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Materials 

All chemical and reagents were purchased from commercial suppliers and used without any further purification. Zinc 

acetate dihydrate (Zn(CH3COO)2·2H2O, 99%) and tetrahydrofuran(C4H8O, 99.9%) were purchased from Innochem. 

4-methyl-5-imidazolecarboxaldehyde(C5H6N2O, 98%) was purchased from Ark. Methanol (AR) and distilled water

were purchased from Sinopharm Chemical Reagent Co. Ltd. CO2 (99.999%), N2 (99.999%) and mixed gases of

CO2/N2=15/85 (v/v) were purchased from Beijing Special Gas Co. LTD (China).

Stability experiment 

(1) In order to evaluate the water stability of ZIF-94 under humid condition, about 1.5 g of the ZIF-94 is soaked in a vial

with 10 mL of deionized water at room temperature. The soaking time are 1 d, 3 d, 7 d, 30 d, and 60 d, respectively.

(2) The samples were soaked in solutions with different PH values to evaluate the acid-base stability, we prepared the

solution with pH = 1 ~ 13 used NaOH and HCl aqueous solution at room temperature, and put 0.2 g samples into vials

respectively soaking for 48 h.

Finally, the soaked samples were filtered and dried for PXRD analysis, and the stability of the samples in water and

aqueous alkaline solutions were observed.

Isosteric heat of adsorption 

The isosteric heats of adsorption (Qst) were calculated from the isotherms measured at 273 and 298 K for CO2 and N2, 

respectively. The isotherms were fitted using equation (1).  

(1) 

Where N is the amount of gas adsorbed at pressure P, a and b are virial coefficients and m and n are the numbers of 

coefficients required to adequately describe the isotherm. Using the fitting parameters obtained from the above equa-

tion, Qst could be calculated using equation (2). 

(2) 

Where R is the universal gas constant. 
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Dynamic saturated adsorption amount of each component (qi,m) 

To actually determine the adsorption amount at the mixed gas condition, the dynamic saturated adsorption amount 

of each component (qi,m) was calculated based on the breakthrough curves by the equation (3) described as follows:  

q
i,m
=
∫ (
t0
0

Fi-Fe)∆t-Vdead

m
  (3) 

Where the Fi is the flow rate of specific gas at the inlet of the adsorption column with the unit of cm3/min, while the Fe 

represents the effluent flow rate of the corresponding gas species; Vdead is the dead volume of the system (cm3); And m 

represents the mass of the adsorbent loaded into the adsorption column (g); t0 is the retention time interval for the gas 

mixture. 

 

Figure S1. Schematic representation of synthesis of ZIF-94 at room temperature. 

 

Figure S2. SEM of as-synthesized ZIF-94. 
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Figure S3. CO2 (a, 298 K and b, 273 K) and N2 (c, 298 K and d, 273 K) adsorption isotherms in ZIF-94 with dual-site 

Langmuir-Freundlich model fits. 

 

Figure S4. Diagram of breakthrough experimental apparatus. 
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Figure S5. H2O adsorption of ZIF-94 at 298 K. 

 

Figure S6. PXRD of ZIF-94 exposed to air for 4 months and 6 months. 
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Figure S7. PXRD of ZIF-94 soaked in water for 1, 3, 7, 30 days, and 60 days. 

 

Figure S8. PXRD of ZIF-94 activated at different temperatures. 
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Figure S9. Images of ZIF-94 before and after soaking in different pH solutions. (a) before soaking, (b) soaking 2 days. 
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Figure S10. PXRD of ZIF-94 soaked in solutions with different PH values. 

 

Figure S11. The adsorption isotherms of CO2 under different conditions. 
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Figure S12. The N2 adsorption isotherm at 77 K of the samples. (a) Freshly made, (b) Multiple adsorption experiments, (c) 

Dynamic breakthrough experiments. 
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Table S1. Dual-Langmuir-Freundlich fitting parameters for CO2 and N2 in ZIF-94 at 298 K. 

 Site A Site B 

 
qA,sat 

cm3 g−1 

bA 

bar−1 

A 

dimensionless 

qB,sat 

cm3 g−1 

bB 

bar−1 

B 

dimensionless 

CO2 56.24 0.95 0.95 28.64 9.28 1.00 

N2 0.42 24.99 1.36 24.3 0.33 1.13 

Table S2. Dual-Langmuir-Freundlich fitting parameters for CO2 and N2 in ZIF-94 at 273 K. 

