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Abstract: In this study, deep eutectic solvents (DESs) were used as green and eco-friendly media for
the synthesis of substituted 2-mercaptoquinazolin-4(3H)-ones from different anthranilic acids and
aliphatic or aromatic isothiocyanates. A model reaction on anthranilic acid and phenyl isothiocyanate
was performed in 20 choline chloride-based DESs at 80 ◦C to find the best solvent. Based on the
product yield, choline chloride:urea (1:2) DES was found to be the most effective, while DESs
acted both as solvents and catalysts. Desired compounds were prepared with moderate to good
yields using stirring, microwave-assisted, and ultrasound-assisted synthesis. Significantly, higher
yields were obtained with mixing and ultrasonication (16–76%), while microwave-induced synthesis
showed lower effectiveness (13–49%). The specific contribution of this research is the use of DESs
in combination with the above-mentioned green techniques for the synthesis of a wide range of
derivatives. The structures of the synthesized compounds were confirmed by 1H and 13C NMR
spectroscopy.

Keywords: deep eutectic solvents; 2-mercaptoquinazolin-4(3H)-one; microwave-assisted synthesis;
ultrasound-assisted synthesis; green chemistry

1. Introduction

Quinazolinones, as oxygen- and nitrogen-containing fused heterocyclic compounds,
are an important scaffold in pharmaceutical and medicinal chemistry showing significant
biological activities. They exist in the form of two isomers. The keto functionality may be
present on the second, fourth, or both carbon atoms of the quinazoline nucleus (Figure 1) [1].
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Exceptional biological activities of quinazolinone derivatives have been demonstrated
in previous studies investigating their antibacterial [2], antitumor [3], anticonvulsant [4]
and anti-inflammatory [5] and enzyme inhibitory activity [6,7]. These compounds have also
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been found to act via various targets such as tubulin [8], dihydrofolate reductase [9], histone
deacetylase [10], COX-1/COX-2 and 15-LOX [11]. Numerous registered drugs contain
quinazolinone core in their structure, such as fenquizone, which is used as a diuretic,
raltitrexed, used for selective treatment of different cancers, while balaglitazone is effective
anti-diabetic drug and idelalisib as an antineoplastic agent (Figure 2) [12]. An extraordinary
biological activity makes them an interesting target for medicinal investigations; therefore,
their preparation has been intensified lately [13]. 2-Mercaptoquinazolinones have been a
fruitful source in pharmaceutical and medicinal chemistry considering their capability of
interacting in hydrogen bonding and π-π stacking with biological targets [14].
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The synthesis of quinazolinone derivatives has been the focus of numerous studies for
decades, and is therefore well described in the literature. There are many different methods
for preparing these extensively studied heterocyclic compounds. Among them, the main
synthetic routes use anthranilic acid [15–19], anthranilate [20], isatoic anhydride [21–23],
benzoxazinone [24–27] and 2-iodoaniline [28] as convenient precursors. For preparation
of 2-mercaptoquinazolinone derivatives, anthranilic acid is the most common starting
material. Moussa et al. [11] performed a condensation by heating anthranilic acid and
four aromatic isothiocyanates in ethanol for 8 h. The same procedure was performed
between 5-iodoanthranilic acid and p-chlorophenyl isothiocyanate under reflux for 4 h with
75% yield [29]. Numerous reports have demonstrated the use of triethylamine as a base
catalyst in ethanol for condensation of anthranilic acid and appropriate isothiocyanate for
2–4 h [30–32].

Lately, many endeavors have been directed towards much safer, economically accept-
able, and environmentally friendly protocols for the preparation of quinazolinones [27,33,34].
Many green procedures use safer solvents and tend to minimize the use of toxic catalysts.
Therefore, a novel class of green solvents, deep eutectic solvents (DESs), has found applica-
tion in green synthetic processes, often serving as both solvents and catalysts. First reported
in 2003 [35], DESs are defined as a mixture of two or more components with lower melting
point than each individually. Today, DESs are classified into five types based on their gen-
eral formula [36]. Commonly used, Type III DESs [36], are often formed of hydrogen bond
acceptors (HBA), such as quaternary ammonium salts, and hydrogen bond donors (HBD)
in different molar ratios. The HBDs employed are often urea and its derivatives, polyols,
carbohydrates, and dicarboxylic acids. Their green character is manifested in easy prepara-
tion, chemical stability, non-volatility, biodegradability, and non-flammability. These are the
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reasons they have been increasingly used in the synthesis of heterocycles, both as catalysts
and solvents [37–39]. Hence, a suitable combination of starting components can improve the
desired physicochemical properties of DESs for many processes over conventional ones. As
green solvents, DESs can be combined with other green chemistry techniques to minimize
the adverse environmental effects [40].

In the last two decades, microwave heating has been intensively used in different
chemical transformations. Irradiation of polar or less polar molecules due to the absorption
of microwaves converted into the heat causes reduced reaction time as well as energy con-
sumption [41]. Besides microwave-assisted synthesis, another efficient green method used
to accelerate the organic conversions is an ultrasound-assisted synthesis. The generated
high local pressure and temperature inside the bubbles, which collapse, results in remark-
able advantages such as enhanced yields, shorter reaction time and better selectivity [42].

Choline chloride-based DESs have been in focus of our investigation for some time,
and we found them to be suitable for different chemical processes, both heterocyclic
compounds synthesis [17,25,33,43] and extraction [44]. In this regard, the objectives of
this research were focused on the investigation on finding an appropriate Type III [36],
choline chloride-based deep eutectic (ChCl-based DES) solvent for the synthesis of 3-
substituted 2-mercaptoquinazolin-4(3H)-one derivatives, as well as on the influence of
some reaction parameters such as temperature and reaction time. Furthermore, the use of
several suitable green chemistry methods (microwave-assisted synthesis, and ultrasound-
assisted synthesis) was also investigated. The DES was recovered and recycled at least
several times. Remarkably, this is the first extensive study of the application of 20 choline
chloride-based DESs in the synthesis of substituted 2-mercaptoquinazolin-4(3H)-ones in a
combination with above mentioned green synthetic methods and their comparison.

2. Results and Discussion

Conventionally, 2-mercaptoquinazolin-4(3H)-ones have usually been synthesized
from anthranilic acid and isothiocyanate using ethanol as a solvent and triethylamine
as a base catalyst. Triethylamine is commonly employed in a stoichiometric amount.
Novel green techniques in the synthesis of quinazolinones have attracted considerable
attention reducing the adverse effects on the environment. Herein, we describe a synthesis
of 54 substituted 2-mercaptoquinazolin-4(3H)-one derivatives 6a–10k from anthranilic
acids 1–5 and aliphatic and aromatic isothiocyanates (Scheme 1) using DESs by using
microwave and ultrasound promoted synthesis. Structures of all synthesized compounds
were confirmed by NMR spectroscopy (spectra were shown in Supplementary Material).
Chemical shifts in 1H NMR spectra indicate that all compounds are in thiol form, where the
characteristic shift for thiol proton is usually found around 12 ppm. All other characteristic
chemical shifts indicate the presence of quinoline core, as well as aromatic and aliphatic
substituents.
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The first step of this investigation began with optimization of the reaction conditions
using anthranilic acid 1 and phenyl isothiocyanate as model substrates. As our previous
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results [33] indicated that products could be easily synthesized in ChCl:urea (1:2) DES,
we investigated the influence of reaction temperature (40 ◦C, 60 ◦C, and 80 ◦C) and time
(30 min, 1 h and 2 h) in this DES. The consumption of the reactants was monitored with
thin layer chromatography (TLC). As expected, the highest temperature of 80 ◦C after 1 h
and 2 h provided the best product yields equally (63%), while 40 ◦C and 60 ◦C after 2 h
provided 14%, and 29%, respectively. Therefore, we used the temperature of 80 ◦C for all
reactions performed in the remaining 19 DESs (Table 1). A temperature of 80 ◦C was also
suitable for the DESs such as ChCl:fructose (2:1), ChCl:glucose (2:1), ChCl:citric acid (1:1),
ChCl:tartaric acid (1:1), which are too viscous at lower temperatures, but yet not degraded
at this temperature.

Table 1. 2-Mercapto-3-phenylquinazolin-4(3H)-one yields obtained in different choline chloride-
based DESs at 80 ◦C.

