect of Cu-doping on the pores, N2 adsorption–desorption isotherms
at 77 K were conducted to obtain a specific surface area and porosity [36,37]. As shown in
Figures 1b and S3 and Tables 1 and S1, the BET specific surface area slightly decreased with
an increase in the Cu content, and it was significantly lower than that of the pristine ZIF-8.
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This may be due to the fact that during the formation of Cu-ZIF-8s, Cu ions may replace
some of the Zn ions in the framework, and the addition of these ions may damage some of
the linkers [35]. The large pore size of Cu-ZIF-8s is conducive to the accessibility of drug
molecules, and the doped Cu element may provide additional adsorption sites; both these
factors are beneficial for increasing the adsorption capacity. In addition, the contents of Cu
and Zn in Cu-ZIF-8s were measured by ICP–MS characterization. The results are shown
in Table S2. With increased Cu loading, the Cu:Zn ratios were 1:6.79, 1:3.01, and 1:1.74 in
the obtained samples, respectively. It can be seen that the content of Zn was decreased,
indicating that Cu replaced part of Zn in the framework.

Table 1. Specific surface area, mesopore volume, micropore volume, and pore size of ZIF-8 and
Cu-ZIF-8-1.

MOFs SLangmuir (m2·g−1) Vt (m3·g−1) D (nm)

ZIF-8 1929.80 0.7317 1.3515
Cu-ZIF-8-1 1438.27 0.7353 1.6124

The FT-IR spectra of ZIF-8 and Cu-ZIF-8-1 are shown in Figure S4. The main peak at
3448.6 cm−1 was mainly due to the -OH stretching vibration caused by the adsorbed water
molecules. The peak at 2928.9 cm−1 was attributed to the aromatic and the aliphatic C-H
stretching of the imidazole [38]. The characteristic peak at 3137.1 cm−1 was mainly due
to C-N stretching on the imidazole ring, while the peak at 1581.9 cm−1 corresponded to
the stretching vibration of C = N [39]. Obviously, these characteristic peaks still exist in the
FT-IR spectrum of Cu-ZIF-8-1, indicating that the Cu-doped modification did not change
the structure of ZIF-8, as revealed by the results of PXRD.

To visualize the effect of Cu-doping on ZIF-8, the morphologies were obtained by
SEM. As shown in Figure 2a, ZIF-8 had a regular rhombic dodecahedral morphology with
a smooth, flat surface and a particle size of about 500 nm. After Cu-doping, the particle
size and morphology were similar to those of the pristine ZIF-8 (Figure 2b). However, the
surface became obviously rough, which indicates that the doping process destroys part of
the ligand and replaces part of Zn in the framework [35]. In addition, the EDS elemental
mapping spectrum of Cu-ZIF-8-1 was also obtained using SEM. As shown in the mapping
of C, N, Zn, and Cu elements in Figure 2c–f, Cu was uniformly distributed in Cu-ZIF-8-1.

Figure 2. SEM images of ZIF-8 (a) and Cu-ZIF-8-1 (b); EDS mappings of the selected areas in
Cu-ZIF-8-1: distribution of C (c), N (d), Zn (e), and Cu (f).
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3.2. Study of Adsorption
3.2.1. Effect of Cu Loading

The effect of different concentrations of Cu2+ on adsorption was investigated in the
first step to determine the optimal loading. As shown in Figure 3, the adsorption capacity of
Cu-ZIF-8s was larger than that of ZIF-8. Notably, Cu-ZIF-8-1 exhibited a higher adsorption
capacity than others. This is because more Cu loadings provided more active sites that can
interact with OFX, resulting in a higher adsorption capacity. However, the excess loadings
may lead to severe breaks in organic linkers, resulting in low specific surface areas and
corresponding low adsorption capacities [35]. Therefore, the subsequent adsorption studies
were carried out with Cu-ZIF-8-1 and ZIF-8.

Figure 3. Adsorption capacity at different loadings (c0 = 270 mg·L−1).

