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Abstract: Phototheranostics that concurrently integrates accurate diagnosis (e.g., fluorescence and
photoacoustic (PA) imaging) and in situ therapy (e.g., photodynamic therapy (PDT) and photothermal
therapy (PTT)) into one platform represents an attractive approach for accelerating personalized
and precision medicine. The second near-infrared window (NIR-II, 1000–1700 nm) has attracted
considerable attention from both the scientific community and clinical doctors for improved pene-
tration depth and excellent spatial resolution. NIR-II agents with a PDT property as well as other
functions are recently emerging as a powerful tool for boosting the phototheranostic outcome. In
this minireview, we summarize the recent advances of photodynamic NIR-II aggregation-induced
emission luminogens (AIEgens) for biomedical applications. The molecular design strategies for
tuning the electronic bandgaps and photophysical energy transformation processes are discussed. We
also highlight the biomedical applications, such as image-guided therapy of both subcutaneous and
orthotopic tumors, and multifunctional theranostics in combination with other treatment methods,
including chemotherapy and immunotherapy; and the precise treatment of both tumor and bacterial
infection. This review aims to provide guidance for PDT agents with long-wavelength emissions
to improve the imaging precision and treatment efficacy. We hope it will provide a comprehen-
sive understanding about the chemical structure–photophysical property–biomedical application
relationship of NIR-II luminogens.

Keywords: aggregation-induced emission; NIR-II; photodynamic; phototheranostic; precision medicine;
biomedical application

1. Introduction

Theranostics that concurrently integrates accurate diagnosis and in situ therapy into
one platform represents an attractive approach for accelerating personalized and precision
medicine [1–4]. Light represents a promising modality for disease diagnosis and treatment
for the salient merits of excellent spatiotemporal resolution, real-time control, noninvasive
feature, and portable instruments [5–7]. Recently, phototheranostics has attracted consider-
able attention from both the scientific community and clinical doctors [8–10]. Fluorescence
imaging possesses very high sensitivity, and photoacoustic (PA) imaging is a new technique
with excellent penetration depth and spatial resolution [11–15]. Phototherapy methods,
such as photodynamic therapy (PDT) and photothermal therapy (PTT), have shown great
promise for treating many diseases [16–19]. During these treatments, the Jablonski diagram
determines the photophysical energy transition processes that closely associate with the
various phototheranostic properties of an agent [20–23]. For example, fluorescence emis-
sion originates from the radiative decay in the singlet excited state; photothermal effect
and the PA signal are related to the nonradiative decay pathway; and PDT describes the
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reactive oxygen species (ROS) generation in the triplet excited state [24–27]. Therefore, the
utilization and manipulation of these energy transformation processes are of vital impor-
tance for boosting the disease treatment efficacy. A lot of materials have been explored for
the light-related theranostics, which include carbon nanomaterials, metal nanostructures,
rare earth metal-doped systems, quantum dots, and organic molecules [28–33]. Among
them, organic materials hold some intrinsic advantages of good biocompatibility, well-
defined structure, facile chemical modification, and easily tunable properties [34,35]. For
example, the organic near-infrared (NIR) dyes indocyanine green (ICG) and methylene
blue (MB) have been approved by the FDA for clinical use; and NIR fluorescence-guided
surgery has proved to be a highly efficient method for improving the accuracy of cancer
resection [36,37]. However, most conventional fluorescent dyes face the aggregation-caused
quenching (ACQ) problem, which considerably declines the optical properties, such as
fluorescence emission and PDT; thus, this limits their real applications [38,39].

In 2001, Tang and coworkers first coined a new photophysical phenomenon, aggregation-
induced emission (AIE) [40], which represents a kind of emitters that show no or weak
emission in dilute solution; however, the emission greatly intensifies in aggregate form
(Figure 1a). The underlying working mechanism of AIE luminogens (AIEgens) is that the
propeller-like molecular structure could consume the excited state energy via intensive
molecular motion in solution through a non-radiative decay process, while the molec-
ular motion is significantly restricted in aggregate state; thus, the radiative pathway is
open [41–43]. Based on this guideline, a library of AIEgens with emission colors ranging
from UV–Vis to the NIR spectral region have been developed; and they have found ap-
plications in many fields, such as optoelectronic devices, chemosensing, microstructure
visualization, and biomedical applications [44–49]. Not only is the fluorescence of AIEgens
intensified in aggregate, but some related imaging/therapeutic properties would also be
altered. For example, the light-triggered ROS generation ability will be boosted in the
aggregate state, as compared with that in solution [50–52]. The violent molecular motion
could also help to promote the photothermal and PA transition, benefitting PTT and PA
imaging [53–56]. Accordingly, AIEgens hold great promise for biomedical applications.