Entry DES Molar Ratio Yield ** (%)

1 ChCl:Urea 1:2 63
2 ChCl:N-methylurea 1:3 59
3 ChCl:1,3-Dimethylurea 1:2 24
4 ChCl:Thiourea 1:2 20
5 ChCl:Acetamide 1:2 33
6 ChCl:Butane-1,4-diol 1:2 47
7 ChCl:Ethane-1,2-diol 1:2 24
8 ChCl:Glycerol 1:2 21
9 ChCl:Xylitol 1:1 14
10 ChCl:Sorbitol 1:1 10
11 ChCl:Glucose 2:1 *
12 ChCl:Fructose 2:1 *
13 ChCl:Citric acid 1:1 *
14 ChCl:Tartaric acid 1:1 *
15 ChCl:Oxalic acid 1:1 *
16 ChCl:Levulinic acid 1:2 *
17 ChCl:Lactic acid 1:2 *
18 ChCl:Malic acid 1:1 *
19 ChCl:Malonic acid 1:1 *
20 ChCl:Maleic acid 1:1 *

* The product was not obtained. ** The yields were calculated based on the anthranilic acid for the product after
precipitation.

The used molar ratio of the components was chosen upon literature data described
before [35,37,45,46]. The product yields are shown in Table 1.

Results in Table 1 indicate that the best yield was obtained in choline chloride:urea
(1:2) DES at 80 ◦C This yield was lower than the one obtained in our previous work [33],
but this is probably due to the lower reaction temperature. As already mentioned, the
temperature of 80 ◦C was chosen as suitable for the sugar-based DESs, since they decompose
at higher temperatures. As conventional synthesis of 2-mercaptoquinazolin-4(3H)-ones is
usually base catalyzed (often by triethylamine) it is not surprising that choline chloride:urea
(1:2), a basic DES [47], gave the best yields. It can be concluded that the formation of
quinazolinones in DESs is pH-dependent, with higher yields in basic DESs.

Therefore, all desired products 6a–10k (Scheme 1) were synthesized in ChCl:urea (1:2)
DES by simple stirring of the reaction mixture at 80 ◦C (Table 2).

In general, the compounds with aliphatic groups at C-3 of quinazolinone core were
obtained in lower yields, probably due to their higher solubility in water during the
isolation.
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Table 2. A comparison of the substituted 2-mercaptoquinazolin-4(3H)-ones yields1 obtained with selected green methods with literature yields.
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Compounds R 1 Ar/R 2 Ystirring (%) 2 YMW (%) 3 YUS
4 (%) YLit. (%) Mp (◦C)

6a H Me 42 39 17 46 [48]; 68 [33]; 60 [49] 264–265
6b H Et 40 18 36 72 [33]; 95 [50] 255
6c H Allyl 24 15 21 35 [33] 206–208
6d H Ph 63 22 34 35 [48]; 90 [33]; 92 [50]; 73 (82) [51]; 61 [49]; 75 (60) [52] 304–305
6e H Bn 62 41 64 50 [48]; 83 [53] 248–250
6f H 4-MePh 27 47 38 94 [50]; 79 (78) [51]; 88 [54], 75 (62) [52] 312–313
6g H 4-FPh 48 32 25 88 [3]; 88 [54] 336–337
6h H 4-ClPh 55 49 41 75 [33]; 89 [50]; 94 [51] 331–332
6i H 4-BrPh 66 24 58 84 [55]; 70 [52] 330–331
6j H 3-OMePh 64 21 57 91 [54]; 65 (50) [52] 285
6k H 3-ClPh 41 12 25 86 [54] 300–301
7a 6-I Me 31 20 40 73 [33] 307–308
7b 6-I Et 25 14 18 10 [33] 290–292
7c 6-I Allyl 22 13 21 20 [33] 234–235
7d 6-I Ph 32 16 22 91 [33]; 70 [52] 350–352
7e 6-I Bn 45 10 28 352
7f 6-I 4-MePh 49 29 47 350–351
7g 6-I 4-FPh 43 22 18 349–350
7h 6-I 4-ClPh 39 31 38 75 [29] 337–339
7i 6-I 4-BrPh 49 30 51 355–357
7j 6-I 3-OMePh 53 25 58 314–315
7k 6-I 3-ClPh 50 25 44 313–315
8a 6-Br Me 21 14 23 64 [49] 280–281
8b 6-Br Et 25 13 17 243–244
8c 6-Br Allyl 40 14 40 242–243
8d 6-Br Ph 36 13 19 63 [49]; 75 [52] 351–353
8e 6-Br Bn 58 27 60 244
8f 6-Br 4-MePh 76 31 41 60 [56] 341–342
8g 6-Br 4-FPh 57 19 28 354–355
8h 6-Br 4-ClPh 62 27 48 344–346
8i 6-Br 4-BrPh 65 33 56 349–350
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Table 2. A comparison of the substituted 2-mercaptoquinazolin-4(3H)-ones yields1 obtained with 
selected green methods with literature yields. 

 
Com-

pounds 
R 1 Ar/R 2 Ystirring (%) 2 YMW (%) 3 YUS 4 (%) YLit. (%) Mp (°C) 

6a H Me 42 39 17 
46 [48]; 68 [33]; 60 

[49] 
264–265 

6b H Et 40 18 36 72 [33]; 95 [50] 255 

6c H Allyl 24 15 21 35 [33] 206–208 

6d H Ph 63 22 34 

35 [48]; 90 [33]; 92 

[50]; 73 (82) [51]; 61 

[49]; 75 (60) [52] 

304–305 

6e H Bn 62 41 64 50 [48]; 83 [53] 248–250 

6f H 4-MePh 27 47 38 
94 [50]; 79 (78) [51]; 

88 [54], 75 (62) [52] 
312–313 

6g H 4-FPh 48 32 25 88 [3]; 88 [54] 336–337 

6h H 4-ClPh 55 49 41 
75 [33]; 89 [50]; 94 

[51] 
331–332 

6i H 4-BrPh 66 24 58 84 [55]; 70 [52] 330–331 

6j H 3-OMePh 64 21 57 91 [54]; 65 (50) [52] 285 

6k H 3-ClPh 41 12 25 86 [54] 300–301 

7a 6-I Me 31 20 40 73 [33] 307–308 

7b 6-I Et 25 14 18 10 [33] 290–292 

7c 6-I Allyl 22 13 21 20 [33] 234–235 

7d 6-I Ph 32 16 22 91 [33]; 70 [52] 350–352 

7e 6-I Bn 45 10 28  352 

7f 6-I 4-MePh 49 29 47  350–351 

7g 6-I 4-FPh 43 22 18  349–350 

7h 6-I 4-ClPh 39 31 38 75 [29] 337–339 

7i 6-I 4-BrPh 49 30 51  355–357 

7j 6-I 3-OMePh 53 25 58  314–315 

7k 6-I 3-ClPh 50 25 44  313–315 

8a 6-Br Me 21 14 23 64 [49] 280–281 

8b 6-Br Et 25 13 17  243–244 

8c 6-Br Allyl 40 14 40  242–243 

Compounds R 1 Ar/R 2 Ystirring (%) 2 YMW (%) 3 YUS
4 (%) YLit. (%) Mp (◦C)

8j 6-Br 3-OMePh 49 28 30 312–313
8k 6-Br 3-ClPh 57 18 33 305–307
9a 7-Cl Me 58 19 18 327–328
9b 7-Cl Et 22 15 21 265
9c 7-Cl Allyl 47 13 26 248–249
9d 7-Cl Ph 67 19 36 71 (90) [51] 313–314
9e 7-Cl Bn 26 17 34 270–272
9f 7-Cl 4-MePh 42 13 24 73 [51] 307–309
9g 7-Cl 4-FPh 34 18 18 314–315
9h 7-Cl 4-ClPh 50 14 27 76 [53] 302–303
9i 7-Cl 4-BrPh 50 16 38 320–322
9j 7-Cl 3-OMePh 40 25 44 256–257
9k 7-Cl 3-ClPh 39 19 54 248–249
10a 6,8-(Cl)2 Me 36 15 41 246–247
10b 6,8-(Cl)2 Et 19 119 15 184
10c 6,8-(Cl)2 Allyl 21 23 30 179
10d 6,8-(Cl)2 Ph 20 18 19 65 [52] 283–285
10e 6,8-(Cl)2 Bn 51 14 27 206–208
10f 6,8-(Cl)2 4-MePh 25 27 40 70 [52] 244
10g 6,8-(Cl)2 4-FPh 33 22 24 268–269
10h 6,8-(Cl)2 4-ClPh 34 30 30 259–260
10i 6,8-(Cl)2 4-BrPh 60 37 48 280–282
10j 6,8-(Cl)2 3-OMePh 33 14 24 219–220
10k 6,8-(Cl)2 3-ClPh 38 24 43 214–216

1 The yields were calculated based on the anthranilic acid for the product after precipitation; 2 ChCl:urea (1:2), 80 ◦C, 1 h; 3 ChCl:urea (1:2), 1800 W, 80 ◦C, 1 h; 4 ChCl:urea (1:2), 50 W,
80 ◦C, 1 h.
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To explore the efficiency of current procedure, we performed the microwave and
ultrasound induced synthesis of all compounds in the same solvent, as well. Microwave-
induced synthesis of the model reaction was performed at 80 ◦C and 1800 W for 15 min,
30 min and 60 min. The desired product 6d was obtained in traces after 15 min and 30 min,
and only in 22% after 60 min. In this manner, the synthesis of all other derivatives was
performed at 80 ◦C and 1800 W for 60 min (Table 2).

