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Abstract: Alzheimer’s Disease (AD) is a common neurodegenerative disorder characterized by
memory loss and cognitive impairment. Its pathology has not been fully clarified and therefore
highly effective treatments have not been obtained yet. Almost all the current treatment options aim to
alleviate only the symptoms and not to eliminate the disease itself. Acetylcholinesterase inhibitors are
the main therapeutic agents against AD, whereas oxidative stress and inflammation have been found
to be of great significance for the development and progression of neurodegeneration. In this work,
ethyl nipecotate (ethyl-piperidine-3-carboxylate), a heterocyclic carboxylic acid derivative, which
acts as a GABA reuptake inhibitor and has been used in research for diseases involving GABAergic
neurotransmission dysfunction, was amidated with various carboxylic acids bearing antioxidant
and/or anti-inflammatory properties (e.g., ferulic acid, sinapic acid, butylated hydroxycinnamic acid).
Most of our compounds have significant antioxidant potency as lipid peroxidation inhibitors (IC50

as low as 20 µM), as oxidative protein glycation inhibitors (inhibition up to 57%), and act as DPPH
reducing agents. Moreover, our compounds are moderate LOX inhibitors (up to 33% at 100 µM) and
could reduce rat paw edema induced by carrageenan by up to 61%. Finally, some of them possessed
inhibitory activity against acetylcholinesterase (IC50 as low as to 47 µM). Our results indicate that our
compounds could have the potentiality for further optimization as multi-targeting agents directed
against AD.

Keywords: Alzheimer’s Disease; multi-targeting compounds; nipecotic acid; oxidative stress;
inflammation; acetylcholinesterase inhibitors

1. Introduction

Alzheimer’s Disease (AD) is the most prevalent neurodegenerative disorder, affecting
millions of people all over the world [1]. It is an age-related disease, characterized by
symptoms such as memory deficiency, cognitive impairment, and various behavioural
symptoms [2]. Its main histopathological lesions include extracellular aggregates of Aβ

amyloid peptide, deriving from amyloid precursor protein (APP) cleavage and intracellular
neurofibrillary tangles (NFTs) from hyperphosphorylated tau protein aggregation [3]. Both
amyloid deposits and NFTs induce neurotoxicity, neurodegeneration, and dysfunction of
synapses [4]. Although significant progress in understanding AD pathophysiology has
been made, the mechanisms that lead to initiation and development of AD have not been
fully clarified. Therefore, most of the treatment options concern the symptomatic alleviation
and not the elimination of the disease itself. Oxidative stress has been found to play a key
role in neuronal degeneration. Toxicity of oxygen can lead to various dysfunctions in the
Central Nervous System (CNS), since about 20% of the respirated oxygen is consumed by
the brain [5]. Beta- and gamma-secretase function is induced by oxidative stress; therefore,
amyloid peptide aggregation increases [6]. In addition, advanced glycation end-products
(AGEs), formed due to extensive oxidative damage, increase amyloid precursor protein
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(APP) concentration and thus amyloid plaque formation, modulate tau protein phosphory-
lation, and induce gene expression leading to cell apoptosis [7]. Mitochondrial dysfunction,
deriving from oxidative stress has been indicated as an underlying mechanism for AD
pathology, and is highly associated with cell death, tau protein hyperphosphorylation, and
neurodegeneration [8,9]. Finally, excitotoxicity caused by hyperactivity of N-methyl-D-
aspartate (NMDA) receptors, leads to elevated Ca2+ levels, reactive oxygen species (ROS)
production, and thus to cell dysfunction and death [10].

Inflammation is another mechanism involved in AD progression. Acute inflammation
is associated with neuroprotection, whereas chronic inflammation causes neurotoxicity
through cytokines release and ROS production [11]. Activation of microglial cells and astro-
cytes is responsible for functional and structural changes in brain cells, leading to apoptosis
and neurodegeneration [12]. Prostaglandins, formed by arachidonic acid cleavage mediated
by Cyclooxygenase (COX), are considered key factors in AD development [13]. Especially
PGE2 has been found to inhibit phagocytosis of β-amyloid peptides and enhances neuro-
toxic activity of microglia [14]. Moreover, both amyloid plaques and NFT formation are
highly associated with lipoxygenase (LOX) activity, which has been found to increase with
age [15].

According to the cholinergic hypothesis, cholinergic neuron depletion, and the sub-
sequent decrease in cholinergic neurotransmission, contribute to memory and cognitive
impairment during AD [16]. Low concentrations of acetylcholine (Ach) have been ob-
served in brains of patients with AD, and increase of the neurotransmitter levels through
acetylcholinesterase (AchE) inhibition has proved useful for symptom amelioration [17].
Failure to treat AD effectively using AchE inhibitors has led to cholinergic hypothesis
reconsideration and deeper study of the relations of AchE with other factors participating
in AD pathogenesis, such as deposition of amyloid plaques and NFT formation [18–21].

