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Abstract: Cancer is the leading cause of death and has remained a big challenge for the scientific
community. Because of the growing concerns, new therapeutic regimens are highly demanded
to decrease the global burden. Despite advancements in chemotherapy, drug resistance is still a
major hurdle to successful treatment. The primary challenge should be identifying and developing
appropriate therapeutics for cancer patients to improve their survival. Multiple pathways are
dysregulated in cancers, including disturbance in cellular metabolism, cell cycle, apoptosis, or
epigenetic alterations. Over the last two decades, natural products have been a major research interest
due to their therapeutic potential in various ailments. Natural compounds seem to be an alternative
option for cancer management. Natural substances derived from plants and marine sources have
been shown to have anti-cancer activity in preclinical settings. They might be proved as a sword to
kill cancerous cells. The present review attempted to consolidate the available information on natural
compounds derived from plants and marine sources and their anti-cancer potential underlying
EMT mechanisms.

Keywords: epithelial-mesenchymal transition; cancer EMT; natural chemical entities; cancer;
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1. Introduction

Cancer is the leading cause of death globally [1]. According to the global demographic
characteristics, it is expected to increase by approximately >20 million by 2025 [2]. The
treatment paradigm improved in the past decade with the advancement in cancer research.
Breast cancer (BC), colorectal cancer (CRC), lung cancer (LC), and prostate cancer (PC)
are the most common types of cancers [1,3]. Various cellular pathways are involved in
cancer development and progression. Several drug candidates are approved to target these
pathways for their management [4]. One reason behind drug resistance is the process
of Epithelial-mesenchymal transition (EMT) involved in cancer progression. EMT is an
extremely regulated physiological process that has a significant role in tissue repair and
embryogenesis [5]. During EMT, the cells undergo multiple morphologic, biological, and
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genetic rearrangements, leading to their mesenchymal phenotypes [6]. EMT is pathologi-
cally associated with fibrosis and cancer, leading to their progression. EMT has been linked
to the formation of invasive and cancer stem cells in carcinomas [7].

EMT is initiated by EMT activating transcription factors (EMT-TFs), including SNAIL
(SNAI1) and SLUG (SNAI2), the basic helix-loop-helix factors TWIST1 and TWIST2. As
proven for SNAIL, TWIST, Zinc figure E-box binding homeobox 1 (ZEB1), and Zinc figure
E-box binding homeobox 2 (ZEB2), these features can repress epithelial genes like the
E-cadherin-producing CDH1 by binding to E-Box in their cognate promoter regions. Si-
multaneously, EMT-TFs activate genes associated with a mesenchymal phenotype, such as
Vimentin (VIM), Fibronectin 1 (FN1), and N-Cadherin (CDH?2). Several activities, however,
are not common and are carried out by separate EMT- transcription factors (TFs) due
to differences in coding sequences or protein size and structure [8]. An overview of the
EMT pathway is shown in Figure 1. In other words, EMT is a biotic mechanism in which
epithelial cells become polarized.
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Figure 1. Hypoxia, growth factor, cytokines, and ECM activate the pathways that can trigger the EMT
by activating EMT transcription factors (EMT-TFs), including SNAIL, SLUG, and the basic helix-loop-
helix factors TWIST. As proven for SNAIL, TWIST, Zinc figure E-box binding homeobox 1 (ZEB1),
and ZEB2, these features can repress epithelial genes like the E-cadherin-producing CDH1 by binding

to E-Box in their cognate promoter regions. Simultaneously, EMT-TFs activate genes associated
with a mesenchymal phenotype, such as Vimentin (VIM), Fibronectin 1 (FN1), and N-Cadherin

(CDH2), etc. [8].