The ultrasound induced synthesis of the model reaction was performed at 50 W and
80 ◦C for 15 min, 30 min and 60 min affording the desired product 6d in 14%, 15%, and
34%. Therefore, all the reactions were performed for 60 min at 50 W and 80 ◦C, and the
results are shown in Table 2.

Besides its desirable character, the synthesis in DES is characterized by the simplicity
of the postsynthetic procedures, which include the addition of water into reaction mixture
followed by the product precipitation. The products are pure and only several derivatives
6c, 6j, 7b, 9b, 9c, 9i and 10a–10k were recrystallized from ethanol. Although some other
authors have obtained higher yields of some derivatives (Table 2), their synthetic proce-
dures often included long reaction times [48,52], reflux conditions [3,29,50–53,55,57], use of
different catalysts, and extensive postsynthetic procedures using different harmful organic
solvents [29,50,53–55].

The recyclability of choline chloride:urea (1:2) DES in this investigation was exam-
ined using 5-bromoanthranilic acid 3 and p-tolyl isothiocyanate under optimal conditions
(Table 3). After the consumption of 5-bromoanthranilic acid, the reaction mixture was
cooled and diluted with water. The desired product was filtered off and washed with water.
The water was removed under vacuum and DES was recovered and re-used for the same
reaction. The reusability proceeded four times with no significant loss of activity.

Table 3. Recyclability of DES for the synthesis of 8f.

Solvent Yield of 8f (%)

ChCl:Urea 76
1st recycle 72
2nd recycle 77
3rd recycle 80
4th recycle 77

According to the conducted experiments and reported data [31], a plausible mech-
anism for the condensation of anthranilic acids 1–5 and isothiocyanates is presented in
Scheme 2. The first step includes a nucleophilic attack of a nitrogen atom to an electron-
deficient carbon atom from isothiocyanate in the presence of choline chloride:urea (1:2)
DES (marked green on Scheme 2). Subsequently, the intermediate undergoes cyclization
and the required quinazolinone is formed through dehydration.
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The greenness of this process is presented by calculation of the Sheldon’s E-factor:

E − f actor =
kg (waste)

kg (product)
=

0.00013 kg
0.000265 kg

= 0.49 (1)

3. Experimental Section
3.1. Materials and Methods

All chemicals and solvents were purchased from commercial suppliers and used
without purification. Choline chloride (99%), N-methylurea (97%), 1,3-dimethylurea (98%),
thiourea (99+%), acetamide (99%), butane-1,4-diol (99+%), xylitol (99+%), oxalic acid (98%,
anhydrous), levulinic acid (98+%), malic acid (99+%), malonic acid (99%), anthranilic acid
(98+%), 5-iodoanthranilic acid (98%), 5-bromoanthranilic acid (97%), 4-chloroanthranilic
acid (98%), methyl isothiocyanate (97%), ethyl isothiocyanate (96%), allyl isothiocyanate
(94% stabilized with 0.01% α-tocopherol), phenyl isothiocyanate (98%), benzyl isothio-
cyanate (98%) were purchased from Acros Organics (Geel, Belgium). 4-Methylphenyl
isothiocyanate (97%), 3,5-dichloroanthranilic acid (97%) were purchased from Alfa Aesar
(Lancashire, UK). 3-Bromophenyl isothiocyanate (97%), 3-methoxyphenyl isothiocyanate
(987+%) were purchased from Maybridge (Maybridge Chemical Company Ltd., Altrin-
cham, UK). Urea (p.a.), glycerol (redistilled, p.a.), D(+)-glucose (p.a.), citric acid (p.a.) were
purchased from Gram Mol. Ethane-1,2-diol (p.a.) was purchased from Carlo Erba (Carlo
Erba Reagents GmbH, Emmendingen, Germany). Sorbitol (lab. reag. grade), D(+)-fructose
(lab. reag. grade), L(+)-tartaric acid (lab. reag. grade) were purchased from Fischer Scien-
tific (Fisher Scientific UK Ltd., Loughborough, UK). 4-Fluorophenyl isothiocyanate (98%),
4-chlorophenyl isothiocyanate (99%), 3-chlorophenyl isothiocyanate (98%), maleic acid
(reag. plus. ≥99% HPLC) was purchased from Sigma Aldrich (Sigma Aldrich Chemie
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GmbH, München, Germany). Lactic acid (min. 88%, p.a.) was purchased from T.T.T. (T.T.T.
d.o.o., Sveta Nedelja, Croatia). Melting points (uncorrected) were determined in open
capillaries on Electrothermal melting point apparatus (Electrothermal Engineering Ltd.,
Rochford, UK). For monitoring the progress of a reaction, thin layer chromatography (TLC)
was performed on pre-coated Merck (Darmstadt, Germany) silica gel 60F-254 plates using
benzene:acetic acid:acetone (8:1:1, v/v) as solvent system and the spots were detected under
UV light (254 nm). 1H and 13C NMR spetra were recorded on a Bruker 600 MHz spectrom-
eter (Bruker Biospin, Rheinstetten, Germany) at 298 K in dimethylsulfoxide (DMSO-d6).
The synthesis by mixing and heating was performed on a magnetic stirrer (IKA RH basic 2,
Staufen, Germany). Microwave-assisted synthesis was performed using Milestone flexi-
WAVE reactor (Milestones Srl, Milan, Italy) with the power at 1800 W. Ultrasound-assisted
synthesis was performed in temperature controlled ultrasonic bath (Elma P70 H, Singen,
Germany) with frequency at 37 Hz and the power at 50 W.

3.2. Preparation of DESs

DESs were prepared by mixing choline chloride with appropriate amides, carbohy-
drates, alcohols and carboxylic acids in a different molar ratio, as listed in Table 1. The
mixtures were heated at 80 ◦C with continuous stirring until a clear liquid was obtained.
The prepared DESs was used as such as described in Sections 3.3–3.5.

3.3. Synthesis of Substituted 2-Mercaptoquinazolin-4(3H)-Ones by Mixing and Heating
Preparation of DESs

Anthranilic acid 1–5 (1 mmol) and corresponding isothiocyanate (1.2 mmol) were
added to 10 mL of DES and stirred at 80 ◦C for 1 h. Upon completion of the reaction, water
was added, and the precipitated product was filtered off. When necessary, a recrystallization
was performed using ethanol.

3.4. Microwave-Assisted Synthesis of Substituted 2-Mercaptoquinazolin-4(3H)-ones

Anthranilic acid 1–5 (1 mmol) and corresponding isothiocyanate (1.2 mmol) in 10 mL
of DES were stirred under microwave irradiation (1800 W) at 80 ◦C for 1 h. Upon completion
of the reaction, water was added, and the precipitated product was filtered.

3.5. Ultrasound-Assisted Synthesis of Substituted 2-Mercaptoquinazolin-4(3H)-ones

Anthranilic acid 1–5 (1 mmol) and corresponding isothiocyanate (1.2 mmol) in 10 mL
of DES were subjected to ultrasonic irradiation at 50 W and 80 ◦C for 1 h. Upon completion
of the reaction, water was added, and the precipitated product was filtered.

3.6. Recycling of DES

5-Bromoanthranilic acid 3 (216 mg; 1 mmol) and p-tolyl isothiocyanate (165 µL;
1.2 mmol) in 10 mL of DES were mixed and heated on magnetic stirrer at 80 ◦C for
1 h. Upon addition of the water, a crude product was precipitated, and the water was
evaporated. The procedure was repeated four times. The Sheldon’s E-factor was calculated
according to the following formula as described in our previous work [43]:

E − f actor =
kg (waste)

kg (product)
(2)

3.7. Characterization of Compounds

Spectra Are Shown in Supplementary Materials.