 Site A Site B 

 
qA,sat 

cm3 g−1 

bA 

bar−1 

A 

dimensionless 

qB,sat 

cm3 g−1 

bB 

bar−1 

B 

dimensionless 

CO2 40.89 15.47 0.94 50.11 1.20 0.99 

N2 1.04 8.22 1.17 41.72 0.31 1.07 
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Table S3. Comparation of CO2 adsorption uptakes and selectivity for CO2/N2 around the top-performing ZIF. 

ZIF CO2 adsorption (cm3/g) 
CO2/N2 

Selectivity 

Conditions 

(T, P) 
Ref 

ZIF-78 49.03 a 50.1 c 298 K,1 atm [41] 

ZIF-79 33.25 a 23.2 c 298 K,1 atm [41] 

ZIF-81 36.13 a 23.8 c 298 K,1 atm [41] 

ZIF-82 50.48 a 35.3 c 298 K,1 atm [41] 

ZIF-68 36.54 a 18.7 c 298 K,1 atm 
[41,62] 

 

ZIF-69 36.48 a 19.9 c 298 K,1 atm 
[41,62] 

 

ZIF-70 28.47 a 17.3 c 298 K,1 atm 
[41,62] 

 

ZIF-68 32.48 b 13.39 (15:85) 298 K, 0.10 MPa [63] 

ZIF-69 35.39 b 22.89 (15:85) 298 K, 0.10 MPa [63] 

ZIF-2 12.12 a 4.4 d 298 K, 1 bar 
[48,64] 

 

ZIF-4 17.83 a 8.2 d 298 K, 1 bar 
[48, 64] 

 

ZIF-5 8.98 a 16.3 d 298 K, 1 bar 
[48, 64] 

 

ZIF-8 8.68 a 3.6 d 298 K, 1 bar 
[48, 64] 

 

ZIF-9 36.83 a 14.8 d 298 K, 1 bar 
[48, 64] 

 

ZIF-95 19.26 b 18±1.7 c 298 K, 1 bar [42] 

ZIF-100 21.28 b 25±2.4 c 298 K, 1 bar [42] 

ZIF-8 15.64 7.22 298 K, 1000 mbar [50] 

ZIF-3 38.62 9.32 (50:50) e 298 K, 1 bar [65] 

ZIF-62 11.11 136.31 293 K,100 KPa [66] 

ZIF-67 14.23 5.56 298 K, 0.10 MPa [67] 

ZIF-94 53.30 
54.12 (15:85) 

95.29 (50:50) 
298 K, 1 bar this work 

unit conversion: a. from cm3·cm−3 (literature reported) to cm3·g−1, b. from mmol·g−1 (literature reported) to cm3·g−1, c. 

Henry’s Law selectivity, d. Zero-pressure adsorption selectivity, e. GCMC simulations for CO2 selectivity. 
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Table S4. Some typical materials with high CO2 adsorption capacity. 

Materials CO2 adsorption (cm3/g) 
CO2/N2 

Selectivity 

Conditions 

(T, P) 
Ref 

Cu-BTC 108.19 a 51.65 298 K, 1 bar [68]  

Gly0.3@Cu-BTC 120.96 a 59.38 298 K, 1 bar [68]  

MIL-53(Al) 43.2 9.86 (15:85) 298 K, 1 bar [69]  

MIL-101(Cr) 53.31 a 21.23 (15:85) 298 K, 100 KPa [70]  

UiO-66 40.10 a 19.4 298 K, 1 bar [71]  

Fe2(dobdc) 144.5 83.51 298 K, 1 bar [72]  

Fe2(O2)(dobdc) 98.1 45.49 298 K, 1 bar [72]  

Ni-MOF-74 123.2 a 32 (15:85) 298 K, 1 bar [73]  

Zn-MOF-74 122.08 a NA b 298 K, 1 bar [41]  

Co-MOF-74 155.90 a NA b 298 K, 1 bar [41]  

Mg-MOF-74 166.21 a NA b 298 K, 1 bar [74]  

UTSA-16 93.63 NA b 298 K, 1 bar [75]  

CALF-20 91.17 a 230(10:90) 293 K, 1.2 bar [76]  

OM-CNS 67.42 a 14 (15:85) 298 K, 1 bar [77]  

FC4 64.29 a 14.2 (15:85) 298 K, 1 bar [78]  

NPC-1−600 112 a 27 (15:85) 298 K, 1 bar [79]  

BPL AC 45.70 26.43 298 K, 1 bar [80]  

Zeolite-13X 38.53 a 100.01 298 K, 1 bar [80]  

Silicalite-1 38.43 16.3 298 K, 1 bar [81]  

unit conversion: a. from mmol·g−1 (literature reported), b. Not available. 
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