Another obstacle for light-related diagnosis and therapeutics is the limited penetration
depth and spatial resolution in vivo. The light-tissue interaction (e.g., autofluorescence,
absorption, scattering, and reflection) is the determinant factor for optical imaging, which is
highly affected by the wavelength [57,58]. Both the penetration ability and imaging quality
increase as the light wavelength becomes longer. For instance, the conventional transparent
NIR window (NIR-I, 700–900 nm) could realize much better in vivo biological imaging
than the UV and visible spectral region [59,60]. In the recently emerging second NIR
(NIR-II, 1000–1700 nm) biological window, the light-tissue interaction is greatly reduced;
thus, very high penetration and resolution could be realized (Figure 1b) [61–64]. NIR-II
imaging and therapy have shown promising applications in many areas, such as vascular
diseases, tumors, and brain diseases [65–69]. During the last several years, some NIR-II
AIEgens have been developed, which opens up a new avenue for obtaining an ultrabright
NIR-II nanoagent [70–75]. In addition to the excellent imaging of NIR-II AIEgens in the
living body, it is highly desirable to endow them with a therapeutic property (e.g., PDT) to
enable precision medicine. Nevertheless, it is usually difficult to confer a PDT property on
NIR-II fluorophores as the energy levels are relatively low [76,77]. Recently, several NIR-II
AIEgens with a PDT function have been developed for biomedical applications. Moreover,
NIR-II emitters possess long-wavelength absorption and a small-energy bandgap, which
is naturally born with nonradiative thermal deactivation [78–81]. Thus, other properties
including a PTT and PA signal would be easily obtained from NIR-II emitters, enabling
multifunctional phototheranostics.
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Figure 1. (a) Chemical structures of typical ACQ and AIE molecules; and photographs of them
in solution and different aggregate states under UV light. DDPD: N,N-dicyclohexyl-1,7-dibromo-
3,4,9,10-perylenetetracarboxylic diimide, TPE: tetraphenylethene (Reprinted with permission from
Ref. [43]. Copyright 2018, American Chemical Society). (b) Schematic illustration of the penetration
depth of different spectral regions and light-tissue interaction (Reprinted with permission from
Ref. [63]. Copyright 2018, The Royal Society of Chemistry).

In this review, we summarize the recent advances of NIR-II AIEgens with PDT as
well as other related optical properties for biomedical applications, mainly focusing on the
photodynamic AIEgens with a maximal fluorescence emission wavelength above 900 nm
(Scheme 1). We will discuss the molecular design strategy for manipulating the response
spectral region and photophysical energy transition process. Most of the photodynamic
NIR-II AIEgens possess multifunctional properties (e.g., fluorescence, PA, PDT, and PTT),
which provide a good opportunity for precise diagnosis and therapy. The phototheranos-
tic applications in living bodies are presented, which are mainly about tumor imaging
and treatment. Finally, the future challenges and perspectives of photodynamic NIR-II
AIEgens are also discussed. This review aims to provide guidance for the PDT agents with
long-wavelength emission to improve the diagnostic precision and treatment outcome. It
will provide a comprehensive understanding about the chemical structure–photophysical
property–biomedical application relationship of NIR-II luminogens, especially the multi-
functional systems for precision medicine.
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2. Photodynamic NIR-II AIEgens for Subcutaneous Tumor Phototheranostics

There are mainly two types of photodynamic mechanisms [82–85]. For type-I PDT,
electron and/or proton transfer occurs between the triplet excited state and adjacent
substrates; generating free radicals that could further react with other molecules (e.g., water
and oxygen) to produce ROS, such as hydrogen peroxide (H2O2), superoxide anion radical
(O2
•−), and hydroxyl radical (HO•). For type-II PDT, the energy of triplet excitons transfers

to 3O2 to form singlet oxygen (1O2), in which the energy of the lowest triplet excited
state (T1) should be higher than that of oxygen sensitization (0.98 eV) [86–88]. The type-I
mechanism is less oxygen-dependent than type-II PDT, which is therefore considered
to be suitable for applications in a hypoxic environment. This explains why the NIR-II
emitters with a PDT property are rare and precise molecular design should be conducted.
Most NIR-II fluorophores have relatively low bandgaps of <1.5 eV, in which the efficiency
of radiative decay is low and the nonradiative decay becomes dominant [89–91]. Thus,
the nonradiative thermal deactivation-associated photothermal and PA effect are usually
observed for NIR-II agents, which enables multifunctional properties.