Considering all the above-mentioned evidence, and following the multi-targeting
molecules strategy [22], we propose that compounds with antioxidant and/or anti-infla
mmatory properties could enhance the effort for obtaining more effective treatment op-
tions for AD [23]. With this aim, we designed and synthesized a series of heterocyclic
compounds by amidation of ethyl piperidine-3-carboxylate (ethyl nipecotate) with various
carboxylic acids. Nipecotic acid acts as a GABA reuptake inhibitor and has been used
in research for diseases involving GABAergic neurotransmission dysfunction [24]. Car-
boxylic acids, used as raw materials for synthesis of our compounds, include derivatives of
butylate hydroxytoluene (BHT), a widely used antioxidant compound in nutritional and
pharmaceutical products. In particular, 3,5-di-tert-butyl-4-hydroxybenzoic acid (BHBA)
and ((E)-3,5-di-tert-butyl-4-hydroxyphenyl)acrylic acid (BHCA) were used for the synthesis
of Compounds 1 and 2 respectively. ((E)-3-methoxy-4-hydroxyphenyl)acrylic acid (ferulic
acid, for Compound 3) and ((E)-3,5-dimethoxy-4-hydroxyphenyl)acrylic acid (sinapic acid,
for Compound 4) demonstrate neuroprotective effect in cell cultures, mainly due to their
antioxidant potency [25,26]. Finally, Compounds 5 and 6 were synthesized from carboxylic
acid without presumed antioxidant activity (((E)-3,4-dimethoxy-phenyl)acrylic acid and
cinnamic acid respectively), but due to the phenylacrylic residue, they are expected to
possess anti-inflammatory properties [27].

All the synthesized compounds (Figure 1) were evaluated for their antioxidant proper-
ties through their capacity to inhibit rat hepatic microsomal membrane lipid peroxidation
and their reducing activity towards the stable free radical 2,2-diphenyl-1-picrylhydrazyl
(DPPH). Furthermore, their activity against fructose-induced protein glycation, was tested.
Their inhibitory activity against acetylcholinesterase, soybean lipoxygenase, and their effect
on carrageenan-induced rat paw oedema were also evaluated.
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Figure 1. Structures of the synthesized compounds.

2. Results

The designed compounds were examined for their inhibitory activity against rat
hepatic microsomal membrane lipid peroxidation, induced by Fe2+/ascorbic acid and
estimated as 2-thiobarbituric acid (TBA) reactive material. The IC50 values of compounds
after 45 min of incubation are shown in Table 1.

Table 1. IC50 values of Compounds 1–6 and trolox against lipid peroxidation.

Compound IC50 (µM)

1 39
2 20
3 160
4 47
5 -
6 -

Trolox 25
After 45 min incubation. Trolox: 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid. All determinations
were performed at least in triplicate and the standard deviation was always within ±10% of the mean value,
-: inactive. SEM values were between 0.004–0.010.
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The effect of Compound 2 (the most active compound) on lipid peroxidation as a
function of time is shown in Figure 2.
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Figure 2. Time course of lipid peroxidation, as affected by Compound 2 (various concentrations).

The antioxidant activity of our compounds was evaluated by their interaction with
the stable, N-centred 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical. The percent
interaction between the compounds and DPPH is shown in Table 2.

Table 2. Interaction of Compounds 1–6 and trolox, at various concentrations, with DPPH (200 µM).

Compound % Interaction with DPPH

200 µM 100 µM 50 µM

1 10 - -
2 89 50 33
3 69 37 27
4 84 47 32
5 - - -
6 - - -

Trolox 92 90 38
After 30 min incubation. Trolox: 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid. All determinations
were performed at least in triplicate and the standard deviation was always within ±10% of the mean value.
-: inactive. SEM values were between 0.003–0.008.

Compounds 2–4 interacted with DPPH at various concentrations. For Compounds 2
and 4, the reaction was quite fast, as it was completed during the first 5 min. Compound 3
reacted with DPPH more slowly since the reaction was almost complete after 20 min of
incubation (Figure 3).

Furthermore, the antioxidant potential of our compounds was examined by their
ability to inhibit oxidative protein glycation, induced by copper cations. The compounds
were dissolved in water, but a small amount of dimethylsulfoxide (DMSO) was used in
some cases, due to low water solubility. DMSO had no effect on the glycation process. The
inhibitory activity against protein glycation of Compounds 1–6 is shown in Table 3.
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Figure 3. Effect of Compounds 2–4.

Table 3. Percentage inhibition of Compounds 1–6 and aminoguanidine (concentration 1 mM) against
protein glycation.

Compound % Inhibition

1 -
2 31
3 57
4 41
5 -
6 -

Aminoguandine 56
After 72 h incubation. All determinations were performed at least in triplicate and the standard deviation was
always within ±10% of the mean value. -: inactive. SEM values were between 0.03–0.14.

The inhibitory activity of the designed compounds against acetylcholinesterase and
soybean lipoxygenase is shown in Table 4. AchE inhibition is expressed as IC50 value,
whereas LOX inhibition is expressed as % inhibitory activity (concentration 100 µM).
Physostigmine and nordihydroguairetic acid were used as reference compounds for AchE
and LOX inhibition, respectively.

Table 4. Inhibitory activity of Compounds 1–6 and reference compounds against acetylcholinesterase
(IC50) and LOX (% inhibition at 100 µM).

Compound IC50 (µM) (AchE) % Inhibition (LOX)

1 192 31
2 - 33
3 86 24
4 47 20
5 74 24
6 - 15

Reference Compound 0.15 94
After 7 min incubation for both experiments. All determinations were performed at least in triplicate and the
standard deviation was always within ±10% of the mean value. -: inactive. SEM values were between 0.04–0.09.