3.2.2. Adsorption Kinetics

First, the adsorption amount of OFX on ZIF-8 and Cu-ZIF-8-1 was investigated as a
function of time with the condition of an initial concentration of 260 mg·L−1. In Figure 4, it
can be seen that the adsorption equilibrium can be reached at 180 min, which is favorable
for the removal of pollutants. The equilibrium adsorption capacity of Cu-ZIF-8-1 reached
241.43 mg·g−1, which was 4.17 times higher than that of ZIF-8. The removal rate of
Cu-ZIF-8-1 over OFX was 92%.

Figure 4. Adsorption amounts (a) and removal efficiency (b) of OFX as a function of time
(c0 = 260 mg·L−1).

The adsorption kinetics of OFX on ZIF-8 and Cu-ZIF-8-1 were further investigated
using the pseudo-first-order model and the pseudo-second-order model:

Pseudo-first-order model:

ln(qe − qt) = ln qe − k1t
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Pseudo-second-order model:

t
qt

=
1

k2qe2 +
t
qe

where qe (mg·g−1) and qt (mg·g−1) are the adsorption amounts of ofloxacin at equilibrium
and a certain time t, respectively; k1 (min−1) and k2 (g·mg−1·min−1) are the rate constants
of the pseudo-first-order model and the pseudo-second-order model, respectively.

The fitting results are shown in Figures S5 and S6 and Tables 2 and S2. From the
comparison of the correlation parameters, it was concluded that OFX adsorption in ZIF-8
and Cu-ZIF-8-1 can be well described by the pseudo-secondary model, indicating that the
adsorption process is mainly dominated by chemisorption.

Table 2. Kinetics models parameters of OFX adsorbed on Cu-ZIF-8-1.

MOF
Pseudo-First-Order Model Pseudo-Second-Order Model

qe,cal
(mg·g−1) k1 (min−1) R2 qe,cal

(mg·g−1)
k2

(g·min−1·mg−1) R2

Cu-ZIF-8-1 153.1611 0.0083 0.9199 247.5248 0.0001 0.9989

3.2.3. Adsorption Isotherms

To investigate the maximum adsorption capacity of samples for OFX as thoroughly
as possible, batch experiments were conducted at different initial concentrations
(120 mg·L−1–500 mg·L−1) to collect the adsorption isotherms. As shown in Figure 5, the
adsorption capacity increased with the increase in OFX concentration. The maximum ad-
sorption capacity reached 599.96 mg·g−1, which was 4.2 times that of ZIF-8 (142.74 mg·g−1).
More importantly, the adsorption capacity of Cu-ZIF-8-1 was higher than that in most of
the reported materials, as shown in Table S4 [11,16,40–55]. To further study the adsorp-
tion behavior, the Langmuir model and Freundlich model were used to fit the adsorption
isotherms:

Figure 5. OFX adsorption isotherm on ZIF-8 (a) and Cu-ZIF-8-1 (b) (m = 5 mg; V = 10 mL).

Langmuir isotherm model:
ce

qe
=

1
KLqm

+
qe

qm

Freundlich isotherm model:

lnqe = ln KF +
1
n

ln ce
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where qe (mg·g−1) is the equilibrium adsorption amount, ce (mg·L−1) is the equilibrium
solute concentration, qm (mg·g−1) is the maximum adsorption amount of the adsorbent,
and KL (L·mg−1) is the Langmuir adsorption constant. The fitting results are shown in
Figures S7 and S8 and Tables 3 and S5. Obviously, the Langmuir model is more suitable to
describe the adsorption process with homogeneous monolayer adsorption.

Table 3. Isotherm model parameters for OFX adsorbed on the Cu-ZIF-8-1.

MOF

Langmuir Isotherm Model Freundlich Isotherm Model

qm
(mg·g−1)

KL
(L·g−1) R2 KF

((L·mg−1)1/n mg·g−1)
1/n

(g·min−1·mg−1) R2

Cu-ZIF-8-1 757.5758 0.0461 0.9872 120.8693 0.3714 0.8996

3.2.4. Effect of Coexisting Ions

Inorganic ions, such as Cl− and SO4
2−, may be present in wastewater. Therefore, the

effect of coexisting ions on the adsorption of OFX by Cu-ZIF-8-1 was also investigated in
this work. As shown in Figure 6, there was a slight decrease in the adsorption amount of
OFX due to the competitive adsorption with the increase in inorganic ion concentrations.
From the above results, it was suggested that Cu-ZIF-8-1 may have a good anti-interference
ability and thus is promising for the practical treatment of wastewater.