In 2020, Xu et al., reported the positively charged photothermal photosensitizers with a
donor–acceptor (D–A) structure that could emit NIR-II light for fluorescence/PA/photothermal
tri-modal imaging and PDT/PTT therapy of a tumor [92]. They synthesized and compared
a series of D–A molecules with different conjugated thiophene-based spacers (Figure 2).
Thiophene, as an electron-rich heterocycle, could not only increase the electron-donating
property, but also extend the conjugation length. As a result, the compound bearing the
two thiophene units exhibited bathochromic shift in the fluorescence spectrum with a peak
at about 950 nm. Studies on the ROS generation capability and photothermal efficiency of
the three AIEgens revealed that the ROS generation rate was TSSAM > TSAM > TAM. In
addition, among the three AIEgens, TSSAM also had the best photothermal effect with a
photothermal conversion efficiency (PCE) of 40.1%. These results indicated that TSSAM was
an excellent agent with NIR-II emission, high ROS generation, and high PCE. TSSAM NPs
were evaluated for multimodal imaging and therapeutic performance in 4T1 tumor-bearing
mice. The NIR-II fluorescence and PA signals remained strong with good spatio-temporal
resolution at 24 h post injection. The following synergistic PDT and PTT treatments under
imaging guidance could successfully eliminate subcutaneous tumors and inhibit tumor
metastasis with high tumor-killing efficiency by only one injection and one-time irradiation.

Almost at the same time, Tang and Wang et al., reported a powerful AIEgen with
all the phototheranostic modalities, including NIR-II fluorescence, PA and photothermal
imaging, PDT and PTT treatments (Figure 3) [93]. They designed three compounds (TI,
TSI, and TSSI) consisting of 1,3-bis(dicyanomethylene) indole as the A unit, TPA as the D
unit, and a thiophene segment as both π-bridge and electron donor. The thiophene spacer
in TSI and TSSI resulted in a significant red shift of the absorption/emission wavelength;
and the gradually increased D–A intensity in TI, TSI, and TSSI also significantly enhanced
the ROS production and photothermal conversion. As a result, TSSI NPs exhibited the
reddest photoluminescence (PL) wavelength, best PDT property, and highest PCE (46%).
The encapsulated TSSI NPs could be internalized into lysosomes in 4T1 cancer cells, which
exhibited excellent anti-tumor properties under 660 nm laser irradiation. Inspired by the
multifunctional phototheranostic properties, the in vivo biomedical applications of TSSI
NPs were carried out in 4T1 tumor-bearing BALB/c nude mice. The NIR-II fluorescence
imaging helped to visualize the tumor site sensitively, which was also confirmed by the
PA signal and photothermal imaging. Subsequently, the in vivo tumor killing activity of
TSSI NPs was verified, and the tumor was effectively eradicated with only one injection
and one-time light irradiation without recurrence. In comparison with the traditional
“all-in-one” strategy, this “one-for-all” agent based on an AIEgen achieves multifunctional
phototheranostics in the more direct manner and maximizes the efficacy of light therapy.
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Figure 3. (a) Schematic illustration of the chemical structures, NPs fabrication, and biomedical
applications. (b) PL spectra, (c) ROS generation using DCFH-DA, and (d) photothermal curves of TI,
TSI, and TSSI NPs under the irradiation of 660 nm laser (Reprinted with permission from Ref. [93].
Copyright 2020, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany).
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Zhang et al., synthesized a series of AIEgens with distorted tetraphenylethylene (TPE) and
diphenylamine (DPA) as donors and molecular rotors, electron-rich carbazole as a conjugated
bridge, and three different positively charged fractions (pyridine, quinoline, and acridine) as
acceptors, affording three derivatives: TPEDCPy, TPEDCQu, and TPEDCAc [94]. By increasing
the electron-withdrawing capacity of the A units from pyridine to acridine, the intramolecular
charge-transfer effect was significantly enhanced and the intramolecular motion was more intense,
which led to red-shifted absorption in the NIR-I region and strong emission in the NIR-II region
(Figure 4). TPEDCPy, TPEDCQu, and TPEDCAc showed absorptions in the range of 460–580 nm,
corresponding to maximum emissions of 660 nm, 730 nm, and 980 nm with a fluorescence
quantum yield (QY) of 2.9%, 2.6%, and 0.4%, respectively. The ROS generation capacity was
also evaluated by using 2’,7’-dichlorofluorescein diacetate (DCFH-DA) as the indicator, which
decreased in the trend of TPEDCPy < TPEDCQu < TPEDCAc. Further verification of the
photothermal behavior of the three molecules showed that TPEDCPy and TPEDCQu almost
had no temperature increase, while TPEDCAc displayed good photothermal effect with a PCE
of 44.1% as the large acridine part provided more space for backbone deformation and rotor
torsion. Noteworthy, the amphipathic TPEDCAc could easily self-assemble into homogeneously
distributed nanoaggregates with good stability. Based on the bright fluorescence emission in the
NIR-II region of TPEDCAc aggregates, the high photodynamic/photothermal efficiency, and the
excellent tumor-killing effect at the cellular level, the tumor diagnostic and therapeutic efficacy
in vivo was evaluated. The fluorescence signals in the NIR-II region started to appear in the tumor
site at 0.5 h post injection, which became strongest at about 6 h and the tumor could still be clearly
visualized at 48 h. Moreover, the concurrent PA imaging in vivo helped to provide more detailed
information about the tumor. Under 660 nm laser irradiation, the temperature of the tumor site
increased significantly, and the combination of PTT and PDT treatment successfully suppressed
the tumor metastasis in MCF-7 tumor-bearing mice.
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Figure 4. (a) Chemical structures of TPEDCPy, TPEDCQu, and TPEDCAc. (b) PL spectra, (c) ROS
generation using DCFH-DA, and (d) photothermal curves of different AIE aggregates under 660 nm
laser irradiation (n = 3). (e) In vivo NIR-II fluorescence, photothermal, and PA imaging of MCF-7
tumor-bearing mice. (f) Relative tumor volume and body weight of MCF-7 tumor-bearing mice after
different treatments (n = 5). (g) Hematoxylin and eosin (H&E) and TdT-mediated dUTP-biotin nick
end labeling (TUNEL) staining analyses of the tumor tissues receiving different treatments (Reprinted
with permission from Ref. [94]. Copyright 2022, Wiley-VCH GmbH).
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3. Photodynamic NIR-II AIEgens Combined with Other Therapeutic Modality