The heterogeneous mixture of cells like fibroblasts, endothelial cells, noncellular con-
stituents, immune cells, extracellular matrix, cytokines, growth factors, and basement
membrane is known as a tumor microenvironment (TME) [9]. EMT is essential for develop-
ing and initiating tumors and their recurrence and progression. In TME, the most abundant
cells are cancer-associated fibroblasts (CAFs), which cross-talk with tumor cells, extracellu-
lar matrix (ECM), immune cells, and endothelial cells for cancer progression [9-13]. Several
therapeutic agents are now being designed to target these CAFs [12,14]. Many natural
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agents have been identified to target CAF by altering the key signaling pathways, epigenet-
ics, kinases, and enzymes. Targeting CAFs and altering the pathways affect cancer-stroma
association in TME, resulting in decreased cancer progression. The natural compounds
might have promised anti-cancer activity and are worth investigating against different
tumors. The characteristic feature of carcinogenesis is ECM stiffness that supports the
tumor cells. The crosslinking of ECM components like collagen with the tumor cells occurs
via CAFs [15]. LOX-lysyl oxidase, the enzyme highly overexpressed in tumors derived
from CAFs, acts as a collagen crosslinking initiator in several cancers like breast and gastric
cancers, ultimately enhancing EMT, cell survival, invasion, drug resistance, and angiogen-
esis [16]. The ECM degrading enzymes like matrix metalloproteases (MMPs) and tissue
inhibitors of metalloproteinase (TIMPs) inhibitors are altered by CAFs during angiogenesis
and invasion, causing modulation of TME. The MMP2 and 9 are well investigated and
highly associated with cancer growth and development [17,18]. The enzymes like metal-
loproteinases and disintegrin, associated with the MMPs super-family, are increased by
CAFs, promoting cancer progression [19]. The CAFs also apply physical forces to pull out
the epithelial basement membrane, causing the promotion of EMT in enzyme independent
manner [20]. The CAFs promote EMT remolding and are promising therapeutic targets
in halting EMT to prevent cancer metastasis. Natural compounds have proven to be the
best alternatives to the current therapies against cancer. Many noteworthy examples are in
front of us, where natural compounds have proven better than existing standard therapies
against different ailments, such as cancer or infectious diseases. It is worth investigating
the potential of natural compounds, whether from the marine, plant, or animal, against
different types of cancers to find the solution for the growing deadly ailment in the world.
Due to growing concerns regarding cancer metastasis, most therapies fail to cure, and the
patients suffer greatly due to high toxicity. Cancer resistance is another challenge against
current therapies, making cancer more complicated to manage. The natural compounds
could be a game changer as anti-cancer therapy that specifically targets the EMT process
and halts the process of cancer progression.

2. Cross-Talk between TGF-3 and Other Signaling Pathways Mediating EMT

The signaling pathways cross-talk to form complex networks. Due to several cellular
processes like apoptosis, differentiation, proliferation, and homeostasis, the Transforming
growth factor 3 (TGF-f) cross-talk with various other signaling pathways during the EMT
process (Figure 2) [21,22]. One of the mechanisms in which Akt activation and the phos-
phatase and tensin homolog (PTEN) dissociation from (3-catenin are mainly responsible
for the TGF-f3 mediated EMT process, where the displacement of 3-catenin from adherent
junctions occurs [23]. The other signaling pathway that cross-talks with TGF-f3 is Notch;
Notch synergizes with TGF-f3 signals to enhance/inhibit its signaling activity depending on
the input signal [21]. TGF-p signals activate the migration and inhibit the cell proliferation
of endothelial cells. However, the Notch signals block the migration of bone morphogenetic
protein (BMP) [24]. BMP stimulates the cell migration of endothelial cells; however, in the
presence of Notch signaling, the migratory potential gets inhibited [24].

