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Abstract: Volatile organic compounds (VOCs) are the main chemical components of Schizonepetae
Spica (SS), which have positive effects on the quality evaluation of SS. In this study, HS-SPME-GC-MS
(headspace solid-phase microextraction-gas chromatography-mass spectrometry) and HS-GC-IMS
(headspace-gas chromatography-ion mobility spectrometry) were performed to characterize the
VOCs of SS from six different regions. A total of 82 VOCs were identified. In addition, this work
compared the suitability of two instruments to distinguish SS from different habitats. The regional
classification using orthogonal partial least squares discriminant analysis (OPLS-DA) shows that the
HS-GC-IMS method can classify samples better than the HS-SPME-GC-MS. This study provided a
reference method for identification of the SS from different origins.

Keywords: volatile organic compounds; Schizonepetae Spica; HS-SPME-GC-MS; HS-GC-IMS; OPLS-DA

1. Introduction

Schizonepetae Spica (the dry spike of Schizonepeta tenuifolia Briq) is a traditional Chi-
nese medicine (TCM). It distributes in Jiangsu, Zhejiang, Hebei, and Henan provinces
in China. Clinical applications are widely used in colds, respiratory diseases, and skin
diseases. Chemical studies showed that SS contained volatile organic compounds (VOCs),
flavonoids, and organic acids, among which VOCs were the main medicinal component,
and pharmacological activities of VOCs possess anti-inflammatory, antineoplastic, and
antiviral properties [1–7]. Studies on SS mainly focus on volatile oil extraction and bioactive
ingredients, but the overall characterization of VOCs of SS from different sources is not
comprehensive enough [8].

At present, the most common used technologies for the comprehensive characteriza-
tion of VOCs include gas chromatography-mass spectrometry (GC-MS), two-dimensional
gas chromatography (GC×GC), gas chromatography olfactory determination mass spec-
trometry (GC-O-MS), and electronic nose (E-nose) [9]. GC-MS is being widely used in the
analysis of VOCs, which has high-efficiency separation of gas chromatography and high
resolution of mass spectrometry, but it has the drawback of cumbersome treatment before
sampling and higher cost [10]. E-nose is a new aroma detection technology, which has
the advantages of rapid detection, but it also has some problems, such as low precision,
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sensor drift, high sensitivity to the environment, and poor repeatability [11]. GC×GC is an
analytical method with a powerful separation function, which is often used by the sample
analysis of complex ingredients. However, GC×GC is not as widely used as GC-MS due to
its high cost and complex experimental operation.

With the development of science and technology, more and more precision analytical
instruments are used for the detection of VOCs, which provides more technical support
for the research of TCM [12]. Headspace-gas chromatography-ion mobility spectrometry
(HS-GC-IMS) is a new type of analysis method with the advantages of being fast, having
high sensitivity, and no sample pre-treatment. In addition, the HS-GC-IMS has intuitive
visualization of data, and is especially suitable for the variance analysis [13]. On the basis
of GC-MS, headspace solid-phase microextraction-gas chromatography-mass spectrometry
(HS-SPME-GC-MS) integrates the extraction and concentration technology of headspace
solid phase microextraction and simplifies the sample pretreatment method [14]. At the
same time, GC-MS has a high ability to isolate volatile compounds and provide detailed
information of compounds [15]. Therefore, in this study, HS-GC-IMS and HS-SPME-GC-MS
were used to comprehensively characterize the VOCs of SS. HS-GC-IMS usually detects
small molecules of volatile components, which makes up for the deficiency of HS-SPME-GC-
MS that can only capture medium molecules of volatile components [16]. The combination
of these two analytical methods could easily, quickly, and accurately characterize the VOCs
of SS.

It is well known that different production areas are often one of the important factors
that led to the quality difference between the TCM. Hence, it is of great significance for the
quality evaluation of TCM in different production regions. SS is one of the most popular
traditional Chinese herbal medicines and distributed widely in China. In this study, SS
from six regions were studied, including Hebei (B), Henan (N), Jiangsu (J), Shandong (S),
Zhejiang (Z), and Anhui (A). In addition, a comprehensive strategy that integrated HS-
SPME-GC-MS and HS-GC-IMS was proposed for the first time for rapid identification
of chemical components of SS, with further treatment of data by different multivariate
statistical analyses. In addition, this study also uses the same data processing program to
compare two different hardware methods to distinguish the applicability of SS in different
regions. Hopefully, by this example, new technical support can be provided for more
convenient comparison of VOCs in different TCM.

2. Results
2.1. HS-GC-IMS Analysis
2.1.1. The HS-GC-IMS Qualitative Analysis of VOCs

The VOCs of the SS in six different regions were analyzed by HS-GC-IMS. HS-GC-IMS
depends on the fast ion-molecular reaction between air clusters and analytes generated by
beta ionization and realizes the identification of VOCs [17]. We selected a batch of samples
from six regions to make 2D top view, as shown in Figure 1A. The background color of
the entire spectrum is blue, the abscissa represents the drift time, the ordinate represents
the holding time, and the Ko is 2.032–2.034 cm2/Vs [18]. Different hues indicate different
concentrations, with white dots indicating a lower concentration and red dots indicating
a higher concentration, so the deeper the hue, the higher the concentration [19]. It was
observed that the VOCs in SS from different regions were well separated at a retention
time of 100–1000 s and drift time of 1.0–2.0 (Figure 1A). Based on the NIST library, VOCs
of SS were determined by combining retention indexes (RI), retention times, drift times,
and Ko [20]. These analysis results are shown in Table 1, in which forty compounds were
tentatively identified. Forty distinct VOCs include five terpenoids (Figure 1B-a), eight
alcohols (Figure 1B-b), ten aldehydes (Figure 1B-c), six esters (Figure 1B-d), five ketones
(Figure 1B-e), two phenols, one acid, and three other substances.
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Figure 1. (A) Two-dimensional chromatogram results of VOCs in SS of different regions; (B) the
VOCs fingerprint of different regions of SS; (C) the fingerprints of unknown compounds in SS from
different regions.
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Table 1. Identification of the VOCs in SS by HS-GC-IMS.