The cisplatin-based neoadjuvant chemotherapy (NAC), which plays an important role
in combined surgical resection against microscopic and diffuse cancer cells, has become a
standard of care and is supported by the latest clinical practice guidelines [95,96]. However,
the dose-dependent toxicities of cisplatin-based NACs significantly hinder their applica-
tions. To solve this problem, Ding et al., developed a light-enhanced cancer chemotherapy
(PECC) strategy based on an AIEgen. The biocompatible and biodegradable bovine serum
albumin (BSA) was used as a nanocarrier to load AIEgen (BITT) and the cisplatin (IV) pro-
drug Pt-2COOH (DSP) to construct a NIR-II fluorescence-guided PECC-based drug for the
treatment of bladder cancer (Figure 5) [97]. BITT exhibited maximal absorption/emission at
594/906 nm, and the molecule had good fluorescence and photothermal properties with a
fluorescence QY of 2.42% and PCE of 36.7%. By simple mixing in an aqueous solution, BITT
induced self-assembly of BSA after coupling with platinum (IV) to form stable BITT@BSA-
DSP NPs without additional cross-linking agents. The prepared BITT group aggregates
were entangled in the hydrophobic microenvironment of the BSA nanocages and this rigid
backbone structure reduced the torsional rotation of BITT, which facilitated the radiative
pathway due to the RIM mechanism and inhibition of the non-radiative thermal inacti-
vation pathway (PCE = 26.4%), enhanced fluorescence emission (QY = 4.64%) and ISC to
produce toxic ROS. In vitro and in vivo experiments validated that the integrated NIR-II
fluorescence imaging-guided PECC could effectively promote bladder cancer sensitivity to
cisplatin chemotherapy, significantly inhibiting bladder cancer progression by reducing
tumor cell proliferation and promoting apoptosis.
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Jiang et al., developed an AIEgen-based multifunctional therapeutic nanoplatform
that integrated NIR-II fluorescence, photodynamic, photothermal, and immune effect [98].
The DDTB molecule possessed a highly distorted structure and branched conformation,
which could effectively inhibit the intermolecular π-π stacking, and enable a remarkable
AIE characteristic (Figure 6). The DDTB-DP NPs had a distinct absorption peak at 687 nm
and an emission peak at 973 nm with a Stokes shift as large as 286 nm. The fluorescence
QY of the NPs was calculated to be 0.96%, and DDTB-DP NPs had a good photothermal
effect with a PCE of 30.7%. Interestingly, ROS was also efficiently produced under 660 nm
laser irradiation, and DDTB-DP NPs had a higher ROS generation capacity than DDTB,
with a 1O2 production quantum yield of 1.05%. After injecting into HeLa tumor-bearing
mice, a strong NIR-II fluorescence signal from DDTB-DP NPs was observed at the tumor
site. Then, DDTB-DP NPs-mediated PTT/PDT was conducted on the residual small
tumors after surgical resection; which indicated that the combination of traditional surgery
and light-dependent PTT/PDT could overcome their limitations and had great clinical
application potential. Finally, the NPs + PD-L1 antibodies under light were evaluated to
study whether they could improve the anti-tumor immune effect of primary tumors in
mice. The results showed that most tumors could be ablated without recurrence with the
treatment of “NPs + light + PD-L1 antibody”. These results revealed that the combination
of DDTB-DP NPs-mediated PTT/PDT and PD-L1 antibodies could achieve satisfactory
tumor immunotherapy performance.
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surgery–PTT/PDT and immunotherapy of HeLa tumor-bearing mice (Reprinted with permission
from Ref. [98]. Copyright 2021, Wiley-VCH GmbH).
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4. Photodynamic NIR-II AIEgens for Orthotopic Tumor Phototheranostics