Interestingly, Notch signaling plays a crucial cross-talk in regulating migration by
inducing gene expression. Notch dominates the BMP signaling; when the cell-to-cell
contact is not there, endothelial cells are not in contact with the nearby cells to migrate
until the new cell-to-cell attachment is set [21,24]. The TGF-f requires Notch signaling for
the growth arrest in the epithelium; over thirty percent of the genes induced by TGF-3
require Notch signaling [25]. The classy EMT marker, the TGF-§3, also cross-talks with
several other signaling pathways like Extracellular signal-regulating kinase (Erk), c-Jun
N-terminal kinase (JNK), and p38. Erk, JNK, and p38 are indirectly regulating the TGF-3
during EMT. However, TGF-f3 activates MAPK and Erk1/2 signaling pathways [26]. The
cross-talk of TGF-f3 versus EGF signaling is the reason for activating Smad-dependent
signaling and MAPK-mediated Erk1/2 [27]. The nuclear translocation of MAPK mediated
by TGF-f is downregulated by the MAPK-Erk pathway that mediates nuclear exclusion
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and phosphorylation of Smad-2/3 [27]. During the initiation of EMT, the Akt and PTEN
are also regulated by TGF-$3. In addition, TGF-f3 cross-talk with ErbB signaling during the
EMT development of breast cancer [28]. The TGE-§3 also regulates the phosphoinositide
3-kinase (PI3k)-Akt signaling pathways. Akt’s activity increases due to the induction
of TGF--mediated functional activities like cell migration, epithelial to mesenchymal
shift, cell survival, and cell growth [27-29]. Human epidermal growth factor receptor 2
(HER2)/RAS opposes the TGF-f3-induced programmed cell death and cell arrest; however,
it promotes migratory and invasive activities of TGF-3 [30]. The EMT-associated cross-talk
is validated by pharmacological inhibition of insulin-like growth factor-1R (IGF-1R), which
prevents TGF-f-mediated EMT protein signatures [31]. The cross-talk of different pathways
involved in EMT is demonstrated in Figure 2.
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Figure 2. Illustrates the different pathways involved in initiating epithelial-mesenchymal transition
(EMT) [32].

3. Natural Chemical Agents as Potential Leads against Cancer

Among approved chemotherapeutic medications, 80% are bioactive natural com-
pounds [33,34]. 70% of disease conditions, including cancer, are treated with the help of
natural products [35]. The natural compounds induce cytotoxicity by targeting various
oncogenic signaling [36]. Several marine-derived metabolites show anti-cancer activity in
preclinical and clinical settings [37]. Marine-derived compounds include sulfated polysac-
charides, sterols, carotenoids, and chitosan. Sulfated polysaccharides and carotenoids
have effectively worked against cancer, acquired immune deficiency syndrome (AIDS),
CVDs, and other acute and chronic disorders [35]. Various effective marine-derived com-
pounds are summarized in Table 1. Plants, bacteria, animals, insects, and marine life are
some of the key sources of natural chemicals with pharmacological and cytotoxic actions
such as anti-proliferative, anti-angiogenic, apoptosis-generating, necrosis-inducing, and
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anti-inflammatory [38]. Secondary metabolites (Alkaloids, tannins, saponins, flavonoids,
steroids) are molecules produced by plants at very minute levels that are therapeutically
beneficial in various illnesses [39]. Animals and insects are also rich suppliers of enzymes
with various pharmacological applications. Researchers have recently focused on natural
substances to investigate their possible use in cancer treatment with lesser side effects.
Still, they have only identified a few molecules with clinical efficacy demonstrated in
Table 2 [40]. Compounds with anti-proliferative, anti-inflammatory, anti-angiogenic, and
apoptotic-inducing properties can treat cancer and reduce the side effects of conventional
cancer chemotherapy. They also have a high potential for future use as anti-cancer drugs.