Compounds Formula RI 1 RT 2 [s] DT 3 [ms] CAS

Terpenoids
limonene (d) C10H16 1027.1 613.85 1.28735 138-86-3
limonene (m) C10H16 1025.1 608.277 1.64831 138-86-3

d-camphor C10H16O 1137.1 1000.58 1.84257 464-49-3
beta-pinene C10H16 972.2 483.778 1.21748 127-91-3

alpha-phellandrene C10H16 991.9 525.443 1.2135 99-83-2
1-menthol (m) C10H20O 1172.8 1172.199 1.87632 2216-51-5
1-menthol (d) C10H20O 1174.1 1178.76 1.25862 2216-51-5

Alcohols
linalool C10H18O 1102.8 858.912 1.21718 78-70-6

1-phenylethanol C6H8O3 1059.5 708.841 1.19687 98-86-2
3-heptanol C7H16O 901.5 359.303 1.3301 589-82-2

3-furanmethanol C5H6O2 975.6 490.8 1.10433 4412-91-3
2-hexanol C6H14O 813.5 254.742 1.57558 626-93-7

2-furanmethanol,5-methyl-(m) C6H8O2 954.4 448.858 1.55977 3857-25-8
2-furanmethanol,5-methyl-(d) C6H8O2 959.4 458.318 1.25549 3857-25-8

1-octen-3-ol C8H16O 983.9 508.084 1.15751 3391-86-4
(Z)-3-hexen-1-ol C6H12O 851.3 294.963 1.51428 928-96-1

Phenols
p-cresol C7H8O 1084.6 792.197 1.1635 106-44-5

2,6-dichlorophenol C6H4Cl2O 1204.1 1347.154 1.20289 87-65-0
Aldehydes

trans-2-Hexenal C6H10O 825 266.352 1.52158 6728-26-3
trans-2-pentenal (m) C5H8O 753.8 199.608 1.35623 1576-87-0
trans-2-pentenal (d) C5H8O 753.8 199.608 1.10847 1576-87-0

Nonanal C9H18O 1106.1 871.718 1.47192 124-19-6
5-methyl-2-

furancarboxaldehyde C6H6O2 936.7 416.718 1.1367 620-02-0

2-formyl-5-methylthiophene C6H6OS 1117.4 916.415 1.15464 13679-70-4
2,4-heptadienal C7H10N2 1001.5 547.827 1.62004 5910-85-0
(E)-hept-2-enal C7H12O 959.3 458.146 1.66579 18829-55-5
benzaldehyde C7H6O 959 457.688 1.14877 100-52-7
(E)-2-Hexenal C6H10O 851.5 295.153 1.18069 6728-26-3

2,4-Hexadienal, (E,E)- C6H8O 913.5 377.923 1.44546 142-83-6
Esters

methyl 3-methylbutanoate C6H12O2 764.7 209.149 1.5252 556-24-1
Isopentyl isovalerate C10H20O2 1116.7 913.692 2.03768 659-70-1

ethyl butanoate C6H12O2 790.2 232.779 1.55819 105-54-4
ethyl benzoate C9H10O2 1142.7 1025.57 1.25881 93-89-0
ethyl acetate C4H8O2 617.2 122.892 1.33577 141-78-6

benzyl acetate C9H10O2 1128.1 961.307 1.32321 140-11-4
Acids

3-methylbutanoic acid C5H10O2 849 292.352 1.48126 503-74-2
Ketones

nonan-2-one C9H18O 1095.5 831.727 1.40358 821-55-6
cyclohexanone (m) C6H10O 897.3 353.068 1.45503 108-94-1
cyclohexanone (d) C6H10O 897.5 353.34 1.15396 108-94-1

Acetophenone C8H8O 1048.6 675.279 1.17218 98-86-2
6-methyl-5-hepten-2-one C8H14O 942.5 426.954 1.1742 110-93-0

Furaneol C6H8O3 1015.3 582.545 1.61471 3658-77-3
Others

2-Ethyl-5-methylpyrazine C7H10N2 1006.3 559.704 1.66669 13360-64-0
2-Ethyl-3,5-dimethylpyrazine C8H12N2 1076.4 764.142 1.73198 13925-07-0

diethyl trisulfide C4H10S3 1126.2 952.929 1.24243 3600-24-6
1 Represents the retention index calculated using n-ketones C4-C9 as an external standard on the FS-SE-54-CB-1
column; 2 Represents the retention time in the capillary GC column; 3 Represents the drift time in the drift tube:
(m): monomer; (d): dimer.
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2.1.2. Differences in the Characteristic Volatile Fingerprints of SS