For the shallow penetration depth of most light, the applications are mainly lim-
ited to subcutaneous tumors [99–102]. The improved penetration ability of NIR-II light
makes the phototheranostics of orthotopic tumors possible. Chen et al., reported a NIR-II
AIEgen for image-guided tumor resection and phototherapy of orthotopic liver cancer [103].
They synthesized a D-A-D-structured AIEgen, 7,7′-(6,7-diphenyl-[1,2,5]thiadiazolo [3,4-g]
quinoxaline-4,9-diyl)bis(10-octyl-10H-phenothiazine) (PTZ-TQ), which had maximal ab-
sorption at 650 nm, and a significant NIR-II fluorescence emission peak at 1150 nm with
a fluorescence QY of 0.3% (Figure 7). PTZ-TQ NPs also exhibited a high 1O2 production
quantum yield of 10% using ICG as the reference (12%). The NIR-II imaging and PDT
capacities were evaluated in a nude mouse orthotopic liver tumor model. A remarkable
NIR-II fluorescence signal at the liver site was recorded, which was capable of identi-
fying the boundary between the tumor and normal liver organ. In a clinic, sometimes
tumor resection cannot be performed due to the presence of many smaller tumors or a
very large tumor, and multiple treatments are the common treatment methods in clinical
practice. Given the strong ROS generation capacity of PTZ-TQ NPs, it was used for PDT
of the residual tumor after surgery, achieving complete suppression of orthotopic tumors
without recurrence.
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Figure 7. (a) Schematic illustration of the NIR-II PTZ-TQ for sensitive imaging-guided surgery and
phototherapy of orthotopic hepatic tumors. (b) Schematic illustration of PTZ-TQ NPs for NIR-II
fluorescence imaging-guided tumor resection. (c) Relative tumor growth curves of orthotopic liver
tumor-bearing mice with different treatments (n = 3) (Reprinted with permission from Ref. [103].
Copyright 2021, Springer Nature).

Recently, Li et al., constructed a photosensitizer DCTBT with an AIE signature through
increasing the D–A interaction and conjugation length, which possessed the functions of
NIR-II fluorescence imaging, efficient type-I PDT and PTT properties [104]. As displayed
in Figure 8, the introduction of the diphenylamine unit on the conjugated small molecule
(CTBT) backbone yielded a distorted conformation, resulting in a DCTBT molecule with
a much better AIE property. DCTBT NPs showed maximal absorption at 704 nm and
emission at 995 nm with a high fluorescence QY of 4.37%. By using different kinds of
ROS indicators, it was demonstrated that DCTBT NPs could mainly produce O2

•− under
808 nm laser exposure, suggesting the type-I PDT process. The photothermal effect was
further evaluated with 808 nm laser irradiation, and a high PCE of 59.6% was measured.
DCTBT was assembled into liposomes by doping the EGFR-targeting peptide-modified
amphiphilic polymer DSPE-PEG2000-GE11 as the encapsulation matrix to promote effective
aggregation and visualization of lip-DCTBT NPs at tumor sites. In vivo NIR-II fluorescence
imaging of subcutaneous PANC-1 tumor-bearing mice helped to precisely delineate the
tumor site and further phototherapy exhibited significant tumor growth inhibition. More
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interestingly, DCTBT NPs were also able to suppress the growth of orthotopic pancreatic
tumors under synergistic NIR-II fluorescence-guided type-I PDT and PTT treatments.
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Figure 8. (a) Chemical structure modification of DCTBT and (b) changes of the related photophysical
properties. (c) In vivo NIR-II fluorescence imaging of subcutaneous PANC-1 tumor-bearing mice at
different time points post intravenous injection. (d) Bioluminescence images of orthotopic PANC-
1 tumors after different treatments (Reprinted with permission from Ref. [104]. Copyright 2022,
Elsevier Ltd.).