In addition, the anti-inflammatory effect of the compounds was evaluated in vivo by
their inhibition against carrageenan-induced rat paw oedema. The effect of the compounds
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on paw oedema, as well as the respective activity of some NSAIDs used as reference com-
pounds are shown in Table 5. The effect on paw edema was estimated as % edema reduction
compared to controls, which were administered only carrageenan. All compounds were
administered i.p. at 0.15 mmol/kg of body weight.

Table 5. Effect of Compounds 1–6, ibuprofen, and naproxen, on carrageenan-induced rat
paw oedema.

Compound % Oedema Reduction

1 55 **
2 61 ***
3 47 **
4 49 ***
5 37 ***
6 35 ***

Ibuprofen 36 *
Naproxen 11 *

Significant difference from control: * p < 0.01, ** p < 0.005, *** p < 0.001 (Student’s t test). SEM values were between
0.69–1.57.

Finally, some physicochemical parameters of the compounds are listed in Table 6. All
parameters were calculated using Molinspiration.

Table 6. Physicochemical parameters of Compounds 1–6, as calculated via Molinspiration.

Compound Molecular
Weight

Molecular
Volume milogP TPSA H-Bond

Donors
H-Bond

Acceptors
Rotatable

Bonds
Violations
(Lipinski)

1 389.54 390.73 4.96 66.84 1 5 6 0
2 415.57 418.14 6.08 66.84 1 5 7 1
3 333.38 311.31 2.37 76.08 1 6 6 0
4 363.41 336.86 2.38 85.31 1 7 7 0
5 347.41 328.84 2.67 65.08 0 6 7 0
6 287.36 277.75 3.03 46.61 0 4 5 0

3. Discussion

As shown in Scheme 1, ethyl piperidine-3-carboxylate was amidated with BHBA
(for Compound 1), BHCA (for Compound 2), ferulic acid (for Compound 3), sinapic
acid (for Compound 4), and (E)-3,4-dimethoxy-phenyl)acrylic acid (for Compound 5) using
N,N-dicyclohexylcarbodiimide (DCC) as a coupling agent and N,N-dimethyl-aminopyridine
(DMAP). We have previously reported the synthesis of similar amide derivatives using the
present synthetic procedure [28]. The reactions were performed using dichloromethane as a
solvent, but a small amount of N-N-dimethylformamide (DMF) was added for Compounds
3–5, because of low solubility of carboxylic acid, used as starting material. The expected
products were obtained after purification with flash column chromatography in yields
up to 82%. Compound 6 was synthesized by amidation of the commercially available
cinnamyl chloride with ethyl nipecotate in dichloromethane. It was obtained in high yield
(90%) after purification with flash column chromatography.

As for lipid peroxidation, Compounds 5 and 6 did not demonstrate any antioxidant
effect since their structures are not expected to offer them antioxidant capacity. Compound
2 was the most active, exerting similar lipid peroxidation inhibitory activity with trolox,
which is a vitamin E analogue with high antioxidant efficacy [29]. Compound 1 had also
inhibitory activity against lipid peroxidation, demonstrating half the activity of Compound
2. Both compounds were expected to possess antioxidant properties, since they are phenolic
compounds with high lipophilicity. In previous studies, we have reported BHBA and BHCA
derivatives, which could also inhibit lipid peroxidation, with lower or equal activity in
some cases compared with the present compounds [28,30]. The differences in the activity
may be associated with the relatively high lipophilicity of gabapentin derivatives [28] that
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leads to low dissolution under the experimental conditions, or the high polar surface area of
gamma-aminobutyric acid (GABA) derivatives [30], which may not allow the compounds
to effectively approach the microsomal membranes. Comparing Compounds 1 and 2,
the BHCA derivative demonstrated higher antioxidant activity, which can be attributed
to the more extended stabilization of the phenolic radical in the phenylacrylic moiety.
Compound 3 was not as active as the other compounds, probably because the methoxy
substituent has a lower electron donating effect than the di-tert-butyl group. Moreover, its
lower inhibitory activity may be attributed to the low lipophilicity, which does not allow
an effective approach to the lipid environment of microsomal membranes. Finally, the
mesomeric effect of the two methoxy substituents in Compound 4 leads to a more stable
phenolic radical compared with the monomethoxy substituent in Compound 3; therefore,
the sinapic acid derivative (Compound 4) was more active against lipid peroxidation than
the ferulic derivative (Compound 3).
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Scheme 1. Synthesis of Compounds 1–6.