3.7.1. 2-Mercapto-3-methylquinazolin-4(3H)-one (6a)

Pale yellow powder; mp = 264–265 ◦C (262–264 ◦C [48]); Rf = 0.79; 1H NMR (DMSO-d6,
400 MHz) δ 12.9 (1H, s, –SH), 7.93 (1H, d, J = 7.54 Hz, arom.), 7.73 (1H, m, arom.), 7.37 (1H,
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d, J = 7.91 Hz, arom.), 7.32 (1H, t, J = 7.54 Hz, arom.), 3.64 (3H, s, -CH3). 13C NMR (CDCl3,
75 MHz) δ 175.3, 159.6, 138.9, 135.3, 127.2, 124.3, 115.5, 33.2.

3.7.2. 3-Ethyl-2-mercaptoquinazolin-4(3H)-one (6b)

Pale yellow powder; mp = 255 ◦C (246–248 ◦C [50]); Rf = 0.82; 1H NMR (DMSO-d6,
300 MHz) δ 12.9 (1H, s, -SH), 7.93–7.96 (1H, m, arom.), 7.69–7.75 (1H, m, arom.), 7.36 (1H, d,
J = 8.29 Hz, arom.), 7.29–7.34 (1H, m, arom.), 4.41–4.48 (2H, q, J = 7.16 Hz, -CH2-), 1.20–1.25
(3H, t, J = 6.97 Hz, -CH3). 13C NMR (CDCl3, 75 MHz) δ 174.7, 158.9, 138.9, 135.3, 127.2,
124.4, 115.5, 99.5, 11.9.

3.7.3. 3-Allyl-2-mercaptoquinazolin-4(3H)-one (6c)

Pale yellow powder; mp = 206–208 ◦C (206 ◦C [33]); Rf = 0.77; 1H NMR (DMSO-d6,
300 MHz) δ 12.9 (1H, s, -SH), 7.94–7.96 (1H, d, J = 7.54 Hz, arom.), 7.71–7.76 (1H, m, arom.),
7.36–7.41 (1H, d, J = 8.29 Hz, arom.), 7.30–7.33 (1H, t, J = 7.54, 7.54 Hz, arom.), 5.87–5.96
(1H, m, -CH-), 5.17 (2H, d, J = 6.97 Hz, -CH=), 5.04 (2H, d, J = 4.90 Hz, =CH2). 13C NMR
(CDCl3, 75 MHz) δ 175.0, 158.9, 139.1, 135.5, 131.8, 127.3, 124.5, 117.1, 115.6, 99.5, 47.6.

3.7.4. 2-Mercapto-3-phenylquinazolin-4(3H)-one (6d)

White powder; mp = 304–305 ◦C (300–302 ◦C [48]); Rf = 0.80; 1H NMR (DMSO-d6,
300 MHz) δ 13.0 (1H, s, -SH), 7.97 (1H, dd, J = 7.91, 1.13 Hz, arom.), 7.76–7.81 (1H, t, arom.),
7.29–7.51 (7H, m, arom.). 13C NMR (CDCl3, 75 MHz) δ 176.0, 159.8, 139.6, 139.3, 135.6, 128.9,
128.1, 127.4, 124.3, 115.7.

3.7.5. 3-Benzyl-2-mercaptoquinazolin-4(3H)-one (6e)

White powder; mp = 248–250 ◦C (231–233 ◦C [48]); Rf = 0.77; 1H NMR (DMSO-d6,
300 MHz) δ 13.1 (1H, s, -SH), 7.95–7.97 (1H, m, arom.), 7.73–7.79 (1H, m, arom.), 7.42–7.44
(1H, d, J = 8.29 Hz, arom.), 7.23–7.38 (7H, m, arom.), 5.67 (2H, s, -CH2-). 13C NMR (CDCl3,
75 MHz) δ 175.5, 159.4, 139.1, 136.6, 128.2, 127.1, 124.6, 115.7, 48.7.

3.7.6. 2-Mercapto-3-(p-tolyl)quinazolin-4(3H)-one (6f)

White powder; mp = 312–313 ◦C (318–320 ◦C [50]); Rf = 0.76; 1H NMR (DMSO-d6,
300 MHz) δ 13.0 (1H, s, -SH), 7.95 (1H, d, J = 7.54 Hz, arom.), 7.75–7.78 (1H, m, arom.), 7.45
(1H, d, J = 7.91 Hz, arom.), 7.26–7.37 (3H, m, arom.), 7.13–7.15 (2H, d, J = 7.91 Hz, arom.),
2.37 (3H, s, -CH3). 13C NMR (CDCl3, 75 MHz) δ 176.2, 159.8, 139.5, 137.3, 135.5, 130.3, 129.4,
128.6, 127.4, 125.7, 124.3, 116.1, 115.7, 20.8.

3.7.7. 3-(4-Fluorophenyl)-2-mercaptoquinazolin-4(3H)-one (6g)

White powder; mp = 336–337 ◦C (>300 ◦C [3]); Rf = 0.76; 1H NMR (DMSO-d6, 300 MHz)
δ 13.1 (1H, s, -SH), 7.95 (1H, m, arom.), 7.76–7.81 (1H, m, arom.), 7.44–7.47 (1H, d, J = 7.91 Hz,
arom.), 7.27–7.38 (5H, m, arom.). 13C NMR (CDCl3, 75 MHz) δ 176.1, 163.1, 159.9, 139.5,
135.6, 131.0, 127.4, 124.3, 115.7, 99.5.

3.7.8. 3-(4-Chlorophenyl)-2-mercaptoquinazolin-4(3H)-one (6h)

White powder; mp = 331–332 ◦C (>300 ◦C [51]); Rf = 0.75; 1H NMR (DMSO-d6,
300 MHz) δ 13.1 (1H, s, -SH), 7.95 (1H, d, J = 7.91 Hz, arom.), 7.76–7.82 (1H, m, arom.),
7.53–7.56 (2H, m, arom.), 7.44–7.47 (1H, m, arom.), 7.33–7.35 (3H, m, arom.). 13C NMR
(CDCl3, 75 MHz) δ 175.9, 159.8, 139.6, 138.2, 135.6, 132.7, 131.0, 129.0, 127.4, 124.4, 116.2,
115.7, 99.5.

3.7.9. 3-(4-Bromophenyl)-2-mercaptoquinazolin-4(3H)-one (6i)

White powder; mp = 330–331 ◦C (300–301 ◦C [55]); Rf = 0.78; 1H NMR (DMSO-d6,
300 MHz) δ 13.1 (1H, s, -SH), 7.95 (1H, dd, J = 7.91, 0.75 Hz, arom.), 7.76–7.79 (1H, m, arom.),
7.57–7.70 (2H, m, arom.), 7.44–7.47 (1H, d, J = 8.29 Hz, arom.), 7.33–7.35 (1H, m, arom.),
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7.27–7.30 (2H, d, arom.). 13C NMR (CDCl3, 75 MHz) δ 175.8, 159.8, 139.6, 138.7, 135.6, 132.1,
131.2, 127.4, 124.4, 121.3, 116.2, 115.7.

3.7.10. 2-Mercapto-3-(3-methoxyphenyl)quinazolin-4(3H)-one (6j)

White powder; mp = 285 ◦C (248–249 ◦C [54]); Rf = 0.75; 1H NMR (DMSO-d6, 300 MHz)
δ 13.0 (1H, s, -SH), 7.95 (1H, m, arom.), 7.78 (1H, m, arom.), 7.38–7.46 (3H, m, arom.), 7.0
(1H, dd, J = 7.91, 2.26 Hz, arom.), 6.84–6.91 (2H, m, arom.), 3.76 (3H, s, -OCH3). 13C NMR
(CDCl3, 75 MHz) δ 175.9, 159.8, 140.3, 139.6, 135.5, 129.4, 127.4, 124.4, 121.2, 116.2, 115.6,
114.9, 113.6, 99.5, 55.2.

3.7.11. 3-(3-Chlorophenyl)-2-mercaptoquinazolin-4(3H)-one (6k)

White powder; mp = 300–301 ◦C (231–233 ◦C [54]); Rf = 0.74; 1H NMR (DMSO-d6,
300 MHz) δ 13.1 (1H, s, -SH), 7.95 (1H, m, arom.), 7.77 (1H, m, arom.), 7.28–7.52 (6H, m,
arom.). 13C NMR (CDCl3, 75 MHz) δ 175.8, 159.7, 140.6, 139.6, 135.6, 132.9, 130.6, 129.4,
129.2, 128.2, 128.1, 127.4, 124.4, 116.2, 115.7.

3.7.12. 6-Iodo-2-mercapto-3-methylquinazolin-4(3H)-one (7a)

Pale yellow powder; mp = 307–308 ◦C (271 ◦C [33]); Rf = 0.80; 1H NMR (DMSO-d6,
300 MHz) δ 12.99 (1H, s, -SH), 8.16 (1H, s, arom.), 7.99 (1H, dd, J = 8.67, 1.88 Hz, arom.),
7.15–7.18 (1H, d, J = 8.29, arom.), 3.63 (3H, s, -CH3). 13C NMR (CDCl3, 75 MHz) δ 175.3,
158.3, 143.2, 138.4, 135.2, 117.9, 117.2, 87.8, 33.3.