In order to more obviously compare the differences of samples from different regions,
the chemical composition in the samples was classified and presented as a fingerprint in
Figure 1B. The main VOCs in SS are terpenoid substances, as shown in Figure 1B-a. In
each region, the highest concentration of substances is 1-menthol and d-camphor. Other
terpenoids have a relatively high concentration in the two kinds of A and B. In general, A
contains a high concentration of terpenoids. The alcohol substances in the SS samples are
summarized in Figure 1B-b. The content of 2-hexanol has the highest content in the sample,
but 3-heptanol and 3-furanmethanol have significant differences in the sample, and the
content of these two substances is higher in the three kinds of J, A, and S. 1-Octen-3-ol
content is generally low in Z. Interestingly, as can be seen from the Figure 1B, there are also
differences among different batches within the same region, which may contribute to their
different storage methods—for example, different storage times and temperature [21,22].
As shown in Figure 1B-c, the samples varied significantly according to the proportion of
aldehyde substances in each. Trans-2-pentenal was higher in the J; (E)-hept-2-enal was
higher in the N; benzaldehyde was higher in the J, A, and S. As shown in Figure 1B-d, there
is no significant difference between samples according to the proportion of ester substances
in each sample. There were relatively high levels of ethyl butanoate in J. The contents
of ketone substances are summarized in Figure 1B-e. Acetophenone and cyclohexanone
were present in high concentrations in all samples, but the 6-methyl-5-hepten-2-one had a
relatively high concentration in B and nonan-2-one was higher in Z. In addition, there was
a relatively high amount of p-cresol in A.

However, the limitations of the currently available library for HS-GC-IMS hinder the
qualitative analysis of the VOCs of SS. As shown in Figure 1C, twenty-nine species were
not identified. In these undefined compounds, Figure 1C-a summarize substances with
high content in the sample. As shown in Figure 1C-b, the samples varied significantly in
the undefined compounds.

2.2. Identification of VOCs by HS-SPME-GC-MS

In this study, forty-two VOCs were identified through HS-SPME-GC-MS, including
nineteen terpenes, four alcohols, four esters, eleven ketones, one phenol, and three others,
as summarized in Table 2. The results showed that l-menthone, (+)-pulegone, piperitone,
menthofuran, verbenone, (+)-isomenthone, trans-carveyl acetate, and caryophyllene oxide
were the main volatile compounds in all of the analyzed SS samples. Five substances passed
the standard substance verification, as shown in Figure 2B, which was consistent with the
identification results of the database. Surprisingly, cubebene was the volatile component
only found in A and Z. Moreover, menthofuran was only found in the B and Z.

The MetaboAnalyst 5.0 was utilized for heat map clustering analysis to better under-
stand the variations between SS samples in different regions. Each variable is normalized
to generate the clustering heat map of SS in different regions on the basis of row-scale,
using the relative contents of the discovered 42 compositions as variables. The distribution
frequency of each substance in the sample is shown by row comparison. As shown in
Figure 2C, the main VOCs in SS are terpenoids. (+)-pulegone is a key active component
of SS essential oil and has been determined to have anti-inflammatory properties [23].
Compared with samples in other regions, those originating from A exhibit higher levels of
pulegone. Moreover, the contents of other terpenoids (8–13) in A are significantly higher
than those detected in other samples. As shown in Figure 2C, according to the Euclidean
distance, samples from the six regions could be divided into three categories: B and N, Z, G
and S, and A. The A has the highest content of terpenoids. Unlike the other four groups of
samples, the samples from B and A are rich in ketones and esters. The contents of VOCs
have a low concentration in the three kinds of J, Z, and S, respectively.
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Table 2. The relative contents of VOCs in SS from different regions were determined by HS-SPME-GC-MS.

Code Compounds
RT

CAS
Relative Content (%)

(Min) B N A Z J S

Terpenoids
1 myrcene 6.922 123-35-3 0.06 ± 0.01 0.05 ± 0.02 0.03 ± 0.02 0.04 ± 0.01 0.05 ± 0 0.02 ± 0.01
2 (−)-limonene 7.808 5989-54-8 0.46 ± 0.04 0.40 ± 0.07 0.19 ± 0.07 0.26 ± 0.14 0.38 ± 0.14 0.21 ± 0.05
3 l-menthone 11.003 14073-97-3 4.28 ± 0.51 4.83 ± 0.77 5.60 ± 0.96 4.92 ± 0.54 5.97 ± 0.47 5.80 ± 0.67

4 1,4-cyclohexadiene,
3-ethenyl-1,2-dimethyl- 7.257 62338-57-2 0.23 ± 0.03 0.22 ± 0.03 0.19 ± 0.04 0.16 ± 0.02 0.16 ± 0 0.19 ± 0.02

5 1,3,8-p-menthatriene 7.721 18368-95-1 0.28 ± 0.05 0.28 ± 0.04 0.18 ± 0.03 0.16 ± 0.02 0.16 ± 0.02 0.18 ± 0.01
6 (+)-pulegone 13.565 89-82-7 36.83 ± 3.16 33.76 ± 1.26 51.99 ± 5.54 51.00 ± 3.05 43.69 ± 0.93 44.78 ± 2.81
7 piperitone 13.797 89-81-6 2.46 ± 1.27 2.37 ± 0.52 0.84 ± 0.31 1.76 ± 0.29 1.83 ± 0.27 1.96 ± 0.22
8 β-bourbonene 18.752 5208-59-3 0.22 ± 0.02 0.21 ± 0.03 0.37 ± 0.07 0.21 ± 0.05 0.20 ± 0.02 0.32 ± 0.04
9 α-copaene 18.404 3856-25-5 0.22 ± 0.02 0.18 ± 0.02 0.36 ± 0.06 0.28 ± 0.08 0.19 ± 0.02 0.26 ± 0.04