In addition, Compounds 2–4 could interact with DPPH even at low concentrations
(50 µM, 1/4 of DPPH concentration). Compound 2 was found to be the most active since it
had similar activity with trolox at 200 µM (equal concentration to DPPH). Its high lipophilic-
ity allows it to approach DPPH effectively and interact with it, producing a stable phenolic
radical due to the positive inductive effect of the tert-butyl substituents. Lipophilicity
seems to be a significant property for interaction with DPPH since BHCA derivatives with
high lipophilicity have shown to be effective DPPH reducing agents [28,31]. In contrast,
Compound 1 produces a less stable phenolic radical after hydrogen abstraction and thus
it could not reduce DPPH effectively even at 200 µM. Compound 4 also interacted with
DPPH even at 50 µM, exerting slightly lower activity than Compound 2. Both compounds
could react very rapidly with DPPH and the respective reactions were almost completed
during the first five minutes. Taken together with their inhibitory activity against lipid
peroxidation, Compounds 2 and 4 were the most potent antioxidant agents among the
designed molecules. Compound 3 produces a phenolic radical of lower stability compared
with the radicals produced by Compounds 2 and 4, therefore it exerted lower DPPH re-
ducing efficacy in all the tested concentrations. In addition, it did not react as rapidly with
DPPH as Compounds 2 and 4. Finally, Compounds 5 and 6 do not possess any structural
characteristics that would confer on them antioxidant potential, and therefore they did not
react with DPPH.
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The antioxidant potency of our compounds was also estimated by their inhibitory
effect against Cu2+-induced oxidative protein glycation. Although it did not demonstrate
as high an antioxidant capacity as a lipid peroxidation inhibitor and as a DPPH reducing
agent, Compound 3 exerted the highest inhibitory activity against protein glycation, similar
to aminoguanidine. The anti-glycation activity can be attributed to the large number of
H-bond acceptor substituents, which allow an effective approach between the compound
and bovine albumin [32]. Compounds 2 and 4, despite their higher activity in the other an-
tioxidant experiments, possessed lower inhibitory efficacy against protein glycation. These
relatively unaligned results can be attributed to the more rigid structures of Compounds 2
and 4, which may render them unable to approach bovine albumin effectively. The low
water-solubility of Compound 2 is another factor that prevents its effective approach to
albumin since the incubation mixture is aqueous. Compound 1 combines a rigid structure
with low water solubility and weak antioxidant potency, as evaluated in the other antiox-
idant experiments. As a result, it did not inhibit protein glycation. Compounds 5 and 6,
lacking antioxidant properties, also exerted no inhibitory activity.

Acetylcholinesterase (AchE) catalyzes acetylcholine cleavage to choline and acetate.
Since cholinergic neuron degeneration leads to cognitive impairment, AchE is the pharma-
cological target of most drugs used clinically against AD [33]. The inhibitory activity of our
compounds was estimated by their inhibition of acetylthiocholine breakdown (Figure 4),
mediated by AchE contained in a rat brain homogenate.
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Figure 4. Acetylthiocholine breakdown.

Compound 4 was the most active against AchE, whereas Compounds 3 and 5 could
also inhibit the enzyme effectively. No inhibitory activity was demonstrated when higher
concentration of acetylthiocholine was added to the incubation mixture, indicating that
our compounds act as competitive AchE inhibitors. The inhibition may be attributed to
hydroxy and methoxy substituents on the aromatic ring, which potentially contribute to the
binding of the molecule. Furthermore, the piperidine moiety may allow the molecules to
bind more effectively to the active site of the enzyme, like donepezil. Sang et al. have also
reported AchE inhibitory activity of ferulic derivatives containing a piperidine moiety [34].
Compound 4 contains three aromatic substituents, and thus maybe binds more effectively
to the enzyme compared with Compounds 3 and 5, which have two substituents on the
aromatic ring. The lower activity of Compound 1 could result from its larger molecular
volume, which does not allow the molecule to approach the active site and bind to it.
Compound 2 has an even larger molecular volume, and it exerted no inhibitory activity,
possibly due to excessive steric hindrance. Finally, Compound 6 also possessed no activity
against AchE. as, it does not contain any aromatic substituents that could allow it to bind
effectively to the enzyme.

Lipoxygenases catalyse arachidonic acid metabolism. All isoforms of LOX have a
common mechanism of action, which includes arachidonic or linoleic acid peroxidation
mediated by molecular oxygen [35]. Lipoxygenase activity is strongly associated with AD
pathogenesis, as it seems to increase in older people and is related to both amyloid peptide
aggregation and neurofibrillary tangle formation [36,37].

All compounds were moderate soybean LOX inhibitors (up to 33% at 100 µM). Com-
pound 2, which exerted significant antioxidant potential as a lipid peroxidation inhibitor,
DPPH reducing agent, and oxidative protein glycation inhibitor, was the most active com-
pound against LOX. Compound 1, despite the absence of good antioxidant properties,
possessed similar activity as a LOX inhibitor to Compound 2. We can assume that the
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inhibitory activity is mainly attributed to the binding of the compounds to the enzyme
and the prevention of substrate binding and not to the reduction of free radicals produced
by LOX. No inhibitory activity was demonstrated when higher concentrations of the sub-
strate (linoleic acid) were used; therefore, we conclude that our compounds act as weak
competitive LOX inhibitors. Lipophilicity seems to play a key role for inhibitory activ-
ity, as the most active Compounds 1 and 2 have the highest milogP values. Moreover,
di-tert-butylphenol analogues have been found to exert increased LOX inhibitory activity
in previous studies [38]. Compounds 3–5, with lower lipophilicity, possess lower activity
than Compounds 1 and 2. The low activity of nipecotic acid derivatives designed in the
present study compared to other amides of antioxidant carboxylic acids with less bulky
substituents [39] indicate that large molecular volume is a deterrent factor for inhibitory
activity against LOX.