3.7.13. 3-Ethyl-6-iodo-2-mercaptoquinazolin-4(3H)-one (7b)

White powder; mp = 290–292 ◦C (281 ◦C [33]); Rf = 0.85; 1H NMR (DMSO-d6, 300 MHz)
δ 12.96 (1H, s, -SH), 8.17 (1H, s, arom.), 8.00 (1H, d, J = 8.67 Hz, arom.), 7.15–7.18 (1H, d,
J = 8.67 Hz, arom.), 4.38–4.45 (2H, q, J = 6.78 Hz, -CH2-), 1.19–1.23 (1H, t, J = 6.78 Hz, -CH3).
13C NMR (CDCl3, 75 MHz) δ 174.7, 157.7, 143.4, 138.4, 135.2, 117.9, 117.5, 87.9, 41.4, 11.8.

3.7.14. 3-Allyl-6-iodo-2-mercaptoquinazolin-4(3H)-one (7c)

Pale yellow powder; mp = 234–235 ◦C (219 ◦C [33]); Rf = 0.88; 1H NMR (DMSO-d6,
300 MHz) δ 13.02 (1H, s, -SH), 8.17 (1H, d, J = 2.26 Hz, arom.), 8.01–8.05 (1H, dd, J = 8.67,
1.88 Hz, arom.), 7.17–7.20 (1H, d, J = 8.67 Hz, arom.), 5.89 (1H, m, -CH=), 5.12–5.18 (2H,
m, -CH2-), 5.00–5.02 (2H, d, J = 5.27 Hz, =CH2). 13C NMR (CDCl3, 75 MHz) δ 174.9, 157.8,
143.6, 138.5, 135.2, 131.5, 117.9, 117.3, 87.9, 47.8.

3.7.15. 6-Iodo-2-mercapto-3-phenylquinazolin-4(3H)-one (7d)

White powder; mp = 350–352 ◦C (>300 ◦C [33]); Rf = 0.86; 1H NMR (DMSO-d6,
300 MHz) δ 13.01 (1H, s, -SH), 8.17 (1H, d, J = 1.47 Hz, arom.), 8.06–8.08 (1H, dd, J = 8.44,
1.83 Hz, arom.), 7.46–7.49 (2H, m, arom.), 7.41 (1H, m, arom.), 7.24–7.27 (3H, m, arom.). 13C
NMR (CDCl3, 75 MHz) δ 176.0, 158.6, 143.6, 139.1, 135.2, 128.9, 128.2, 118.2, 117.9, 87.7.

3.7.16. 3-Benzyl-6-iodo-2-mercaptoquinazolin-4(3H)-one (7e)

White powder; mp = 352 ◦C; Rf = 0.89; 1H NMR (DMSO-d6, 300 MHz) δ 13.12 (1H, s,
-SH), 8.18 (1H, d, J = 1.88 Hz, arom.), 8.03–8.07 (1H, dd, J = 8.48, 2.07 Hz, arom.), 7.20–7.33
(6H, m, arom.), 5.63 (2H, s, -CH2-). 13C NMR (CDCl3, 75 MHz) δ 175.5, 158.2, 143.6, 138.5,
136.3, 135.2, 128.2, 127.0, 117.9, 117.4, 88.1, 48.8.

3.7.17. 6-Iodo-2-mercapto-3-(p-tolyl)quinazolin-4(3H)-one (7f)

White powder; mp = 350–351 ◦C; Rf = 0.87; 1H NMR (DMSO-d6, 300 MHz) δ 13.06 (1H,
s, -SH), 8.17 (1H, d, J = 1.47 Hz, arom.), 8.06–8.08 (1H, dd, J = 8.80, 2.20 Hz, arom.), 7.27 (2H,
d, J = 1.47 Hz, arom.), 7.24 (1H, d, J = 8.80 Hz, arom.), 7.12–7.13 (2H, d, J = 8.07 Hz, arom.),
2.37 (3H, s, -CH3). 13C NMR (CDCl3, 75 MHz) δ 176.1, 158.6, 143.6, 138.9, 137.5, 136.5, 135.2,
129.4, 128.5, 118.2, 117.9, 87.6, 20.8.
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3.7.18. 3-(4-Fluorophenyl)-6-iodo-2-mercaptoquinazolin-4(3H)-one (7g)

Pale yellow powder; mp = 349–350 ◦C; Rf = 0.77; 1H NMR (DMSO-d6, 300 MHz) δ
13.12 (1H, s, -SH), 8.17 (1H, d, J = 1.88 Hz, arom.), 8.06–8.09 (1H, dd, J = 8.48, 2.07 Hz,
arom.), 7.31–7.33 (3H, m, arom.), 7.23–7.26 (1H, m, arom.). 13C NMR (CDCl3, 75 MHz) δ
176.1, 163.2, 159.9, 158.6, 143.8, 138.9, 135.3, 131.1, 118.2, 117.9, 115.9, 115.7, 87.7, 20.8.

3.7.19. 3-(4-Chlorophenyl)-6-iodo-2-mercaptoquinazolin-4(3H)-one (7h)

Pale yellow powder; mp = 337–339 ◦C (320–321 ◦C [29]); Rf = 0.84; 1H NMR (DMSO-d6,
300 MHz) δ 13.14 (1H, s, -SH), 8.17 (1H, d, J = 1.88 Hz, arom.), 8.06–8.09 (1H, dd, J = 8.67,
1.88 Hz, arom.), 7.53–7.56 (2H, d, J = 8.67 Hz, arom.), 7.31–7.34 (2H, d, J = 8.67 Hz, arom.),
7.23–7.26 (1H, d, J = 8.29 Hz, arom.). 13C NMR (CDCl3, 75 MHz) δ 175.9, 158.5, 143.6, 138.9,
138.0, 135.2, 132.8, 130.9, 129.0, 118.2, 117.9, 87.7.

3.7.20. 3-(4-Bromophenyl)-6-iodo-2-mercaptoquinazolin-4(3H)-one (7i)

White powder; mp = 355–357 ◦C; Rf = 0.87; 1H NMR (DMSO-d6, 300 MHz) δ 13.14
(1H, s, -SH), 8.17 (1H, d, J = 1.88 Hz, arom.), 8.07–8.10 (1H, dd, J = 8.48, 2.07 Hz, arom.),
7.67–7.70 (2H, m, arom.), 7.22–7.27 (3H, m, arom.). 13C NMR (CDCl3, 75 MHz) δ 175.8,
158.5, 143.6, 138.9, 138.5, 135.2, 132.1, 131.3, 121.4, 118.2, 117.9, 99.5, 87.7.

3.7.21. 6-Iodo-2-mercapto-3-(3-methoxyphenyl)quinazolin-4(3H)-one (7j)

White powder; mp = 314 ◦C; Rf = 0.71; 1H NMR (DMSO-d6, 300 MHz) δ 13.08 (1H, s,
-SH), 8.17 (1H, d, J = 1.88 Hz, arom.), 8.06–8.09 (1H, dd, J = 8.67, 2.26 Hz, arom.), 7.36–7.41
(1H, m, arom.), 7.22–7.25 (1H, d, J = 8.67 Hz, arom.), 7.00 (1H, dd, J = 8.10, 2.07 Hz, arom.),
6.84–6.90 (1H, t, J = 2.07 Hz, arom.), 6.85 (1H, d, J = 7.54 Hz, arom.), 3.76 (3H, s, -OCH3).
13C NMR (CDCl3, 75 MHz) δ 175.9, 159.8, 158.4, 143.6, 140.1, 138.9, 135.2, 129.6, 121.1, 117.9,
114.8, 113.7, 87.7, 55.3.

3.7.22. 3-(3-Chlorophenyl)-6-iodo-2-mercaptoquinazolin-4(3H)-one (7k)

White powder; mp = 313–314 ◦C; Rf = 0.83; 1H NMR (DMSO-d6, 300 MHz) δ 13.15
(1H, s, -SH), 8.18 (1H, d, J = 1.88 Hz, arom.), 8.07–8.10 (1H, dd, J = 8.67, 1.88 Hz, arom.),
7.46–7.52 (3H, m, arom.), 7.23–7.31 (2H, m, arom.). 13C NMR (CDCl3, 75 MHz) δ 175.8,
158.5, 143.7, 140.4, 139.1, 135.2, 132.9, 130.5, 129.12, 128.4, 128.0, 118.2, 117.9, 87.8.