10 cubebene 18.968 13744-15-5 ND ND 0.09 ± 0.04 0.04 ± 0.03 ND ND
11 caryophyllene 20.004 87-44-5 0.39 ± 0.09 0.34 ± 0.04 2.21 ± 1.04 0.96 ± 0.52 0.36 ± 0.03 0.72 ± 0.12
12 β-elemen 19.055 515-13-9 0.04 ± 0.01 ND 0.12 ± 0.07 0.03 ± 0.03 ND 0.03 ± 0.02
13 (±)-beta-copaene 22.044 18252-44-3 0.05 ± 0.03 0.04 ± 0.01 1.59 ± 1.05 0.27 ± 0.20 0.04 ± 0.02 0.15 ± 0.07
14 (−)-humulene epoxide II 25.868 19888-34-7 0.08 ± 0.02 0.10 ± 0 0.07 ± 0.03 0.05 ± 0.02 0.07 ± 0.02 0.09 ± 0.03
15 (+)-delta-Cadinene 23.359 483-76-1 0.06 ± 0.01 0.06 ± 0.01 0.23 ± 0.11 0.11 ± 0.08 0.04 ± 0 0.09 ± 0.01
16 menthofuran 11.269 494-90-6 1.02 ± 0.19 ND ND 0.92 ± 0.13 ND ND
17 (+)-isomenthone 14.213 1196-31-2 2.98 ± 0.13 3.15 ± 0.34 1.08 ± 0.57 2.00 ± 0.98 2.71 ± 0.21 1.91 ± 0.20
18 verbenone 15.194 18309-32-5 10.96 ± 1.70 10.85 ± 0.94 5.96 ± 1.42 8.00 ± 1.63 9.63 ± 0.41 8.79 ± 0.85
19 caryophyllene oxide 25.089 1139-30-6 1.32 ± 0.18 1.41 ± 0.08 0.94 ± 0.41 0.76 ± 0.10 1.10 ± 0.23 1.44 ± 0.41

Alcohols
20 (E)-p-mentha-2,8-dien-1-ol 10.52 7212-40-0 0.18 ± 0.06 0.16 ± 0.03 0.08 ± 0.02 0.10 ± 0.04 0.14 ± 0.01 0.15 ± 0.02
21 isopulegol 11.999 89-79-2 0.25 ± 0.04 0.29 ± 0.03 ND 0.17 ± 0.05 0.21 ± 0.02 0.13 ± 0.03
22 spathulenol 24.949 6750-60-3 0.13 ± 0.02 0.16 ± 0 0.13 ± 0.06 0.09 ± 0.02 0.11 ± 0.02 0.14 ± 0.07
23 2-cyclohexen-1-ol 12.294 74410-00-7 0.19 ± 0.10 0.21 ± 0.04 0.08 ± 0.05 0.10 ± 0.05 0.20 ± 0.03 0.22 ± 0.04

Phenols
24 Thymol 14.672 89-83-8 0.06 ± 0.01 0.08 ± 0.01 0.05 ± 0.02 0.06 ± 0.02 0.06 ± 0.01 0.04 ± 0.03

Esters
25 trans-carveyl acetate 16.712 1134-95-8 6.21 ± 0.53 6.12 ± 0.65 6.18 ± 0.40 5.53 ± 0.79 5.41 ± 0.07 6.01 ± 0.54
26 carveylacetate 16.949 97-42-7 0.28 ± 0.08 0.27 ± 0.05 0.24 ± 0.03 0.21 ± 0.02 0.19 ± 0 0.21 ± 0.04
27 nepetalactone 18.124 21651-62-7 0.61 ± 0.63 0.25 ± 0.06 0.08 ± 0.06 0.12 ± 0.03 0.14 ± 0.02 0.12 ± 0.02
28 dibutyl phthalate 31.553 84-74-2 0.15 ± 0.17 0.06 ± 0.01 0.04 ± 0 0.06 ± 0.01 0.09 ± 0.03 0.08 ± 0.01

Ketones
29 3-methyl-Cyclohexanone 6.029 591-24-2 0.27 ± 0.17 0.23 ± 0.08 0.13 ± 0.07 0.15 ± 0.08 0.20 ± 0.02 0.24 ± 0.03

30 2-isopropyl-2,5-
dimethylcyclohexanone 12.758 20144-44-9 4.12 ± 0.41 4.06 ± 0.29 ND 2.85 ± 0.31 3.39 ± 0.14 3.23 ± 0.17

31 2-cyclopenten-1-one,
3-ethyl-2-hydroxy- 8.335 21835-01-8 0.30 ± 0.03 0.27 ± 0.01 0.07 ± 0.06 0.20 ± 0.07 0.24 ± 0.09 0.14 ± 0.03
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Table 2. Cont.