Finally, our compounds were tested for their effect against carrageenan-induced rat
paw oedema, a well-known experimental protocol for acute inflammation. Inflammatory
response to carrageenan begins with serotonin and histamine release (1.5 h after the injec-
tion) and progresses with kinins secretion (about 2.5 h after the administration). The third
phase (more than 2.5 h after administration) is characterized by prostaglandin production
and pro-inflammatory cytokines release [40]. In our work, paw oedema was evaluated 3.5 h
after carrageenan injection. All tested compounds could reduce paw oedema significantly.
Compounds 1 and 2 showed extremely strong inhibitory activity, reducing paw oedema by
55% and 61% respectively. Di-tert-butylphenol analogues have been found to act as dual
LOX/COX2 inhibitors [41], and this fact could explain the high in vivo anti-inflammatory
activity of these agents. Compounds 3 and 4 demonstrated significant efficacy, but not
so great as Compounds 1 and 2. All these four compounds were also found to possess
antioxidant properties in our experiments, which may contribute to acute inflammation
reduction, as we have previously reported [42]. Despite not exerting antioxidant potential,
Compounds 5 and 6 could also inhibit rat paw oedema, since not only oxidative stress but
various signaling pathways are involved in this process. Finally, taken together the low
inhibitory activity of our compounds against LOX with the significant reduction of paw
oedema, we can assume that not only LOX, but also many other factors, may be associated
with the carrageenan-induced inflammatory reaction All rats administered the test com-
pounds appeared normal after the end of the experimental procedure, both macroscopically
and by autopsy.

4. Materials and Methods
4.1. General

All commercially available chemicals of the appropriate purity were purchased from
Sigma (St. Louis, MO, USA) or Merck (Kenilworth, NJ, USA). The 1H-NMR and 13C-NMR
spectra were recorded using an AGILENT DD2-500 MHz (Santa Clara, CA, USA) spec-
trometer. Chemical shifts were reported in δ (ppm) and signals were given as follows:
s, singlet; d, doublet; t, triplet; m, multiplet. Melting points (mp) were determined with a
MEL-TEMPII apparatus, Laboratory Devices, Sigma-Aldrich (Milwaukee WI, USA) and
were uncorrected. The microanalyses were performed on a Perkin-Elmer 2400 CHN ele-
mental analyzer (Waltham, MA, USA). Thin-layer chromatography (TLC silica gel 60 F254
aluminum sheets, Merck (Kenilworth, NJ, USA) was used to follow the reactions and the
spots were visualized under UV light.

4.2. Synthesis

General Procedure for the synthesis of Compounds 1–5
The respective carboxylic acid, used as starting material (3 mmol), was dissolved

in dry CH2Cl2. For Compounds 3 and 4 a small quantity of DMF (up to 0.5 mL) was
added, due to reduced solubility of the carboxylic acid. Then, ethyl 3-piperidinecarboxylate
(3.6 mmol) and N,N-dimethylaminopyridine (DMAP, 3.6 mmol) were added. After 15 min
N,N dicyclohexylcarbodiimide (DCC, 3.6 mmol) was added and the mixture was stirred at
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room temperature overnight. Thereinafter, the mixture was filtered, washed successively
with HCl (5%), NaHCO3 (5%) and saturated NaCl solution and the organic layer was
dried over Na2SO4. Finally, the solvent was evaporated under reduced pressure and the
final compounds were isolated with flash column chromatography using mixtures of ethyl
acetate and petroleum ether as eluents [28].

Synthesis of Compound 6
Cinnamyl chloride (3 mmol) was dissolved in dry CH2Cl2 and mixed with ethyl

3-piperidinecarboxylate (3.6 mmol) and DMAP (3.6 mmol). The mixture was stirred at
ambient temperature overnight, washed successively with HCl (5%), NaHCO3 (5%) and
saturated NaCl solution, and the organic layer was dried over Na2SO4. Finally, the solvent
was removed under reduced pressure and the final compound was isolated with flash
column chromatography using a mixture of petroleum ether and ethyl acetate as eluents.

Ethyl 1-(3,5-di-tert-butyl-4-hydroxybenzoyl)piperidine-3-carboxylate (1): Flash Col-
umn Chromatography (ethyl acetate/petroleum ether 1/2). Yellow powder, yield 73%, mp
47–49 ◦C. 1H-NMR (CDCl3). δ(ppm): 7.72 (s, 2H, aromatic), 5.41 (s, 1H, -OH), 4.13 (q J: 7.1
Hz, 2H, -OCH2-CH3), 3.07–3.15 (m, 1H, 6-piperidine), 2.92–2.99 (m, 1H, 6-piperidine), 2.56
(t J: 10.8, 1H, 3-piperidine), 2.12 (dd J: 16.3 Hz, 12.7 Hz, 2H, 2-piperidine), 1.49–1.81 (m,
4H, 4/5-piperidine), 1.43 (s, 18H, -C(CH3)3), 1.24 (t J: 7.1 Hz, 3H, -OCH2-CH3). 13C-NMR
(CDCl3). δ(ppm): 173.07 (1C, -COOCH2CH3), 171.63 (1C, -CO-NH-), 155.37 (1C, 4-aromatic),
136.67 (2C, 3/5-aromatic), 126.29 (1C, 1-aromatic), 124.53 (2C, 2/6-aromatic), 60.64 (1C,
-OCH2CH3), 45.67 (2C, 2/6-piperidine), 41.82 (1C, 3-piperidine), 34.35 (2C, -C(CH3)3), 30.11
(6C, -C(CH3)3), 27.57 (1C, 4-piperidine), 24.66 (1C, 5-piperidine), 14.20 (1C, -OCH2CH3).
Anal. Calculated for C23H35NO4: C, 70.92; H, 9.06; N, 3.60%. Found C, 70.72; H, 9.08;
N, 3.71%.