Natural products can offer new hope in fighting EMT and increase therapeutic op-
tions worldwide. Drugs of natural origin, like traditional and Chinese medicine, are
currently being investigated for various ailments [41]. The cost-effectiveness and richness
of good therapeutic efficacy and safety were natural compounds’ true and popular features,
considering them promising candidates against cancer [42]. The drugs against cancer at
present share 1/3rd position share against cancer, meaning it is important to investigate
more drugs from the natural origin against cancer [43]. Natural compounds have a high
level of rigidity, enhancing the protein cross-talk more than synthetic drugs. They have
diversity and versatile structure complexity, a unique natural feature making them the
right candidates against cancer [43,44]. The signaling pathways that are responsible for
cancer cell survival and TME maintenance are being halted by many natural compounds.
The natural compounds have a comprehensive role in inhibiting tumor progression by
blocking the survival pathways involved in EMT [9]. Many drugs have been used along
with natural compounds, producing efficacious outcomes like decreasing drug resistance
and toxicity [42,45]. Natural products can remold the TME [41]. Here we will show various
candidates of natural origin demonstrating pharmacological activities against EMT and its
associated factors.

Table 1. Marine and plants-derived compounds for anti-cancer activity.

Source
Sr. No Drug Product (Marine Mechanism of Action Indication FDA Status Reference
Origin)
Marine Source
Sponge Keeps the
1 Eribulin mesylate Halichondria cytoskeleton’s growth Metastatic breast Apprqved [46]
okadai cycle away from core cancer (Spain)
aggregates tubulin
Sea hare
2 Brentuximab Dollabella Cell cycle arrest from Hodgkin Approved [47]
Vedotin Auricularia/ G2 to M phase lymphoma (USA)
cyanobacteria
. Sponge - Acute
Cytarabine, Inhibition of DNA . Approved
3 } Cryptotheca . lymphoblastic [46]
Ara-C crypta Synthesis leukemia (USA))
Phosphatase of
Marine sponge regenerating liver-3
4 Halichondramide Chondrosia (PRL-3) an.d its . Prostate Cancer Approved [48]
(HCA) corticata downstream signaling

pathway are
suppressed.




Molecules 2022, 27, 7668

6 of 20

Table 1. Cont.

Source
Sr. No Drug Product (Marine Mechanism of Action Indication FDA Status Reference
Origin)
Plant Source
. Soragium Cell-cycle arrest and Hand-foot
4 Ixabepilone 3 ycear Approved [49]
cellulosum apoptosis-inducer syndrome
; . Hematological
. . Chromobacterium Histone deacetylase 1a70°08
5 Romidepsin . o toxicities like Approved [50]
violaceum inhibitors .
anemia
Inhibit the
olymerization Ovarian cancer,
. Podophyllum PO . . :
6 Podophyllotoxins . of tubulin, arresting immunosuppressive Approved [51]
(Berberidaceae) . .
the cell cycle in the ability
metaphase
Inhibit SK-OV-3 and
Rhizome of OVCAR-3 cell viability,
7 Ligustrazine Ligusticum proliferation, Ovarian cancer Approved [52]
wallichii. migration,
and invasion.
Table 2. Potential NCEs with therapeutic effects against cancer.
Sr. No NCE. Source Me(c)hamsm and Method of Validation Potential Use Reference
utcomes
1 Oregonin Anti-proliferative activity, MTT Assay, Western -
2 Hirsutenone Alnus sibirica (AS) Inhibition of NF-«B, blottlr}g, FIOW" . Prostate cancer [531
induction of apoptosis, methylation-specific
3 Hirsutanonol DNA Methylation PCR, cytometry
. . Chelidonium majus cytotoxicity and o
4 Chelerythrine chloride and Macleaya cordata anti-proliferative activity Cell viability assays NSCLC. [39]
. . Streptomyces sp. Caspase 3/7 Activation, Colon, breast, liver, )
5 Thioholgamide MUSC 136T. membrane permeability MTT assay and lung cancers 541
7-deoxy-trans- Scadoxus - L. Follicular
6 dihydronarciclasin pseudocaulus Apoptosis inducer Cytotoxicity assay lymphoma (5]
Hepeatic, colon,
4-(4-hydroxy-3- . . . . L
7 methoxyphenyl) Anti-proliferative, MTT assay, chronic myeloid [56-58]