Figure 6. The adsorption capacity of Cu-ZIF-8-1 with the different coexisting ions (Cl−, SO4
−)

(c0 = 522 mg·L−1).

3.2.5. Regeneration of Adsorbent

In the practical application, the reusability of the adsorbent is important. In this work,
ethanol was chosen as the eluent to remove OFX from the sample. The adsorbed Cu-ZIF-8-1
was immersed in the anhydrous ethanol solution and washed with ethanol at least 6 times
in 2 days. Finally, the samples were dried under vacuum at 80 ◦C overnight. As shown in
Figure 7, after three cycles, Cu-ZIF-8-1 still had good adsorption capacity, showing good
regeneration ability.

3.3. Mechanism of Adsorption

To verify whether OFX was adsorbed onto Cu-ZIF-8s, a series of characterizations
were performed on the adsorbed material using Cu-ZIF-8-1 as an example. As shown in
Figures 8a and S9, the PXRD and SEM of the adsorbed Cu-ZIF-8-1 were similar to the
original ones, indicating that the structure of Cu-ZIF-8-1 was not destroyed after adsorbing
OFX. Several new peaks were found in the FT-IR spectrum after adsorption (Figure 8b). The
peaks at 1460 cm−1, 1520 cm−1, 1238 cm−1, and 3042 cm−1 represent methylene (-CH2) in
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the benzoxazine ring and alkyl groups (-CH3 and -CH2), C-O-C stretching vibrations, and
C-N groups in OFX, respectively [39]. Additionally, after adsorption, new peaks at 687.38
eV and 286.5 eV appeared in the XPS patterns (Figure 8c,d), which represent the F element
and C=O in the OFX molecule [56]. These results confirmed that OFX was adsorbed on
Cu-ZIF-8-1 and that the sample has good stability.

Figure 7. Regeneration of Cu-ZIF-8-1 for OFX adsorption (c0 = 45 mg·L−1).

Figure 8. Comparison of PXRD (a), FT-IR spectrum (b), and XPS (c,d) of Cu-ZIF-8-1 before and after
adsorption (c0 = 200 mg·L−1).

Then, the adsorption mechanism of OFX in Cu-ZIF-8-1 was investigated using XPS.
As shown in Figure 9a, the peaks of Zn 2p1/2 and Zn 2p3/2 were located at 1045 eV and
1022 eV [56]. The peaks at 955 eV and 935.15 eV can be attributed to Cu 2p1/2 and Cu 2p3/2
(Figure 9b) [57]. Compared with the original sample, the binding energies of Zn 2p and
Cu 2p of the material after adsorbing OFX decreased by 0.3 eV and 0.75 eV, respectively,
which indicates that both Zn and Cu gained electrons. The peak intensities of Zn 2p and
Cu 2p became significantly weaker in the OFX-loaded sample. These demonstrate that the
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unsaturated metal sites in the framework may undergo complexation with -COOH in OFX
during the adsorption process [39,58–60].

Figure 9. XPS spectra of Zn (a) and Cu (b) in Cu-ZIF-8-1 before and after adsorption
(c0 = 200 mg·L−1).