(E)-Ethyl 1-(3-(3,5-di-tert-butyl-4-hydroxyphenyl)acryloyl)piperidine-3-carboxylate
(2): Flash Column Chromatography (ethyl acetate/petroleum ether 1/3). Yellow powder,
yield 82%, mp 158–161 ◦C. 1H-NMR (CDCl3). δ(ppm): 7.61 (d J: 15.3 Hz, 1H, Ph-CH=CH),
7.34 (s, 2H, aromatic), 6.73 (d J: 15.3 Hz, 1H, Ph-CH=CH) 5.44 (s, 1H, -OH), 4.15 (q J: 7.1 Hz,
2H, -OCH2CH3), 3.94–4.05 (m, 1H, 6-piperidine), 3.43–3.60 (m, 1H, 6-piperidine), 2.88–3.17
(m, 2H, 2-piperidine), 2.52 (t, J: 10.0 Hz, 1H, 3-piperidine), 2.05–2.10 (m, 1H, 5-piperidine),
1.72–1.84 (m, 2H, 4-piperidine), 1.52–1.58 (m, 1H, 5-piperidine), 1.45 (s, 18H, -C(CH3)3), 1.26
(t J: 7.1 Hz, 3H, -OCH2CH3). 13C-NMR (CDCl3). δ(ppm): 173.67 (1C, -COOCH2CH3), 166.12
(1C, -CO-NH-), 155.46 (1C, 4-aromatic), 143.24 (1C, Ph-CH=CH-), 136.20 (2C, 3/5-aromatic),
126.62 (1C, 1-aromatic), 124.96 (2C, 2/6-aromatic), 113.89 (1C, Ph-CH=CH-), 60.67 (1C,
-OCH2CH3), 45.96 (2C, 2/6-piperidine), 41.96 (1C, 3-piperidine), 34.30 (2C, -C(CH3)3), 30.17
(6C, -C(CH3)3), 27.43 (1C, 4-piperidine), 24.68 (1C, 5-piperidine), 14.17 (1C, -OCH2CH3).
Anal. Calculated for C25H37NO4: C, 72.26; H, 8.97; N, 3.37. Found C, 72.54; H, 9.01;
N, 3.09%.

(E)-Ethyl 1-(3-(4-hydroxy-3-methoxyphenyl)acryloyl)piperidine-3-carboxylate (3): Flash
Column Chromatography (ethyl acetate/petroleum ether 1/1). Yellow oily liquid, yield
64%. 1H-NMR (CDCl3). δ(ppm): 7.59 (d J: 15.3 Hz, 1H, Ph-CH=CH), 7.09 (d J: 8.1 Hz,
1H, 6-aromatic), 6.99 (s, 1H, 2-aromatic), 6.90 (d J: 8.1 Hz, 1H, 5-aromatic), 6.77 (d J: 15.3
Hz, 1H, Ph-CH=CH), 5.41 (s, 1H, -OH), 4.15 (q J: 7.1 Hz, 2H, -OCH2CH3), 3.92 (s, 3H,
Ph-OCH3), 3.10–3.19 (m, 1H, 6-piperidine), 2.52 (t, J: 9.7 Hz, 1H, 3-piperidine), 2.03–2.17 (m,
1H, 6-piperidine), 1.48–1.97 (m, 6H, 2/4/5-piperidine), 1.26 (t J: 7.1 Hz, 3H, -OCH2CH3).
13C-NMR (CDCl3). δ(ppm): 172.89 (1C, -COOCH2CH3), 166.85 (-CO-NH-), 147.67 (1C,
4-aromatic), 142.27 (1C, 3-aromatic), 137.64 (1C, Ph-CH=CH), 127.84 (1C, 1-aromatic), 121.90
(1C, 6-aromatic), 114.70 (1C, Ph-CH=CH), 114.66 (1C, 5-aromatic), 109.86 (1C, 2-aromatic), 60.79
(1C, -OCH2CH3), 55.99 (1C, Ph-OCH3), 45.11 (2C, 2/6-piperidine), 43.86 (1C, 3-piperidine),
27.43 (1C, 4-piperidine), 25.56 (1C, 5-piperidine), 14.17 (1C, -OCH2CH3). Anal. Calculated
for C18H23NO5: C, 64.85; H, 6.95; N, 4.20%. Found C, 64.99; H, 7.18; N, 3.82%.

(E)-Ethyl 1-(3-(4-hydroxy-3,5-dimethoxyphenyl)acryloyl)piperidine-3-carboxylate (4):
Flash Column Chromatography (ethyl acetate/petroleum ether 1/1). Yellow powder, yield
65%, mp 59–61 ◦C. 1H-NMR (CDCl3). δ(ppm): 7.57 (d J:15.3 Hz, 1H, Ph-CH=CH), 6.76
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(s, 2H, aromatic), 6.74 4 (d J:15.3 Hz, 1H, Ph-CH=CH), 4.15 (q J: 7.1 Hz, 2H, -OCH2CH3),
3.92 (s, 6H, Ph-OCH3), 3.11–3.20 (m, 1H, 6-piperidine), 2.53 (t J: 9.7 Hz, 1H, 3-piperidine),
1.53–2.09 (m, 7H, 2/4/5/6-piperidine), 1.26 (t J: 7.1 Hz, 3H, -OCH2CH3). 13C-NMR (CDCl3).
δ(ppm): 173.11 (1C, -COOCH2CH3), 166.73 (1C, -CO-NH-), 147.16 (2C, 3/5-aromatic),
143.25 (1C, 4-aromatic), 136.54 (1C, Ph-CH=CH), 126.78 (1C, 1-aromatic), 114.93 (1C, Ph-
CH=CH), 104.83 (2C, 2/6-aromatic), 60.76 (1C, -OCH2CH3), 56.38 (2C, Ph-OCH3), 41.56 (2C,
2/6-piperidine), 36.72 (1C, 3-piperidine), 27.43 (2C, 4/5-piperidine), 14.18 (1C, -OCH2CH3).
Anal. Calculated for C19H25NO6: C, 62.80; H, 6.93; N, 3.85%. Found C, 63.12; H, 7.26;
N, 3.67%.