curcumin

apoptosis-inducing

Western blotting analysis

leukemia, and
lung cancer

4. Potential NCE to Target EMT
4.1. Artemisinin (ATM)

ATM is a sesquiterpene lactone isolated from sweet, warm wood, Artemisia annua. It is
an antimalarial agent to treat multidrug-resistant falciparum malaria strains, mediated by
producing organic peroxides [59]. ATM also has potent anti-cancer activity against CRC,
BC, gastric cancer (GC), and cervix cancer (CC). Its anti-carcinogenic action is similar to
antimalarial action in that free iron cleaves its endoperoxide bridge, releasing free radicals
that cause cytotoxicity. ATM’s low toxicity and high specificity for cancer cells led to
its development as an anti-cancer molecule. Dihydroartemisinic acid (DHA), an ATM
derivative, reduced inflammation in a rat arthritis model by downregulating Interleukin-6
(IL-6). Additionally, DHA has anti-cancer properties. It can induce apoptosis in leukemic
cells via noxa-mediated mechanisms [60].

Moreover, it inhibits GC cell invasion, migration, and proliferation by inhibiting
the activation of phosphoinositide 3-kinase/protein kinase B and SNAIL. According to
Sun et al., DHA’s anti-inflammatory and anti-cancer activities are mediated via microRNAs
(miRNAs). DHA, for example, inhibits inflammation in vascular smooth muscle cells by
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regulating the miR-376b-3p/KLF pathway. The Jumonji and AT-rich interactive domain?2
(ARID-2)/miR-7/miR-34a pathway inhibit prostate cancer cells by downregulating AXL
tyrosine. In laryngeal cancer, miRNAs, in particular, play a function in EMT. For example,
miR-217 inhibits EMT while miR-10b promotes it. miR-130b-3p is a tumor suppressor be-
cause it inhibits laryngeal cancer development, angiogenesis, migration, and invasion [61].
FoxM1, a member of the conserved forkhead box transcription factor family, is involved
in cell cycle regulation, DNA damage repair, and apoptosis and has been associated with
the development of breast, pancreas, and liver carcinomas. Nandi et al. hypothesized that
FoxM1 was a critical inhibitory target of ATM in hepatocellular carcinoma (HCC) and that
FoxM1 may play a role in the cell cycle triggered by DHA ATM-inhibited HCC cell survival
and proliferation by attenuating FoxM1 and its transcription targets and interfering with
FoxM1 trans-activation [62].

4.2. Strychnine/Brucine

Brucine is an alkaloid related to strychnine obtained from the Strychnic Nux-vomica tree.
It has analgesic, anti-cancer, anti-inflammatory, antioxidant, and anti-venom properties [63].
In vitro, it inhibits the proliferation of Hela and K562 cell lines. Brucine also showed
anti-metastasis action in MDA-MB-231 and Hs578-T-cells and inhibited invasive capacity
and adhesion of MDA-MB-231 and Hs578-T-cells Matrigel, and preventing mRNA of E-
cadherin, catenin, VIM, FN1, MMP-2, and MMP-9 in MDA-MB-231 cells [64]. These data
collectively suggest that brucine might be a potential anti-cancer molecule; in vivo studies
are still needed to confirm its anti-cancer potential.

4.3. Eugenol

A polypropanoid group of compounds is found in seeds of many plants, such as cloves,
cinnamon, nutmeg, and bay leaves. It has antioxidant, anti-bacterial, anti-inflammatory,
and anti-cancer activity and is widely used as a cosmetic, perfume, and culinary ingredient.
It has anti-cancer potential due to its ability to increase reactive oxygen species (ROS)
formation and apoptotic action, increase Cyt C’s release, and inhibit the EMT process,
limiting the cells” ability to metastasize [65]. It has shown anti-cancer activity against
malignancies, including leukemia, lung, colon, colorectal, skin, gastric, breast, cervical, and
prostate cancer, through the processes described below in Table 3.

Table 3. Mechanisms of Eugenol for anti-apoptotic in various cancers.