3.7.23. 6-Bromo-2-mercapto-3-methylquinazolin-4(3H)-one (8a)

White powder; mp = 280–281 ◦C (270 ◦C [49]); Rf = 0.81; 1H NMR (DMSO-d6, 300 MHz)
δ 13.02 (1H, s, -SH), 7.99 (1H, d, J = 1.88 Hz, arom.), 7.89 (1H, dd, J = 8.67, 2.26 Hz, arom.),
7.31–7.33 (1H, d, J = 8.67 Hz, arom.), 3.63 (3H, s, -CH3). 13C NMR (CDCl3, 75 MHz) δ 175.3,
158.5, 138.1, 137.9, 129.1, 118.1, 116.9, 115.9, 33.3.

3.7.24. 6-Bromo-3-ethyl-2-mercaptoquinazolin-4(3H)-one (8b)

White powder; mp = 243–244 ◦C; Rf = 0.88; 1H NMR (DMSO-d6, 300 MHz) δ 12.99
(1H, s, -SH), 7.99 (1H, d, J = 1.88 Hz, arom.), 7.86–7.89 (1H, dd, J = 8.67, 2.26 Hz, arom.),
7.29–7.33 (1H, d, J = 8.67 Hz, arom.), 4.38–4.45 (2H, q, J = 6.78 Hz, -CH2-), 1.19–1.24 (3H, t,
J = 6.97, -CH3). 13C NMR (CDCl3, 75 MHz) δ 175.3, 158.5, 138.1, 137.9, 129.1, 118.1, 116.9,
115.9, 33.3.

3.7.25. 3-Allyl-6-bromo-2-mercaptoquinazolin-4(3H)-one (8c)

White powder; mp = 242–243 ◦C; Rf = 0.85; 1H NMR (DMSO-d6, 300 MHz) δ 13.06
(1H, s, -SH), 8.02 (1H, d, J = 2.26 Hz, arom.), 7.89–7.93 (1H, dd, J = 8.85, 2.07 Hz, arom.),
7.32–7.35 (1H, d, J = 8.67 Hz, arom.), 5.90 (1H, qd, J = 10.99, 5.09 Hz, -CH=), 5.16–5.19 (2H,
m, J = 6.97 Hz, -CH2-), 5.01 (2H, d, J = 5.27, =CH2). 13C NMR (CDCl3, 75 MHz) δ 175.3,
158.5, 138.1, 137.9, 129.1, 118.1, 116.9, 115.9, 33.3.
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3.7.26. 6-Bromo-2-mercapto-3-phenylquinazolin-4(3H)-one (8d)

White powder; mp = 351–353 ◦C (322 ◦C [49]); Rf = 0.76; 1H NMR (DMSO-d6, 300 MHz)
δ 13.14 (1H, s, -SH), 8.01 (1H, d, J = 2.26 Hz, arom.), 7.93–7.97 (1H, dd, J = 9.04, 2.26 Hz,
arom.), 7.38–7.51 (4H, m, arom.), 7.26–7.29 (2H, d, J = 7.16 Hz, arom.). 13C NMR (CDCl3,
75 MHz) δ 176.1, 158.7, 139.1, 138.2, 129.3, 128.9, 128.8, 128.2, 118.1, 115.9.

3.7.27. 3-Benzyl-6-bromo-2-mercaptoquinazolin-4(3H)-one (8e)

White powder; mp = 244 ◦C; Rf = 0.88; 1H NMR (DMSO-d6, 300 MHz) δ 13.16 (1H, s,
-SH), 8.01 (1H, d, J = 1.88 Hz, arom.), 7.90–7.94 (1H, dd, J = 8.67, 2.26 Hz, arom.), 7.22–7.38
(6H, m, arom.), 5.65 (2H, d, J = 7.16 Hz, -CH2-). 13C NMR (CDCl3, 75 MHz) δ 175.5, 158.4,
138.2, 136.3, 129.39, 128.2, 127.1, 126.9, 118.1, 117.2, 116.2, 48.8.

3.7.28. 6-Bromo-2-mercapto-3-(p-tolyl)quinazolin-4(3H)-one (8f)

White powder; mp = 341–342 ◦C (> 300 ◦C [56]); Rf = 0.82; 1H NMR (DMSO-d6,
300 MHz) δ 13.10 (1H, s, -SH), 8.01 (1H, d, J = 2.20 Hz, arom.), 7.93–7.95 (1H, dd, J = 8.80,
2.20 Hz, arom.), 7.37–7.39 (1H, d, J = 8.80 Hz, arom.), 7.26–7.28 (1H, d, J = 8.07 Hz, arom.),
7.12–7.14 (2H, m, arom.), 2.37 (3H, s, -CH3). 13C NMR (CDCl3, 75 MHz) δ 176.2, 158.7, 138.7,
138.1, 137.5, 136.5, 129.4, 128.5, 118.1, 117.9, 115.8, 20.8.

3.7.29. 6-Bromo-3-(4-fluorophenyl)-2-mercaptoquinazolin-4(3H)-one (8g)

White powder; mp = 354–355 ◦C; Rf = 0.81; 1H NMR (DMSO-d6, 300 MHz) δ 13.15 (1H,
s, -SH), 8.01 (1H, d, J = 2.26 Hz, arom.), 7.94–7.97 (1H, dd, J = 8.85, 2.45 Hz, arom.), 7.31–7.41
(5H, m, arom.). 13C NMR (CDCl3, 75 MHz) δ 176.1, 163.2, 159.9, 158.8, 138.7, 138.3, 135.3,
131.3, 130.8, 129.3, 118.1, 115.9, 115.6.

3.7.30. 6-Bromo-3-(4-chlorophenyl)-2-mercaptoquinazolin-4(3H)-one (8h)

White powder; mp = 344–345 ◦C; Rf = 0.81; 1H NMR (DMSO-d6, 300 MHz) δ 13.175 (1H,
s, -SH), 8.01 (1H, d, J = 2.20 Hz, arom.), 7.94–7.96 (1H, dd, J = 8.80, 2.40 Hz, arom.), 7.54–7.56
(2H, m, arom.), 7.38–7.40 (1H, m, arom.), 7.32–7.34 (2H, m, arom.). 13C NMR (CDCl3, 75 MHz)
δ 175.8, 158.7, 138.7, 138.2, 137.9, 132.8, 130.9, 129.3, 129.0, 118.1, 118.0, 115.9.

3.7.31. 6-Bromo-3-(4-bromophenyl)-2-mercaptoquinazolin-4(3H)-one (8i)

White powder; mp = 349–350 ◦C; Rf = 0.77; 1H NMR (DMSO-d6, 300 MHz) δ 13.18 (1H,
s, -SH), 8.02 (1H, d, J = 2.26 Hz, arom.), 7.94–7.98 (1H, dd, J = 8.67, 2.26 Hz, arom.), 7.67–7.70
(2H, m, arom.), 7.41 (1H, d, J = 9.04 Hz, arom.), 7.26–7.29 (2H, d, J = 8.29 Hz, arom.). 13C
NMR (CDCl3, 75 MHz) δ 175.8, 158.7, 138.7, 138.2, 137.9, 132.8, 130.9, 129.3, 129.0, 118.1,
118.0, 115.9.

3.7.32. 6-Bromo-2-mercapto-3-(3-methoxyphenyl)quinazolin-4(3H)-one (8j)

White powder; mp = 312–313 ◦C; Rf = 0.73; 1H NMR (DMSO-d6, 300 MHz) δ 13.11
(1H, s, -SH), 8.00 (1H, d, J = 2.20 Hz, arom.), 7.93–7.95 (1H, dd, J = 8.80, 2.20 Hz, arom.),
7.37–7.40 (2H, m, arom.), 6.99 (1H, dd, J = 8.07, 2.20 Hz, arom.), 6.90 (1H, t, J = 2.20, 2.20 Hz,
arom.), 6.84–6.86 (1H, m, arom.), 3.76 (3H, s, -OCH3). 13C NMR (CDCl3, 75 MHz) δ 175.9,
159.8, 158.6, 140.1, 138.7, 138.1, 129.6, 129.2, 121.1, 118.1, 118.0, 115.8, 114.8, 113.7, 55.2.