(E)-Ethyl 1-(3-(3,4-dimethoxyphenyl)acryloyl)piperidine-3-carboxylate (5): Flash Col-
umn Chromatography (ethyl acetate/petroleum ether 1/1). Yellow oily liquid, yield 78%.
1H-NMR (CDCl3). δ(ppm): 7.61 (d J: 15.3 Hz, 1H, Ph-CH=CH), 7.11 (d J: 8.3 Hz, 1H,
6-aromatic), 7.03 (s, 1H, 2-aromatic), 6.86 (d J: 8.3 Hz, 1H, 5-aromatic), 6.80 (d J: 15.3 Hz,
1H, Ph-CH=CH), 4.15 (q J: 7.1 Hz, 2H, -OCH2CH3), 3.97-4.08 (m 1H, 6-piperidine), 3.92 (s,
3H, Ph-OCH3), 3.90 (s, 3H, Ph-OCH3), 3.45–3.60 (m, 1H, 6-piperidine), 3.12–3.19 (m, 1H,
2-piperidine), 2.52 (t J: 9.8 Hz, 1H, 3-piperdidine), 2.05–2.11 (m, 1H, 2-piperidine), 1.52–1.89
(m, 4H, 4/5-piperidine), 1.26 (t J: 7.1Hz, 3H, -OCH2CH3). 13C-NMR (CDCl3). δ(ppm):
173.66 (1C, -COOCH2CH3), 166.78 (1C, -CO-NH-), 150.47 (1C, 4-aromatic), 149.07 (1C,
3-aromatic), 142.79 (1C, Ph-CH=CH), 128.28 (1C, 1-aromatic), 121.77 (1C, 6-aromatic), 114.97
(1C, Ph-CH=CH), 111.03 (1C, 5-aromatic), 109.87 (1C, 2-aromatic), 60.74 (1C, -OCH2CH3),
55.94 (2C, Ph-OCH3), 52.83 (1C, 2-piperidine), 44.12 (1C, 6-piperidine), 43.09 (1C, 3-piperidine),
27.44 (1C, 4-piperidine), 24.02 (1C, 5-piperidine), 14.19 (1C, -OCH2CH3). Anal. Calculated
for C19H25NO5: C, 65.59; H, 7.25; N, 4.03%. Found C, 65.38; H, 7.00; N, 4.13%.

Ethyl 1-cinnamoylpiperidine-3-carboxylate (6): Flash Column Chromatography (ethyl
acetate/petroleum ether 1/3). Colorless oily liquid, yield 85%. 1H-NMR (CDCl3). δ(ppm):
7.68 (d J: 15.4 Hz, 1H, Ph-CH=CH), 7.51–7.57 (m, 2H, aromatic), 7.33–7.41 (m, 2H, aro-
matic), 6.94 (d J: 15.4 Hz, 1H, Ph-CH=CH), 4.17 (q J: 7.1 Hz, 2H, -OCH2CH3), 4.03–4.10 (m,
1H, 6-piperidine), 3.18–3.38 (m, 2H, 2/6-piperidine), 2.52 (t J: 9.8 Hz, 1H, 3-piperdidine),
2.06–2.14 (m, 1H, 2-piperidine), 1.52–1.86 (m, 4H, 4/5-piperidine), 1.27 (t J: 7.1 Hz, 3H,
-OCH2CH3). 13C-NMR (CDCl3). δ(ppm): 172.99 (1C, -COOCH2CH3), 166.68 (1C, -CO-NH-),
142.23 (1C, Ph-CH=CH), 135.27 (1C, 1-aromatic), 129.60 (1C, 4-aromatic), 128.76 (2C, 3/5-aromatic),
127.77 (2C, 2/6-aromatic), 117.19 (1C, Ph-CH=CH), 60.79 (1C, -OCH2CH3), 52.59 (1C,
2-piperidine), 46.40 (1C, 6-piperidine), 41.60 (1C, 3-piperidine), 27.36 (1C, 4-piperidine), 24.54
(1C, 5-piperidine), 14.19 (1C, -OCH2CH3). Anal. Calculated for C17H23NO3: C, 71.06; H,
7.37; N, 4.87%. Found C, 71.33; H, 7.76; N, 4.75%.

4.3. Biological Evaluation

κ-Carrageenan and lipoxygenase type I-B from soybean were purchased from Sigma
(St. Louis, MO, USA). For the in vivo experiments, Wistar rats (180–220 g) were kept in the
Centre of the School of Veterinary Medicine (EL54 BIO42), Aristotle University of Thessa-
loniki, which is registered by the official state veterinary authorities (presidential degree
56/2013, in harmonization with the European Directive 2010/63/EEC). The experimental
protocols were approved by the Animal Ethics Committee of the Prefecture of Central
Macedonia (no. 270079/2500).