Type of the Tumor

Study Type Effective Dose Mechanism References

Lung cancer

Decrease cycloxygenase-2 activity, which

In vitro 1000 uM leads to cell cycle arrest in the S phase [66]

followed by cell death

Colon cancer

In vitro 800 uM

Boosts the cytotoxic effects of cisplatin and
doxorubicin synergistically.

Gastric cancer

In vitro Low conc.

Inhibits cancer growth by upregulating
preinvasive and angiogenic molecules and
favoring apoptosis via the mitochondrial
pathway via altering Bcl-2 family proteins.

Cervical cancer

In vitro 50-200 uM

Prevents the cell cycle and causes apoptosis,
and inhibits DNA synthesis.

Breast cancer

Suppresses breast cancer-related oncogenes

In vitro 2 uM by downregulating E2F1 and its [70]

downstream anti-apoptotic target

4.4. Resveratrol

Resveratrol (RES) chemically trihydroxy stilbene is a polyphenol in grapes, berries,
peanuts, and wine. RES has been shown to have cardioprotective, anti-inflammatory, and
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anti-aging effects. Studies also suggest that it also has anti-cancer properties. Moreover,
RES has a regulatory role in EMT and the hedgehog (Hh) signaling pathway, which is
critical for vertebrate development, homeostasis, and cancer. Hh is abnormally activated
in breast, prostate, and pancreatic cancer (PC) and has a role in metastasis and invasion
of GC via induction of the EMT. Hence, Hh signaling pathway is the center of attraction
for anti-cancer activity. RES suppresses the Hh pathway, thus inhibiting cancer invasion
and metastasis.

Moreover, RES has also been shown to block the Hh signaling pathway and EMT in
malignancies [71]. A study proved that RES inhibited EMT in Glioblastoma (GBM) cells, as
evidenced by morphological changes in the RES-treated G.B.M. cells. RES also inhibits EMT-
mediated migration and invasion of GBM cells and EMT-induced stem cell-like properties
in GBM cells [72]. A TGF-f3/Smad signaling pathway is associated with the proliferation,
differentiation, and migration of the cells and promotes results in invasion and metastasis.
RES inhibited the penetration and metastasis by EMT-induced phosphorylation of Smad?2
and Smad3 in a dose-dependent manner, suggesting the function of RES on EMT is related
to Smad-dependent signaling [72].

4.5. Polyphyllin 1

Polyphyllin 1 (PP 1) demonstrated its anti-cancer activity via its apoptotic action and
several pathways effectively against various cancers. Polyphyllin I induces apoptosis in
HepF-2-Cells, and neural progenitor cells (NPC) cell lines [73]. The natural herb Paris
polyphylla makes PP1 and has anti-cancer properties against various malignancies, in-
cluding drug-resistant tumors. Paris polyphylla was recently found to inhibit CRC cells
by activating autophagy and improving the efficiency of chemotherapy (Doxorubicin).
By decreasing CIP2A /PP2A / Akt signaling, PP1 also reduced cisplatin-resistant GC cells.
Liu et al. demonstrated that PP 1 has potent anti-cancer action on human non-small cell
lung cancer (NSCLC) mediated by CHOP stabilization. PP1 induces ROS, and ER stress
inhibits unfolded protein response (UPR) in cancer cells, subsequently increasing the levels
of CHOP Via, accelerating CHOP gene expression. The UPR chaperone GRP78, restrained
by PP1, is the main mechanism for CHOP stabilization [74].