5. Photodynamic NIR-II AIEgens for Both Tumor and Bacteria Inhibition

Recent studies have shown a close relationship between bacteria and human cancer
cells, including the promotion of cancer cell development and metastasis [105,106]. There-
fore, a highly efficient system that could simultaneously kill bacteria and cancer cells would
benefit tumor treatment. To achieve this, Sun and Kim et al., reported a NIR-II photothera-
nostic agent with an AIE property, which consisted of two parts: a D-A-D scaffold with
NIR-II fluorescence/PA imaging signals and associated PDT and PTT properties, and a
widely used AIE building block (TPE) with excellent emission efficiency (Figure 9) [107].
The ZSY-TPE compound exhibited an AIE feature with maximal absorption/emission at
730/1020 nm, and a large Stokes shift of about 290 nm. ZSY-TPE NPs possessed a good
photothermal effect under the irradiation of an 808 nm laser with a PCE of 28%, enabling a
strong PA signal. More interestingly, the AIE NPs could also generate ROS upon 808 nm
laser irradiation, which had 1O2 generation quantum yield of 13.8% with ICG (12%) as the
standard. For the excellent NIR-II fluorescence properties, as well as the good photody-
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namic, photothermal, and PA properties, the AIEgen was explored for imaging-guided
PDT and PTT of tumors and pathogens. After 24 h post-injection of the AIE NPs into
4T1 tumor-bearing mice, the tumor region was greatly illuminated by NIR-II fluorescence
and PA imaging. In contrast to the single modal imaging, this dual NIR-II/ PA imaging
helped to provide complementary information about the tumor and precisely guide the
subsequent phototherapy. Under the irradiation of an 808 nm laser, the tumor growth was
significantly inhibited thanks to the combination of PDT and PTT. Moreover, the AIE NPs
could also be used for the NIR-II fluorescence imaging of Staphylococcus aureus-infected
mice, and the following imaging-guided PDT/PTT was performed to inhibit bacterial
infections. Considering the close relationship between bacteria and cancers, this kind
of multifunctional phototheranostic agent may represent an efficient strategy for precise
diagnostics and therapeutics of bacteria-infected tumors.

Molecules 2022, 27, 6649 12 of 19 
 

guided PDT and PTT of tumors and pathogens. After 24 h post-injection of the AIE NPs 

into 4T1 tumor-bearing mice, the tumor region was greatly illuminated by NIR-II fluores-

cence and PA imaging. In contrast to the single modal imaging, this dual NIR-II/ PA im-

aging helped to provide complementary information about the tumor and precisely guide 

the subsequent phototherapy. Under the irradiation of an 808 nm laser, the tumor growth 

was significantly inhibited thanks to the combination of PDT and PTT. Moreover, the AIE 

NPs could also be used for the NIR-II fluorescence imaging of Staphylococcus aureus-in-

fected mice, and the following imaging-guided PDT/PTT was performed to inhibit bacte-

rial infections. Considering the close relationship between bacteria and cancers, this kind 

of multifunctional phototheranostic agent may represent an efficient strategy for precise 

diagnostics and therapeutics of bacteria-infected tumors. 

 

Figure 9. (a) Chemical structures of ZSY and ZSY-TPE. (b) Schematic of the agent for NIR-II fluo-

rescence and PA imaging, PDT, and PTT of cancer and bacteria. (c) In vivo NIR-II fluorescence and 

PA images of 4T1 tumor-bearing mice at different time points after intravenous injection of ZYS-

TPE NPs. (d) The relative tumor volumes after different treatments (n = 3). (e) Photographs and (f) 

relative wound area of S. aureus-infected wounds after different treatments (n = 3). Scale bars = 10 

mm (Reprinted with permission from Ref. [107]. Copyright 2020, Elsevier Ltd.). 