3.7.33. 6-Bromo-3-(3-chlorophenyl)-2-mercaptoquinazolin-4(3H)-one (8k)

White powder; mp = 305–307 ◦C; Rf = 0.81; 1H NMR (DMSO-d6, 300 MHz) δ 13.19
(1H, s, -SH), 8.01 (1H, dd, J = 8.67, 2.26 Hz, arom.), 7.95–7.98 (1H, m, arom.), 7.47–7.52 (3H,
m, arom.), 7.38–7.41 (1H, d, J = 8.67 Hz, arom.), 7.28–7.30 (1H, dt, J = 6.69, 1.93, 1.93 Hz,
arom.). 13C NMR (CDCl3, 75 MHz) δ 175.8, 158.7, 140.3, 138.7, 138.4, 138.2, 132.9, 130.6,
129.2, 128.3, 127.8, 118.1, 115.9.
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3.7.34. 7-Chloro-2-mercapto-3-methylquinazolin-4(3H)-one (9a)

White powder; mp = 327–328 ◦C; Rf = 0.87; 1H NMR (DMSO-d6, 300 MHz) δ 12.99
(1H, s, -SH), 7.96 (1H, d, J = 8.07 Hz, arom.), 7.40 (1H, d, J = 1.47 Hz, arom.), 7.37 (1H, dd,
J = 8.44, 1.83 Hz, arom.), 3.64 (3H, s, -CH3). 13C NMR (CDCl3, 75 MHz) δ 175.8, 158.9, 139.9,
139.7, 129.5, 124.6, 114.9, 114.2, 33.3.

3.7.35. 7-Chloro-3-ethyl-2-mercaptoquinazolin-4(3H)-one (9b)

White powder; mp = 265 ◦C; Rf = 0.91; 1H NMR (DMSO-d6, 300 MHz) δ 12.91 (1H,
s, -SH), 7.90–7.93 (1H, d, J = 8.67 Hz, arom.), 7.31–7.35 (2H, m, arom.), 4.38–4.44 (2H, q,
J = 6.78 Hz, -CH2-), 1.19–1.23 (3H, t, J = 6.78 Hz, -CH3). 13C NMR (CDCl3, 75 MHz) δ 175.2,
158.3, 139.8, 139.7, 129.3, 124.6, 124.5, 114.9, 114.4, 41.3, 11.8.

3.7.36. 3-Allyl-7-chloro-2-mercaptoquinazolin-4(3H)-one (9c)

White powder; mp = 248–249 ◦C; Rf = 0.89; 1H NMR (DMSO-d6, 300 MHz) δ 12.99
(1H, s, -SH), 7.92–7.94 (1H, d, J = 8.67 Hz, arom.), 7.33–7.38 (2H, m, arom.), 5.88–5.90 (1H,
m, -CH=), 5.13–5.19 (2H, m, -CH2-), 4.99–5.02 (2H, d, J = 4.90 Hz, =CH2). 13C NMR (CDCl3,
75 MHz) δ 175.5, 158.3, 139.8, 129.6, 129.3, 117.0, 115.0, 114.3, 47.8.

3.7.37. 7-Chloro-2-mercapto-3-phenylquinazolin-4(3H)-one (9d)

White powder; mp = 313 ◦C (288–289 ◦C [51]); Rf = 0.84; 1H NMR (DMSO-d6, 300 MHz)
δ 13.08 (1H, s, -SH), 7.93–7.96 (1H, d, J = 8.67 Hz, arom.), 7.36–7.51 (5H, m, arom.), 7.27–7.29
(2H, m,arom.). 13C NMR (CDCl3, 75 MHz) δ 176.5, 158.3, 140.4, 139.9, 139.0, 129.6, 128.9,
128.2, 124.4, 115.2, 114.9.

3.7.38. 3-Benzyl-7-chloro-2-mercaptoquinazolin-4(3H)-one (9e)

White powder; mp = 270–272 ◦C (255–257 ◦C [51]); Rf = 0.90; 1H NMR (DMSO-d6,
300 MHz) δ 13.09 (1H, s, -SH), 7.93–7.96 (1H, d, J = 8.29 Hz, arom.), 7.23–7.42 (7H, m, arom.),
5.63 (2H, s, -CH2-). 13C NMR (CDCl3, 75 MHz) δ 175.9, 158.3, 136.3, 129.5, 128.3, 128.2,
127.2, 127.1, 124.6, 115.0, 114.3, 48.7.

3.7.39. 7-Chloro-2-mercapto-3-(p-tolyl)quinazolin-4(3H)-one (9f)

White powder; mp = 307–309 ◦C (278–280 ◦C [51]); Rf = 0.87; 1H NMR (DMSO-d6,
300 MHz) δ 13.05 (1H, s, -SH), 7.92–7.95 (1H, d, J = 8.67 Hz, arom.), 7.45 (1H, d, J = 1.88 Hz,
arom.), 7.35–7.38 (1H, dd, J = 8.29, 1.88 Hz, arom.), 7.26–7.29 (2H, d, J = 8.29 Hz, arom.),
7.13–7.15 (2H, d, J = 8.29 Hz, arom.), 2.37 (3H, s, -CH3). 13C NMR (CDCl3, 75 MHz) δ 176.6,
158.3, 140.4, 139.8, 137.5, 136.5, 129.8, 129.6, 128.5, 124.3, 115.1, 114.9, 20.8.

3.7.40. 7-Chloro-3-(4-fluorophenyl)-2-mercaptoquinazolin-4(3H)-one (9g)

White powder; mp = 314–315 ◦C; Rf = 0.86; 1H NMR (DMSO-d6, 300 MHz) δ 13.09
(1H, s, -SH), 7.93–7.95 (1H, d, J = 8.67 Hz, arom.), 7.55 (2H, d, J = 8.67 Hz, arom.), 7.46 (1H,
d, J = 1.51 Hz, arom.), 7.33–7.37 (3H, m, arom.). 13C NMR (CDCl3, 75 MHz) δ 176.6, 163.2,
159.9, 159.2, 140.3, 139.9, 135.2, 131.5, 130.8, 129.6, 129.4, 124.4, 116.1, 115.9, 114.9, 114.7.

3.7.41. 7-Chloro-3-(4-chlorophenyl)-2-mercaptoquinazolin-4(3H)-one (9h)

White powder; mp = 302–303 ◦C (296 ◦C [53]); Rf = 0.88; 1H NMR (DMSO-d6, 300 MHz)
δ 13.12 (1H, s, -SH), 7.93–7.96 (1H, d, J = 8.67 Hz, arom.), 7.67–7.69 (2H, d, J = 8.67 Hz,
arom.), 7.45 (1H, d, J = 1.51 Hz, arom.), 7.33–7.39 (3H, m, arom.). 13C NMR (CDCl3, 75 MHz)
δ 176.4, 159.1, 140.4, 137.9, 132.9, 130.9, 129.0, 124.4, 115.0.

3.7.42. 3-(4-Bromophenyl)-7-chloro-2-mercaptoquinazolin-4(3H)-one (9i)

White powder; mp = 320–322 ◦C; Rf = 0.88; 1H NMR (DMSO-d6, 300 MHz) δ 13.12
(1H, s, -SH), 7.93–7.96 (1H, d, J = 8.67 Hz, arom.), 7.67–7.70 (2H, d, J = 8.67 Hz, arom.), 7.46
(1H, d, J = 1.51 Hz, arom.), 7.36–7.39 (1H, dd, J = 8.67, 1.88 Hz, arom.), 7.26–7.29 (2H, d,
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J = 8.67 Hz, arom.). 13C NMR (CDCl3, 75 MHz) δ 176.3, 159.1, 140.4, 139.9, 138.4, 131.9,
131.3, 129.6, 124.4, 121.4, 115.2, 114.9.

3.7.43. 7-Chloro-2-mercapto-3-(3-methoxyphenyl)quinazolin-4(3H)-one (9j)

White powder; mp = 256–257 ◦C; Rf = 0.87; 1H NMR (DMSO-d6, 300 MHz) δ 13.06
(1H, s, -SH), 7.93–7.96 (1H, d, J = 8.67 Hz, arom.), 7.46 (1H, d, J = 1.88 Hz, arom.), 7.35–7.38
(2H, m, arom.), 6.99 (1H, dd, J = 8.29, 1.88 Hz, arom.), 6.90–6.92 (1H, t, J = 2.07, 2.07 Hz,
arom.), 6.84–6.86 (2H, m, arom.), 3.75 (3H, s, -CH3). 13C NMR (CDCl3, 75 MHz) δ 176.4,
159.8, 159.0, 140.4, 140.0, 139.9, 129.6, 124.3, 121.1, 115.2, 115.0, 114.9, 113.6, 55.0.