Code Compounds
RT

CAS
Relative Content (%)

(Min) B N A Z J S

32 trans-isopulegone 11.588 29606-79-9 1.02 ± 0.08 0.93 ± 0.05 1.12 ± 0.09 0.97 ± 0.07 1.13 ± 0.03 1.05 ± 0.08
33 berbenone 12.534 80-57-9 0.46 ± 0.06 0.52 ± 0.02 0.29 ± 0.06 0.29 ± 0.16 0.50 ± 0.03 0.40 ± 0.04
34 piperitenone 17.128 491-09-8 3.08 ± 0.14 3.40 ± 0.07 3.31 ± 0.07 3.35 ± 0.15 2.81 ± 0.15 3.16 ± 0.35
35 jasmone 19.347 488-10-8 0.10 ± 0.02 0.10 ± 0.01 0.11 ± 0.02 0.08 ± 0.02 0.07 ± 0.01 0.08 ± 0.01

36 2-isopropylidene-5-
methylcyclohexanone 20.63 15932-80-6 1.27 ± 0.77 2.34 ± 1.34 0.45 ± 0.44 0.54 ± 0.21 0.81 ± 0.26 0.29 ± 0.12

37 cyclohexanone, 2-(2-butynyl)- 14.459 54166-48-2 0.27 ± 0.02 0.29 ± 0.03 0.23 ± 0.02 0.26 ± 0.01 0.22 ± 0.01 0.17 ± 0.07
38 cinerolone 19.429 17190-74-8 0.14 ± 0 0.18 ± 0.02 0.11 ± 0.04 0.12 ± 0.02 0.09 ± 0 0.17 ± 0.01
39 trans-Pulegone oxide 13.125 13080-28-9 0.38 ± 0.10 0.39 ± 0.13 ND ND 0.32 ± 0.04 ND

Others
40 1-methyl-3-prop-1-en-2-ylbenzene 9.345 1124-20-5 0.17 ± 0.02 0.15 ± 0.01 0.15 ± 0.05 0.16 ± 0.02 0.15 ± 0.02 0.07 ± 0.05
41 dehydroxymenthofurolactone 22.721 38049-04-6 4.51 ± 1.41 5.09 ± 0.90 2.22 ± 1.21 2.21 ± 1.05 3.66 ± 0.53 4.08 ± 0.70
42 isomintlactone 23.586 75684-66-1 0.83 ± 0.22 0.95 ± 0.10 0.39 ± 0.23 0.40 ± 0.17 0.69 ± 0.08 0.67 ± 0.08

“ND” means undetected or content less than 0.01%.
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2.3. Comparison of the Recognition Abilities of HS-GC-IMS and HS-SPME-GC-MS for VOCs in
SS in Different Regions

To further compare the ability of the two instruments to distinguish SS from different
regions, the two sets of data were analyzed. In this study, OPLS-DA analysis was used to
eliminate the interference of sample differences from different batches of the same Chinese
medicinal materials on the VOC characteristics. OPLS-DA is usually applied as an approach
to discriminate two or more groups and to model multiple classes simultaneously [24].
The characteristics of OPLS-DA are integrated orthogonal signal correction filters, which
can separate system changes in the prediction (related to Y-related) and orthogonal (and
Y-in-correlated) components. Therefore, OPLS-DA can reduce system noise and extract
variable information, with stronger classification capabilities. He et al. used OPLS-DA to
compare the applicability and predictive ability of E-nose and HS-SPME-GC-MS for the
regional classification of Baijiu samples [25].

In our study, to achieve more accurate classification results, preprocessing is applied
to experimental data. First, peak area collected from HS-SPME-GC-MS and HS-GC-IMS
was subjected to a logarithmical transformation. The peak area acquired was transformed
to log10, thus narrowing the scope of data [26]. It was then centered and pareto-scaled for
the transformed variables. The Pareto scale, through dividing by the square root of the
standard deviation of each column, for each variable provides a standard deviation that
is equal to its initial variance [27]. For more than 50% of variables, the missing value has
been excluded before the model is established, the datasets of different regional samples
are introduced into the OPLS-DA model to perform region classification.

The OPLS-DA models are based on the results of HS-SPME-GC-MS and HS-GC-IMS; the
whole sample size in the two models was set at 54 (six cultivars, three batches × triplicate).
Seventy-four VOCs were used in the OPLS-DA model of HS-GC-IMS, while a total of
49 VOCs were used in the OPLS-DA model of HS-SPME-GC-MS. The sevenfold cross-
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validation procedures were used to validate the OPLS-DA models. The component is
significant if the Y variation fraction was predicted by the X model >0.01 [25]. Then,
based on analytical methods of both HS-GC-IMS and HS-SPME-GC-MS, five predictive
components and eight orthogonal components were selected for the OPLS-DA model. As
shown in Figure 3A,C, the classification model fitness of model based on HS-GC-IMS was
96.9% (R2Y(cum) = 0.969), while, for HS-SPME-GC-MS, it was 93.5% (Q2(cum) = 0.935).
From the prediction ability point of view, the model built from HS-GC-IMS was as high as
95.5% (Q2(cum) = 0.935); however, it was only 85.9% (Q2(cum) = 0.859) correspondingly
in HS-SPME-GC-MS. The higher values of R2 and Q2 indicated that the model based on
HS-GC-IMS had better fitness and prediction ability compared with HS-SPME-GC-MS.
From the predictive point of view, both models acquired Q2 > 0.5, indicating that there are
good predictive capabilities, but the predictive ability of the HS-GC-IMS model is better.
In order to better verify the ruggedness of the two OPLS-DA model, the two models have
been exchanged for 200 replacement experiments. As shown in Figure 3B,D, the values
of intercepts of randomly permutated models were significantly lower than that of the
original one, indicating the ruggedness of the developed model [28].
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As can be observed, in the score plot of OPLS-DA model of HS-GC-IMS, the SS from
different regions show strong clustering, without any overlap. However, in the score plot
of OPLS-DA mode of HS-SPME-GC-MS, SS samples of six geographical origins were not
clearly discriminated. Samples from regions A, B, and C were not separated and samples
from regions N and B also overlapped. This is similar to the result of heat map clustering
in Figure 3. From this result, the difference between medium molecular weight VOCs of SS
from different geographic is not obvious, but the compounds of small molecules identified
by HS-GC-IMS have obtained better distinction. Therefore, we will further analyze the
compounds identified by HS-GC-IMS.