 

Figure 9. (a) Chemical structures of ZSY and ZSY-TPE. (b) Schematic of the agent for NIR-II fluores-
cence and PA imaging, PDT, and PTT of cancer and bacteria. (c) In vivo NIR-II fluorescence and PA
images of 4T1 tumor-bearing mice at different time points after intravenous injection of ZYS-TPE
NPs. (d) The relative tumor volumes after different treatments (n = 3). (e) Photographs and (f) rela-
tive wound area of S. aureus-infected wounds after different treatments (n = 3). Scale bars = 10 mm
(Reprinted with permission from Ref. [107]. Copyright 2020, Elsevier Ltd.).
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6. Hybrid Self-Assembly System for Phototheranostics

Recently, Wang and Tang et al., reported a prismatic metal cage C-DTTP with bright
NIR-II fluorescence emission through the assembly of an AIE-active four-armed ligand with
a 90◦ Pt acceptor Pt(PEt3)2(OTf)2 [108]. As displayed in Figure 10, a D-A-D type molecule
(DTTP) was rationally designed with maximal absorption/emission at 675/993 nm. The
four pyridine substitutes endowed DTTP with the function of a four-armed ligand, which
could form the metal-cage C-DTTP via supramolecular coordination. C-DTTP exhibited
remarkable AIE characteristics with a maximum emission wavelength of 1005 nm, which
was the longest fluorescence emission wavelength compared with the previously reported
supramolecular coordination complexes (SCCs). The fluorescence QY of the mPEG-PLGA-
encapsulated C-DTTP NPs (CNPs) was 1.61%, and it also showed a PCE of 39.3% under the
irradiation of the 808 nm laser. Moreover, CNPs exhibited a much higher ROS generation
efficiency than LNPs (the ligand DTTP-constituted NPs). The in vivo imaging-guided
PDT/PTT treatment was performed on MDA-MB-231 tumor-bearing BALB/c nude mice.
After intravenous injection of CNPs, the NIR-II fluorescence signal in the tumor area
gradually increased with time, and reached the highest intensity at about 12 h. Subsequently,
the anti-tumor effect of CNPs was studied. The treatment of CNPs with 808 nm laser
irradiation achieved complete tumor clearance on the 14th day, which suggested excellent
anti-tumor effect. This study provides an example of creating NIR-II emitting SCCs with
unified diagnostic and therapeutic properties, which represents a new way for promoting
the biomedical applications of SCCs.
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Figure 10. (a) Schematic illustration of the supramolecular coordination complex C-DTTP NPs for
NIR-II fluorescence imaging-guided PDT and PTT. (b) PL spectra, (c) measurements of fluorescence
QY, (d) photothermal curves, and (e) ROS generation of various NPs. (f) Relative tumor volumes
and (g) tumor weights of MDA-MB-231 tumor-bearing BALB/c nude mice after different treatments
(n = 5) (Reprinted with permission from Ref. [108]. Copyright 2022, American Chemical Society).
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7. Summary and Perspective

As NIR-II fluorophores possess narrow electronic bandgaps, the low energy levels are
usually not enough for generating ROS under light irradiation. With the endeavor of many
researchers, NIR-II AIEgens with a PDT property are emerging in the last two years. The
low bandgaps of NIR-II emitters result in dominated nonradiative thermal deactivation of
the excited state energy in most cases. Therefore, NIR-II chromophores are naturally born
with photothermal and PA properties, which enables multifunctional phototheranostics.
In this minireview, we summarize the recent advances of photodynamic NIR-II AIEgens
and their applications (Table 1). The molecular design strategies for tuning the electronic
bandgaps and photophysical properties are discussed. We also highlight the biomedical
applications such as image-guided therapy of both subcutaneous and orthotopic tumors,
and multifunctional theranostics in combination with other treatment methods, including
chemotherapy and immunotherapy; and the precise treatment of tumor and bacterial
infection. This kind of agents turn out to be powerful for high-resolution diagnosis and
precise disease therapeutics. Some aspects can be considered for their future development.
First, the study of photodynamic NIR-II AIEgens is still in the infancy; more systematic
investigations are needed to provide a comprehensive understanding about these kinds
of molecules. Second, although NIR-II luminogens possess multifunctional properties
in one molecule, new strategies that could tune and optimize each imaging/therapy
modality as needed are of great significance to boost the theranostic outcome. Third, as
the current applications mainly focus on tumors, more research in other diseases should
be explored to extend the applications. Last, since this is a new kind of material, the
long-term biocompatibility should be carefully evaluated to push forward the clinical
transformation. This review aims to provide guidance for the PDT agents with long-
wavelength emission to improve the diagnostic precision and treatment outcome. We hope
it will provide a comprehensive understanding about the chemical structure–photophysical
property–biomedical application relationship of NIR-II luminogens.