4.6. Paeoniflorin (PF)

Paeoniflorin (PF) is a monoterpene glycoside derived from the root of Paeonia lactiflora.
In the past, this plant’s roots were utilized in eastern medicine for pain, muscle spasms,
inflammation, menstruation dysfunction, and degenerative illnesses for a long time [75-78].
Studies indicated that PF inhibits tumor growth, invasion, and metastasis in vivo and
in vitro. In hypoxia-induced EMT in MDA-MB-231 BC cells, PF treatment resulted in a
considerable increase in E-cadherin levels and a drop in CDH2 and Vimentin levels in the
cells. Subsequently, it suppressed the EMT process by altering the expression of HIF-1,
which is involved in hypoxia-driven EMT [79]. The hippo pathway plays a significant role
in the progression of GC. This pathway is said to be dysregulated and thus contributes
to gastric oncology and metastasis. Two important factors, yes associated protein (YAP1)
and Transcriptional coactivator with PDZ-binding motif (TAZ), produce their metastatic
effect via crosslinking with Notch, TGF-f3, and Wnt/ 3-catenin in GC. In GC, PF exerts its
anti-cancer effect via regulation of the hippo signaling pathway and downregulating the
effect of TAZ [80]. Further, there is a need to explore its potential in other cancers.

4.7. Halicondramine

Halicondramine (HCA) is a trisoxazole-containing macrolide from the marine sponge
Chondrosia corticata [81]. It possesses antifungal and cytotoxic properties. It also has
anti-proliferative activity against cancerous cells [82,83]. Modulation of the EMT is a key
target for their action. Treatment with HCA significantly reduced the expression of MMP2
and 9, and CDH2. On the contrary, E-cadherin expression was significantly increased.
HCA also inhibits the expression of PRL-3, a metastasis-associated marker, and PI3 kinase
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subunits p85 and p110 (PRL-3’s downstream targets). These findings imply that HCA
inhibits EMT in human adenocarcinoma prostate cancer cells by modulating PRL-3 and
downstream targets, such as PI3 kinase [48].

4.8. Ligustrazine

Ligustrazine (LSZ) is obtained from the rhizome of Ligusticum wallichii [84]. LSZ is
shown to have anti-inflammatory, anti-fibrotic, antioxidant activity, and tumor-suppressing
properties in numerous cancers, including LC, GC, BC, and melanoma [85]. LSZ showed
anti-proliferative and anti-metastatic action [6]. LSZ increased E-cadherin expression while
decreasing the mesenchymal indicators CDH2 and VIM expression. LSZ inhibits EMT in
SK-OV-3 cells via modulating miR-211 expression [86].

4.9. Fucoidan

The Fucoidan (FC) is a polysaccharide obtained from brown seaweeds and has shown
anti-proliferative action on BC cells, such as 4T1 and MDA-MB-231. It also lowered
metastatic lung nodules in female Balb/c mice with 4T1 xenografts. The TGFRs molecular
network is critical in controlling EMT in cancer cells. It was observed that FC efficiently
reverses TGFR-induced EMT morphological alterations, increases epithelial markers, de-
creases mesenchymal markers and transcriptional repressor expression Twist, Snail, and
Slug. Furthermore, fucoidan suppresses migration and invasion during EMT, implying
that TGFR-mediated signaling is involved in BC cells [87].

4.10. Penisuloxazin A

Penisuloxazin A (PNSA) is a fungal mycotoxin that belongs to a new epipolythiodike-
topiperazines (ETPs) possessing a rare 3H-spiro[benzofuran-2,2'-piperazine] ring system.
PNSA prevented MDA-MB-231 cell adhesion to coated Matrigels containing several ECM
components. Furthermore, after PNSA therapy, there is a transition from spindle-shaped or
polygonal mesenchymal to flat polygonal epithelial-like cell morphology. These suggest
that PNSA can prevent EMT in MDA-MB-231 cells [88]. PNSA is also considered a potent
heat shock protein 90 (HSP90) inhibitor, a well-known N-terminal inhibitor binding to the
ATP pocket of HSP90 in preventing BC cell metastasis. Multiple signaling pathways critical
for cancer cell proliferation and metastasis can be disrupted by inhibiting HSP90 [89].