2.4. Rapid Identification of SS in Different Regions by HS-GC-IMS

In general, due to the influence of growing environment, the composition and content
of volatile components in the SS of different origins are also different. Therefore, it is
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particularly important to select SS from different regions. HS-GC-IMS takes less time to
obtain analysis results, and data do not require complex processing. Differences between
samples can be directly compared through the fingerprint generated by the machine. In
this study, HS-GC-IMS was used for rapid identification of the volatile components of SS.
The OPLS-DA model established based on the results of HS-GC-IMS had a high prediction
ability for the panicles of SS from different habitats, and the samples obtained a good
separation degree.

However, not all VOCs in various samples were significantly different. In order to see
the difference, we analyzed the variable importance for the projection (VIP) predictive of
VOCs in SS (Figure 4). VIP is generally used to evaluate the contributions of X-variables to
a model [29]. Based on the criteria of VIP > 1, 30 (red) important variables were selected
in the SS of different regions from the VIP plot of the OPLS-DA model of HS-GC-IMS,
but there are unknown compounds in these variables, as shown in Figure 4A. In order to
further explore advantageous biomarkers, a random forest model (RF) is established using
known compounds. RF is an effective high-dimensional data analysis supervision method,
which is a popular ensemble learning algorithm for classification and prediction [30]. The
classification trees were set as 1000 in this study. During the construction of the tree, a third
of the sample is excluded from the bootstrap sample (out-of-bag data, OOB data). For an
unbiased estimation of the classification error (OOB error), the OOB data were used as test
samples [31]. Academically, the lower the OOB error, the more accurate the classifier. In
this experiment, after several trees, the cumulative OOB error rates dropped to 0.0185. As
shown in Figure 4B, the 14 variables with significant differences contributed to the classifi-
cation of SS in different regions. In A, p-cresol was more abundant. Trans-2-hexenal and
1-menthol are higher in B. J has greater amounts of ethyl acetate, 2-ethyl-5-methylpyrazine,
and trans-2-pentenal. 1-phenylethanol was more abundant in the N. Diethyl trisulfide,
1-octen-3-ol, and 2-hexanol are higher in S. The levels of 3-methylbutanoic acid and alpha-
phellandrene in Z are higher. These compounds are similar to the analysis results of
Figure 1B. Those compounds with significant differences improve the accuracy of random
forest classification, which may be a key factor in distinguishing from SS of different origins
based on HS-GC-IMS.
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3. Discussion

SS is one of the most important drugs for relieving exterior syndrome in TCM. The
volatile oil distilled from SS showed potent anti-inflammatory and fumigant activity [32].
Steam distillation, solvent extraction, and headspace capture are commonly used to ex-tract
volatile components from plants [33]. However, the first two methods require large sample
size, long extraction time, and long heating time, and some components may be destroyed
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in the heating process. HS-SPME combined with GC-MS has the advantages of short
extraction time, simple operation, and high sensitivity. At the same time, based on the NIST
database search, this technology can realize the discovery of trace volatile components in
complex sample systems [34]. HS-GC-IMS is a powerful technique for the separation and
sensitive detection of VOCs, with the advantages of high sensitivity and resolution [35].
In the present study, the VOCs of SS were investigated by HS-GC-IMS and HS-SPME-GC-
MS. As can be seen from Tables 1 and 2, most volatile organics detected by HS-GC-IMS
are small molecular compounds, whereas the detection range of HS-SPME-GC-MS is
usually medium molecular weight VOCs. This suggests that the HS-GC-IMS has a higher
sensitivity to high-volatile chemicals than the HS-SPME-GC-MS. It is the ability of SPME
to capture high boiling point compounds that leads to the higher content of high boiling
point compounds in volatile organic compounds detected by HS-SPME-GC-MS, which
is consistent with previous reports [36]. In addition, SPME is affected by temperature,
and the distribution coefficient decreases when the temperature increases. As a result,
volatile compounds with low distribution coefficients cannot be detected by temperament.
The combination of HS-GC-IMS and HS-SPME-GC-MS technology can better realize the
rapid identification and comprehensive characterization of volatile organic compounds in
SS. By using the well-established HS-GC-IMS technique, 40 VOCs were discovered in SS.
On the other hand, 42 VOCs were identified in SS, by the established HS-SPME-GC-MS
analysis method. The SS of volatile compounds may be affected by the cultivation region,
resulting in the differentiation of the volatile composition in each SS sample. In this study,
HS-SPME-GC-MS and HS-GC-IMS ware used to analyze the VOCs in 18 samples collected
from different provinces in China. In total, terpenes ware the main volatile components in
the SS. The results of both instruments indicated that there were more terpenoids in the
samples from Anhui province. In addition, the two instruments reflect a certain difference
in the content of volatile components of SS in different places, which may be related to
factors such as climate conditions, soil conditions, sunshine intensity, cultivation conditions,
and transportation conditions.