3.7.44. 7-Chloro-3-(3-chlorophenyl)-2-mercaptoquinazolin-4(3H)-one (9k)

White powder; mp = 248–249 ◦C; Rf = 0.88; 1H NMR (DMSO-d6, 300 MHz) δ 13.13
(1H, s, -SH), 7.93–7.96 (1H, d, J = 8.67 Hz, arom.), 7.46–7.52 (5H, m, arom.), 7.37–7.40 (1H,
d, arom.), 7.29–7.31 (1H, dd, J = 8.29, 1.88 Hz, arom.). 13C NMR (CDCl3, 75 MHz) δ 176.3,
159.1, 140.4, 139.9, 132.9, 130.5, 129.6, 129.1, 128.3, 128.0, 127.8, 124.4, 115.2, 115.1, 99.5.

3.7.45. 6,8-Dichloro-2-mercapto-3-methylquinazolin-4(3H)-one (10a)

Pale yellow powder; mp = 246 ◦C; Rf = 0.91; 1H NMR (DMSO-d6, 300 MHz) δ 11.86
(1H, s, -SH), 8.07 (1H, d, J = 2.93 Hz, arom.), 7.90 (1H, d, J = 2.93 Hz, arom.), 3.65 (3H, s,
-CH3). 13C NMR (CDCl3, 75 MHz) δ 175.8, 157.9, 135.0, 134.6, 128.1, 125.6, 119.9, 118.2, 33.8.

3.7.46. 6,8-Dichloro-3-ethyl-2-mercaptoquinazolin-4(3H)-one (10b)

White needles; mp = 184 ◦C; Rf = 0.89; 1H NMR (DMSO-d6, 300 MHz) δ 11.75 (1H,
s, -SH), 8.05 (1H, d, J = 2.26 Hz, arom.), 7.88 (1H, d, J = 2.26 Hz, arom.), 4.43–4.45 (2H, q,
J = 6.78 Hz, -CH2-), 1.21–1.25 (3H, t, J = 6.97 Hz, -CH3). 13C NMR (CDCl3, 75 MHz) δ 175.2,
157.3, 134.9, 134.7, 128.2, 125.6, 125.4, 119.8, 118.4, 41.8, 11.6.

3.7.47. 3-Allyl-6,8-dichloro-2-mercaptoquinazolin-4(3H)-one (10c)

White powder; mp = 179 ◦C; Rf = 0.88; 1H NMR (DMSO-d6, 300 MHz) δ 11.84 (1H, s,
-SH), 8.06 (1H, d, J = 2.20 Hz, arom.), 7.89 (1H, d, J = 2.93 Hz, arom.), 5.86–5.92 (1H, ddt,
J = 16.96, 10.36, 5.41 Hz, -CH=), 5.17–5.20 (2H, m, -CH2-), 5.03 (2H, m, =CH2). 13C NMR
(CDCl3, 75 MHz) δ 175.4, 157.3, 135.1, 134.8, 131.2, 128.2, 125.6, 119.9, 118.2, 117.3, 48.1.

3.7.48. 6,8-Dichloro-2-mercapto-3-phenylquinazolin-4(3H)-one (10d)

White powder; mp = 283–285 ◦C; Rf = 0.89; 1H NMR (DMSO-d6, 300 MHz) δ 11.98
(1H, s, -SH), 8.11 (1H, d, J = 2.26 Hz, arom.), 7.89 (1H, d, J = 2.26 Hz, arom.), 7.42–7.52 (3H,
m, arom.), 7.27–7.29 (2H, d, J = 7.16 Hz, arom.). 13C NMR (CDCl3, 75 MHz) δ 176.6, 158.1,
139.1, 135.6, 134.8, 129.0, 128.7, 125.7, 119.9.

3.7.49. 3-Benzyl-6,8-dichloro-2-mercaptoquinazolin-4(3H)-one (10e)

White powder; mp = 206–208 ◦C; Rf = 0.93; 1H NMR (DMSO-d6, 300 MHz) δ 11.94
(1H, s, -SH), 8.07 (1H, d, J = 2.26 Hz, arom.), 7.89 (1H, m, arom.), 7.23–7.34 (5H, m, arom.),
5.67 (2H, s, J = 7.16 Hz, -CH2-). 13C NMR (CDCl3, 75 MHz) δ 175.9, 157.8, 135.9, 134.9, 128.3,
127.1, 125.7, 120.0, 118.3, 49.2.

3.7.50. 6,8-Dichloro-2-mercapto-3-(p-tolyl)quinazolin-4(3H)-one (10f)

White powder; mp = 244 ◦C; Rf = 0.81; 1H NMR (DMSO-d6, 300 MHz) δ 11.93 (1H,
s, -SH), 8.10 (1H, d, J = 2.26 Hz, arom.), 7.87 (1H, d, J = 2.64 Hz, arom.), 7.27–7.30 (2H,
d, J = 8.29 Hz, arom.), 7.13–7.16 (2H, d, J = 8.29 Hz, -CH2-), 2.37 (3H, s, -CH3). 13C NMR
(CDCl3, 75 MHz) δ 176.7, 158.1, 137.6, 136.5, 135.5, 134.8, 129.6, 128.4, 128.1, 125.7, 119.9,
119.3, 20.8.
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3.7.51. 6,8-Dichloro-3-(4-fluorophenyl)-2-mercaptoquinazolin-4(3H)-one (10g)

White powder; mp = 268–269 ◦C; Rf = 0.88; 1H NMR (DMSO-d6, 300 MHz) δ 12.04
(1H, s, -SH), 8.11 (1H, d, J = 2.26 Hz, arom.), 7.88 (1H, d, J = 2.26 Hz, arom.), 7.33–7.35 (4H,
m, arom.). 13C NMR (CDCl3, 75 MHz) δ 176.7, 163.2, 160.0, 158.2, 135.5, 134.9, 130.9, 128.1,
125.7, 119.9, 119.3, 116.1, 115.8.

3.7.52. 6,8-Dichloro-3-(4-chlorophenyl)-2-mercaptoquinazolin-4(3H)-one (10h)

White powder; mp = 259–260 ◦C; Rf = 0.89; 1H NMR (DMSO-d6, 300 MHz) δ 12.07
(1H, s, -SH), 8.11 (1H, d, J = 2.93 Hz, arom.), 7.88 (1H, d, J = 2.20 Hz, arom.), 7.56 (2H, m,
arom.), 7.33–7.34 (2H, m, arom.). 13C NMR (CDCl3, 75 MHz) δ 176.5, 158.0, 138.0, 135.6,
134.9, 132.9, 130.8, 129.1, 128.9, 125.7, 119.9, 119.3.

3.7.53. 3-(4-Bromophenyl)-6,8-dichloro-2-mercaptoquinazolin-4(3H)-one (10i)

White powder; mp = 280–282 ◦C; Rf = 0.80; 1H NMR (DMSO-d6, 300 MHz) δ 12.07
(1H, s, -SH), 8.11 (1H, d, J = 2.20 Hz, arom.), 7.88 (1H, d, J = 2.20 Hz, arom.), 7.68–7.70 (2H,
m, arom.), 7.26–7.28 (2H, m, arom.). 13C NMR (CDCl3, 75 MHz) δ 176.4, 158.0, 138.5, 135.5,
134.9, 132.1, 131.9, 131.2, 131.1, 128.1, 125.7, 121.5, 119.9, 119.3.

3.7.54. 6,8-Dichloro-2-mercapto-3-(3-methoxyphenyl)quinazolin-4(3H)-one (10j)

White powder; mp = 219–220 ◦C; Rf = 0.85; 1H NMR (DMSO-d6, 300 MHz) δ 11.97 (1H,
s, -SH), 8.11 (1H, d, J = 2.26 Hz, arom.), 7.88 (1H, d, J = 2.26 Hz, arom.), 7.39 (1H, m, arom.),
6.91 (1H, m, arom.), 6.87 (2H, m, arom.), 3.76 (3H, s, -OCH3). 13C NMR (CDCl3, 75 MHz) δ
176.4, 159.8, 157.9, 140.1, 135.5, 134.9, 129.7, 125.7, 121.0, 120.9, 119.3, 114.3, 113.8, 55.2.

4. Conclusions

DESs were found to be good solvents for catalyst-free synthesis of 2-mercaptoquinazolin-
4(3H)-ones. Twenty different DESs were screened for their ability to serve as a solvent in the
reaction of anthranilic acid and isothicyanates and the most effective solvent was proven to
be choline chloride:urea (1:2). DESs were combined with microwave-promoted synthesis
and ultrasound promoted synthesis, but the best method was found to be a simple stirring
at 80 ◦C. Fifty-five different 2-mercaptoquinazolin-4(3H)-ones were synthesized using this
simple method. The importance of using these methods towards conventional ones is
manifested in a shorter reaction time, simplicity of operation, no use of catalysts and no
need for product purification.

Supplementary Materials: The following supporting information can be downloaded. 1H and 13C
NMR spectra of the synthesized compounds.
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