In Vitro Lipid Peroxidation Inhibition

The peroxidation of rat liver microsomal fraction, inactivated after heating (90 ◦C,
90 s), was induced by ascorbic acid (0.2 mM) and FeSO4 (10 µM). The test compounds, in
dimethylsulfoxide, were added at concentrations of 1 µM to 1 mM. Aliquots were taken
from the incubation mixture (37 ◦C) for 45 min. Lipid peroxidation was assessed spec-
trophotometrically (535/600 nm) as 2-thiobarbituric acid reactive material. All compounds
and solvents were found not to interfere with the assay [30].

In vitro interaction with the Stable Free Radical 1,1-Diphenyl-2-Picrylhydrazyl (DPPH)
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Compounds (in absolute ethanol, final concentrations 50–200 µM) were added to an
ethanolic solution of DPPH (final concentration 200 µM) at ambient temperature (22 ± 2 ◦C).
Absorbance (517 nm) was recorded every 5 min for 30 min [39].

In vitro Protein Glycation Inhibition
Incubations of bovine serum albumin (BSA 4 mg/mL) were carried out with fructose

(250 mM) in 120 mM phosphate buffer (pH 7.4), in the presence of Cu2+ (10 µM) and
NaN3 (0.015%) at 37 ◦C for 72 h. The incubations were carried out at least in triplicate
parallel tubes. Glycation-modified protein purification was based on protein precipitation
and washings with trichloroacetic acid (TCA). Fluorescence measurements were made in
60 mM phosphate buffer (pH 7.4) at an excitation wavelength of 340 nm, with an emission
wavelength of 410nm, and expressed relatively to the standard quinine sulphate solution
(1 µg/mL). Incubations carried out under the same conditions but in the absence of fructose
were used as controls [28]. All compounds were found to be stable under the conditions of
the experiment.

In vitro Evaluation of Acetylcholinesterase Activity
Brains from untreated rats were homogenized (20 mg/mL) in phosphate buffer (0.1 M,

pH 8). Acetylcholinesterase activity was assessed using brain homogenate, acetylthio-
choline (0.5 mM) as a substrate, in the presence of the tested compounds (dissolved in 60%
ethanol) and evaluating the reaction product of the liberated thiocholine with DTNB at
412 nm. The used solvent system was tested and found not to interfere with the assay [28].

In vitro Evaluation of Lipoxygenase Activity
The reaction mixture contained the examined compounds (in absolute ethanol), soy-

bean lipoxygenase (in saline, 250 u/mL) and sodium linoleate (100 µM), in Tris–HCl buffer,
pH 9.0. The reaction was monitored for 7 min at 28 ◦C, recording the absorbance at 234 nm.
Nordihydroguaiaretic acid (NDGA) was used as a reference [43].

In vivo Evaluation of Anti-Inflammatory Activity
The tested compounds (in water with a few drops of Tween 80) were administered

i.p. (0.15 mmol/kg) to rats, just after the i.d. injection of 0.1 mL of an aqueous carrageenan
solution (1% w/v) in the hind paw of rats. The produced oedema, after 3.5 h, was estimated
as paw weight increase [44].

5. Conclusions and Future Perspectives

There is much evidence in the literature that oxidative stress and inflammatory re-
sponses are both key factors for the pathogenesis of neurodegeneration [10–19]. Alzheimer’s
disease is the most common neurodegenerative disorder, characterized by memory loss
and cognitive impairment. It is a multi-factorial disease, and its pathophysiology has
not been fully elucidated. Therefore, no effective pharmacological treatment has been ob-
tained yet. Multi-targeting compounds could prove to be useful therapeutic agents against
AD, since they affect more than one biochemical pathways related to its development
and progression.

In our work we designed and synthesized a series of ethyl nipecotate amides, which
were tested for their antioxidant properties, their anti-inflammatory potential, and their
ability to inhibit acetylcholinesterase. Compound 2 (the BHCA derivative) demonstrated
significant antioxidant potential, mainly as a lipid peroxidation inhibitor and as a DPPH
reducing agent, due to its tert-butyl-groups, which are lipophilic substituents and stabi-
lize the produced phenolic radical. Moreover, it was the most active compound against
lipoxygenase, and could reduce carrageenan-induced rat paw oedema by 61%. Compound
1, despite the tert-butyl substituents, did not possess as high an antioxidant capacity, but it
had similar anti-inflammatory properties to Compound 2 and could moderately inhibit
acetylcholinesterase. Methoxy substituted phenolic Compounds 3 and 4 demonstrated
lower antioxidant and anti-inflammatory capacity compared to Compound 2, but they were
shown to be significantly more active as acetylcholinesterase inhibitors. Compound 5, did
not possess any antioxidant activity, as expected, but it could inhibit acetylcholinesterase
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and reduce rat paw oedema. Finally, compound 6 could only reduce rat paw oedema, as it
had no antioxidant potential and could not inhibit acetylcholinesterase.

The combination of antioxidant and anti-inflammatory potency with acetylcholinesterase
inhibitory activity, could prove useful for further development of anti-Alzheimer thera-
peutic agents. We hope that our compounds can contribute towards this direction, and
effective therapeutic options may be obtained after optimization.
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