Modern studies show that there are obvious differences in the types and quantities
of chemical components in TCM from different geographical sources [37]. Therefore, it
is very important to establish a fast and reliable regional identification method for TCM.
For this purpose, the analysis strategies of two different HS-SPME-GC-MS and HS-GC-
IMS were selected, tested, and compared. In this study, the origin of SS samples from six
regions was analyzed. A uniform statistical technique was used to analyze data collected
on two analytical systems. Regional classification performed using OPLS-DA indicated
that the method based on HS-GC-IMS could better classify the SS from six regions than
HS-SPME-GC-MS. This may be because the environmental differences in different regions
have a greater impact on the small molecule metabolites of plants. The characterization
and classification of VOCs from Chinese herbal medicines by HS-GC-IMS coupled with
an appropriate multivariate analysis has the potential to be used as a non-destructive
way to evaluate Chinese herbal medicines from different origins. This gives us a new
idea to distinguish Chinese herbal medicines in different regions. A number of studies
have indicated that HS-GC-IMS has the capacity to confirm geographical and botanical
origin [35]. For example, HS-GC-IMS was successfully used for reliable classification
of geographical origins for both olive oil (EVOO) [38] and wine [39]. Furthermore, the
HS-GC-IMS method was applied to quickly identify Ophiopogonis Radix from different
regions [40]. Moreover, HS-GC-IMS has also been used to determine the geographical
origins of “Chenpi” [41]. The compounds identified by HS-GC-IMS were subjected to
multivariate analysis. A total of 14 volatiles that could explain the separation of SS samples
into six regions were identified based on VIP scores and RF.

Present observations showed that HS-GC-IMS and HS-SPME-GC-MS can better char-
acterize volatile components in TCM. The application of HS-GC-IMS can better distinguish
between different sources of SS and improve the effectiveness and efficiency of the pro-
cess. HS-GC-IMS has good potential in identifying TCM from different regions. However,
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the HS-GC-IMS database is not perfect, so it is still limited in the comprehensive char-
acterization and accurate quantitative analysis of samples. Therefore, a large number of
experiments are still needed to enrich the database for the application of HS-GC-IMS in
distinguishing TCM from different origins.

4. Materials and Methods
4.1. Sample Source and Preparation

The SS samples were collected from different geographical localities, including Hebei,
Henan, Jiangsu, Zhejiang, Shandong, and Anhui. Each sample bought three batches
from one region, and there was no difference among batches. Detailed information of all
the samples is listed in Supplementary Table S1. All samples in the experiments were
authenticated by Professor Lijuan Zhang from Tianjin University of Traditional Chinese
Medicine. Voucher specimens were deposited in the School of Pharmacy, Tianjin University
of traditional Chinese medicine, China.

All SS samples were crushed with a grinder (Tai site, Tianjin, China) and sieved
through a 40-mesh sieve. For subsequent examination, the powdered sample was immedi-
ately packed in a plastic bag and stored in a dark, dry environment of 20 ◦C.

4.2. Chemicals and Reagents

A C8-C20 n-alkane standard for HS-SPME-GC-MS was purchased from Sigma-Aldrich
Trading Co., Ltd. (Shanghai, China). A C4-C9 n-ketones standard for HS-GC-IMS was pur-
chased from Sinopharm Chemical Co., Ltd. (Shanghai, China). Reference compounds were
purchased for identification. Limonene (CAS:5989-54-8, 95%), 3-methyl-Cyclohexanone
(CAS:591-24-2, 97%) were bought from Aladdin Biochemical Technology Co., Ltd.
(Shanghai, China). Piperitone (CAS:89-81-6, ≥95%), caryophyllene (CAS:87-44-5, ≥98%),
caryophyleneoxide (1139-30-6, ≥90%) and (+)-pulegone (CAS:89-82-7, ≥98%) provided by
Shanghai Yuanye Biotech. Co., Ltd. (Shanghai, China).

4.3. HS-GC-IMS Analysis Conditions

The HS-GC-IMS system (Flavourspec®, G.A.S, Dortmund, Germany) was equipped
with an autosampler (CTC Analytics AG, Zwingen, Switzerland) and an FS-SE-54-CB-
1 capillary column (15 m × 0.53 mm ID, 1 µm, CS-Chromatographie Service GmbH,
Germany). A 0.2 g sample of SS was accurately weighed into a 20 mL headspace bottle and
incubated at 75 ◦C for 20 min at 500 r/min. The volume of the extracted headspace air was
100 µL, and the syringe temperature was 45 ◦C. The column temperature was 60 ◦C, and
the carrier gas consisted of 99.99% pure nitrogen and its flow rate was first set at 2 mL/min
for 2 min, then increased to 10 mL/min within 15 min, increased to 100 mL/min over
25 min and increased to 120 mL/min over 30 min. The pre-separated compounds driven
into an ionization chamber and ionized by a 3H ionization source with 300 MBq activity in
positive ion mode. The resulting ions were driven to a drift tube (9.8 cm in length), which
was operated on a constant temperature (45 ◦C) and voltage (5 kV). The flow rate of the
drift gas (nitrogen gas) was set at 150 mL/min. The retention index (RI) of each compound
was calculated using n-ketones C4-C9 as external references. VOCs were identified based
on an IMS database of the HS-GC-IMS Library Search application software. The mobility
Ko is also involved in the identification of compounds. It is a normalized expression of
the ionic mobility (K) at standard temperature and pressure, and its calculation formula is
based on references [42].