In general, the pH value of the OFX solution has a great influence on the existing state
of OFX molecules, as well as the corresponding adsorption performance. Therefore, to
further understand the adsorption mechanism, the effect of pH on adsorption capacity
was studied. As shown in Figure 10, the surface charge of Cu-ZIF-8-1 was positive below
the pH value of 11 and became negative above the pH value of 11. Meanwhile, the OFX
molecules could form three species in aqueous solutions under different pH values, includ-
ing cationic species (pH < 5.77), zwitter ionic species (5.77 < pH < 8.44), and anionic species
(pH > 8.44) [35]. The low adsorption capacity of Cu-ZIF-8-1 at 2 < pH < 5.77 is because
both Cu-ZIF-8-1 and OFX are positively charged at this range of pH and repel each other.
At the pH range of 5.77–8.44, the adsorption capacity of OFX was almost unchanged since
OFX molecules are neutral and electrostatic interaction has little effect on the adsorption
process. For 8.44 < pH < pHzpc, the surface charge of the OFX molecule is negative, while
Cu-ZIF-8-1 nanoparticles become positively charged, inducing the maximum adsorption
capacity. For pH > pHzpc, the surface charge of the OFX molecule was negative, and
Cu-ZIF-8-1 gradually became negatively charged, causing a decrease in the adsorption ca-
pacity [61]. Therefore, the electrostatic interaction plays an important role in the adsorption
process. In combination with the discussion mentioned above, it can be concluded that
the cooperative effect of the complexation and electrostatic interaction endows Cu-ZIF-8-1
with a high adsorption capacity for OFX from water. In addition, the aromatic rings of
MOFs may be bound to the guest molecule via π-π interaction [62].

Figure 10. Adsorption capacity and zeta potential of Cu-ZIF-8-1 with the different pH values
(c0 = 522 mg·L−1).
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4. Conclusions

In summary, a method of impregnating supported copper ions was used to prepare
Cu-ZIF-8s in this work. Remarkably, Cu-ZIF-8-1 had a large adsorption capacity for OFX,
which was 4.2 times higher than that of ZIF-8 and also higher than that in most of the
reported adsorbents. Compared with the PXRD and FT-IR of the adsorbent before and after
adsorption, there was no significant structural damage to the adsorbent. Meanwhile, the
adsorbent could be conveniently regenerated by washing with ethanol. It was observed
that the complexation and electrostatic interaction played important roles in the adsorption
process. In addition, π-π interaction may also promote OFX removal. The results obtained
in this work indicate that Cu-ZIF-8-1 may not only serve as a potential adsorbent for
OFX and even PPCPs but also provide a guideline for designing and constructing novel
adsorbents with high efficiency.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27134312/s1, Figure S1: PXRD patterns of ZIF-8, Cu-
ZIF-8-0.5, Cu-ZIF-8-1 and Cu-ZIF-8-1.5; Figure S2: PXRD pattern of Cu-ZIF-8-1 after soaking in
water for 15 days; Figure S3: N2 adsorption-desorption isotherms of Cu-ZIF-8-0.5, Cu-ZIF-8-1 and
Cu-ZIF-8-1.5; Table S1: Specific surface area, mesopore volume, micropore volume and pore size
of samples; Table S2: Contents of Cu and Zn in Cu-ZIF-8s; Figure S4: FT-IR spectrum of ZIF-8 and
Cu-ZIF-8-1; Figure S5: Fitting results of kinetic models on ZIF-8: Pseudo-first-order model (a); Pseudo-
second-order model (b); Figure S6: Fitting results of kinetic models on Cu-ZIF-8-1: Pseudo-first-order
model (a); Pseudo-second-order model (b); Table S3: Kinetics model parameters of OFX adsorbed
on ZIF-8; Table S4: Adsorption capacities for the removal of OFX by different adsorbents; Figure S7:
Fitting results of adsorption isotherms on ZIF-8: Langmuir model (a); Freundlich model (b); Figure S8:
Fitting results of adsorption isotherms on Cu-ZIF-8-1: Langmuir model (a); Freundlich model (b);
Table S5: Model parameters for OFX adsorbed on the ZIF-8; Figure S9: SEM images of Cu-ZIF-8-1
after adsorption (c0 = 200 mg·L−1). PXRD patterns, N2 adsorption–desorption isotherms, contents
of Cu and Zn and FT-IR spectrum of Cu-ZIF-8s, and contents of Cu and Zn in Cu-ZIF-8s; Fitting
results of the kinetic model; Adsorption capacities of OFX by different adsorbents; Fitting results of
adsorption isotherms; SEM images of Cu-ZIF-8-1 after adsorption.
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