Table 1. Summary of Photodynamic NIR-II AIEgens for Different Biomedical Applications.

Name Chemical Structure λabs/λPL (nm) Properties Animal Model

TSSAM
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FLI, PAI, 

PDT, PTT 

4T1 tumor-

bearing BALB/c 

nude mice 

TPEDCAc 

 

580/980 
FLI, PAI, 

PDT, PTT 

MCF­7 tu-

mor­bearing 

nude mice 

664/992 FLI, PAI, PDT, PTT 4T1 tumor-bearing
BALB/c nude mice

TPEDCAc
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QY, (d) photothermal curves, and (e) ROS generation of various NPs. (f) Relative tumor volumes 

and (g) tumor weights of MDA-MB-231 tumor-bearing BALB/c nude mice after different treatments 

(n = 5) (Reprinted with permission from Ref. [108]. Copyright 2022, American Chemical Society). 

7. Summary and Perspective 

As NIR-II fluorophores possess narrow electronic bandgaps, the low energy levels 

are usually not enough for generating ROS under light irradiation. With the endeavor of 

many researchers, NIR-II AIEgens with a PDT property are emerging in the last two years. 

The low bandgaps of NIR-II emitters result in dominated nonradiative thermal deactiva-

tion of the excited state energy in most cases. Therefore, NIR-II chromophores are natu-

rally born with photothermal and PA properties, which enables multifunctional photo-

theranostics. In this minireview, we summarize the recent advances of photodynamic 

NIR-II AIEgens and their applications (Table 1). The molecular design strategies for tun-

ing the electronic bandgaps and photophysical properties are discussed. We also highlight 

the biomedical applications such as image-guided therapy of both subcutaneous and or-

thotopic tumors, and multifunctional theranostics in combination with other treatment 

methods, including chemotherapy and immunotherapy; and the precise treatment of tu-

mor and bacterial infection. This kind of agents turn out to be powerful for high-resolution 

diagnosis and precise disease therapeutics. Some aspects can be considered for their fu-

ture development. First, the study of photodynamic NIR-II AIEgens is still in the infancy; 

more systematic investigations are needed to provide a comprehensive understanding 

about these kinds of molecules. Second, although NIR-II luminogens possess multifunc-

tional properties in one molecule, new strategies that could tune and optimize each imag-

ing/therapy modality as needed are of great significance to boost the theranostic outcome. 

Third, as the current applications mainly focus on tumors, more research in other diseases 

should be explored to extend the applications. Last, since this is a new kind of material, 

the long-term biocompatibility should be carefully evaluated to push forward the clinical 

transformation. This review aims to provide guidance for the PDT agents with long-wave-

length emission to improve the diagnostic precision and treatment outcome. We hope it 

will provide a comprehensive understanding about the chemical structure–photophysical 

property–biomedical application relationship of NIR-II luminogens. 

Table 1. Summary of Photodynamic NIR-II AIEgens for Different Biomedical Applications. 

Name Chemical Structure λabs/λPL (nm) Properties Animal Model 

TSSAM 

 

640/950 
FLI, PAI, 

PDT, PTT 

4T1 tumor-

bearing mice 

TSSI 

 

664/992 
FLI, PAI, 

PDT, PTT 

4T1 tumor-

bearing BALB/c 

nude mice 

TPEDCAc 

 

580/980 
FLI, PAI, 

PDT, PTT 

MCF­7 tu-

mor­bearing 

nude mice 

580/980 FLI, PAI, PDT, PTT MCF 7 tumor bearing
nude mice
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Table 1. Cont.

Name Chemical Structure λabs/λPL (nm) Properties Animal Model
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chemo-

therapy 

MB49 tumor-

bearing mice 
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FLI, PDT, 

PTT, im-
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HeLa tumor-

bearing mice 

DCTBT 

 

704/995 
FLI, PDT, 

PTT 

PANC-1 tumor-

bearing mice 

PTZ-TQ 

 

650/1150 FLI, PDT 

Orthotopic 

liver tumor-

bearing mice 

ZSY-TPE 

 

730/1020 
FLI, PAI, 

PDT, PTT 

4T1 tumor-

bearing 

mice/Staphylo-

coccus aureus-

infected mice 

C-DTTP 

 

675/993 
FLI, PAI, 

PDT, PTT 

MDA-MB-231 

tumor-bearing 
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