4.4. HS-SPME-GC-MS Analysis
4.4.1. Extraction of Volatile Compounds

SPME fiber (Supelco, Inc., Bellefonte, PA, USA) was installed on a MultiPurpose
sampler (Gerstel, GER) and combined with 7890 B–7000 D triple quadrupole gas chro-
matography mass spectrometry (Agilent Technologies, Palo Alto, CA, USA) to detect VOCs
in SS samples. The univariate method was used to select the SPME conditions for each factor
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individually. Crushed samples (0.1 g) were placed into a 20 mL headspace vial with a mag-
netic screw cap and a Teflon-lined rubber septum. Then, the sample vial was equilibrated
for 5 min at a certain temperature (50 ◦C, 60 ◦C, 70 ◦C, and 80 ◦C) on a heating platform.
The extraction was conducted by inserting the SPME fibers (polyacrylate 85 µm, poly-
dimethylsiloxane/divinylbenzene 65 µm phase thickness (PDMS/DVB), polydimethylsilox-
ane/carbon wide range/divinylbenzene 50/30 µm phase thickness (PDMS/CAR/DVB))
into the head space of the vial for a certain time (15 min, 20 min, 25 min and 30 min). The
fiber was desorbed into the injection port of the GC for 5 min at the end of the extraction.
Under the same conditions of sample size, extraction temperature and extraction time, the
optimal SPME fiber was first determined. Then, the best SPME fiber was chosen to optimize
the other factors at the same way, and peak capacity was used as the criterion. The resulted
optimal extraction parameters were determined as follows, using PDMS/CAR/DVB fiber
to extract 0.1 g of sample at 60 ◦C for 25 min.

4.4.2. GC-MS Analysis

An Agilent 7890B gas chromatography system with an HP-5MS elastic quartz capillary
column (30 m × 0.25 mm × 0.25 m, 19091 S–433, J&W Scientific, Folsom, CA, USA) and
an Agilent 7000 D mass spectrometry detector was used for the GC-MS analysis. Helium
was used as the carrier gas, with a flow rate of 1 mL/min. The heating procedure of the
column was as follows: maintain a temperature of 50 ◦C for 2 min; increase to 70 ◦C at a
rate of 10 ◦C /min; increase to 110 ◦C at a rate of 5 ◦C /min; increase to 115 ◦C at a rate
of 1 ◦C /min; increase to 147.5 ◦C at a rate of 5 ◦C /min; increase to 160 ◦C at a rate of
3 ◦C /min; heated to 220 ◦C at 5 ◦C /min and held for 5 min. The mass spectrometry
conditions were as follows: quadrupole temperature of 150 ◦C, ion source temperature of
230 ◦C, injection temperature of 280 ◦C, scanning range 50–600 m/z, and ionization voltage
of 70 eV.

In this study, unknown volatile compounds were qualitatively analyzed by three
methods, including searching for spectral peaks in the NIST17 standard mass spectrometry
library of the chemistry workstation, calculating retention index (RI) values, and comparing
the retention times of substances in the sample with external standards. The peak area nor-
malization method was used to calculate the relative percentage content of each compound
in SS samples from different regions.

4.5. Statistical Analysis

The SIMCA-P 14.1 software (Umerics, Umea, Sweden) was used to run the OPLS-DA.
A Laboratory Analytical Viewer (LAV), three plugins, and a HS-GC-IMS library search
are all included in the HS-GC-IMS assisted analysis software to analyze samples from
different angles. The specific volatile compounds were identified by HS-GC-IMS library
search software. Then, the galley plot program in LAV software was used to obtain the
visual galley plot of the sample. The HS-SPME-GC-MS results were expressed as the
mean ± standard deviation. The heat map and random forest ware performed by the
online website MetaboAnalyst 5.0 for data processing.

5. Conclusions

In general, the study explored the 82 VOCs of SS from six regions by using HS-SPME-
GC-MS and HS-GC-IMS. Among them, the content of terpenoids accounted for a large
proportion of the SS. Through these two kinds of instrument analysis, it was concluded that
the terpenoid substance content is higher in Anhui province. In addition, some aldehydes
and phenols were found by HS-GC-IMS. The combination of the two analytical methods
realized the rapid identification and comprehensive characterization of VOCs in SS. The
fingerprint of HS-GC-IMS has the advantage of data visualization, which can directly and
conveniently compare VOCs in samples from different regions. The discriminant analysis
of SS from six regions was carried out by OPLS-DA. Only parts of SS from different regions
can be separated by HS-SPME-GC-MS. HS-GC-IMS could effectively distinguish the six
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kinds of SS. By random forest analysis, 14 compounds were identified that were beneficial to
the classification of SS in different areas. Although HS-GC-IMS was more commonly used
to identify food from various sources, it was less commonly used in traditional Chinese
medicine. HS-GC-IMS coupled with an appropriate multivariate analysis has potential
in the characterization and classification of TCM containing VOCs. However, due to the
complex composition of TCM, the application of HS-GC-IMS in the identification of TCM
from different origins still needs to be studied with a larger sample size.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27144393/s1, Table S1: Detailed information of all the
samples. Table S2: Peak area of standard product. Table S3: Peak area of sample determined by
HS-SPME-GC-MS. Table S4: Peak area of sample determined by HS-GC-IMS.
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