4.11. Sophocarpine

Sophocarpinr (SC) is one of the most active components of Sophora alopecuroides L, a
tetracyclic quinolizidine alkaloid. SC has shown various pharmacological actions, including
immunoregulatory, anti-inflammatory, and anti-nociceptive [90]. SC has also been shown
to preserve heart function from ischemic reperfusion by inhibiting NF-kB and reducing
hepatocyte steatosis via activation of the AMPK signaling pathway. Furthermore, in head
and neck squamous cell carcinoma (HNSCC) cells, SC has shown anti-proliferative and anti-
metastatic by inhibiting dicer-catalyzed miR-21 maturation and activation of the p38MAPK
signaling pathway. SC also reduced the HNSCC tumor’s growth in vivo by reversing the
EMT in cancer cells. In UM-SCC-22B and UM-SCC-47 cells, SC treatment reduced the
expression of the Ki-67 and VIM while increasing E-cadherin’s expression [91]. These
findings suggest that SC could be a promising lead drug for HNSCC.

4.12. Renieramycin M

Renieramycin M (RM) (22-Boc-Gly-RM), produced by Xestospongia sp., is a semi-
synthetic amino ester derivative of the bistetrahydroisoquinoline alkaloid. Studies sug-
gested RM-mediated inhibition of anchorage-independent development and sensitiza-
tion of detachment-induced cell death in human lung cancer cells [92]. A semi-synthetic
derivative of RM with a hydroquinone amino ester extension was synthesized to retain
cytotoxicity with increase cancer selectivity [93]. It hinders the phosphorylation of FAK and
Akt molecules, which upregulate TIMP2 and TIMP3 and downregulate MMPs expression.
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The inhibition of the p-FAK/p-Akt signal also marks the downregulation of CDH2 and
Rac1-GTP and the upregulation of E-cadherin, where the regulation of cytoskeleton regula-
tory protein (Racl-GTP), MMP-associated molecules (TIMP2, TIMP3) [94]. The mechanism
of action of RM is demonstrated in Figure 3.

Renieramycin M Carnosic acid
R R R R R TR AR TR RR AR A A AT 7 n T 70 7 ‘n‘ﬁ*‘a‘#%%%%‘%?
SRR S RIS ERERES BLEREREEEEERES
Human Cancer cells
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joAKT”
.T:TIMPZ t \MMPS) (EMT ) @Actin Polymerization»
« FAK ¥ S Twes <o
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, N-Cadherin }
IE-Ca herin 1

MTL-MMP | | MMP-7 |
Carnosic acid ———— mmp-9 | | Mmp-2}
N A3a 1A 12118 StadasaRtaAARRA LS SAa s IAR AR ABAL
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A R b E

INVASION MIGRATION

Figure 3. Inhibition of the FAK/AKT signaling pathway and subsequently decrease EMT markers,
CDH2 MMPs, etc., and increases epithelial marker, E-cadherin, which reduces cell invasion and
migration by Renieramycin M and Carnosic Acid [94,95].

4.13. Luteolin

Luteolin (LT) (3,4,5,7-tetrahydroxy flavone) is a flavonoid in many plants includ-
ing broccoli, carrots, perilla leaves, seeds, and celery. It possesses anti-allergy, anti-
inflammatory, anti-cancer, antioxidant, and anti-microbial properties [96-98]. In various
cancers (including lung, GBM, BC, CRC, PC), LT inhibits cell proliferation and tumor
growth, promotes cancer cell apoptosis and cell cycle arrest, reduces drug resistance, and
reduces cancer cell invasiveness and metastasis [99]. LT can also stop EMT from occurring,
shrinking in the cytoskeleton, increasing the expression of E-cadherin, and decreasing the
expression of CDH2, Snail, and VIM [100]. LT inhibits the Smad 2/3 pathway and the
Wnt/-catenin pathway by inhibiting the synthesis of Snail and Slug by downregulating
the production of 3-catenin. Doing so prevents metastasis by upregulating CDH2, Zo 1,
and claudin 1 and downregulating CDH?2, fibronectin, VIM, and MMP-2 [99,101]. The
mechanism of the action of LT is demonstrated in Figure 4.
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Figure 4. Possible mechanisms of luteolin, Carnosic acid, and N-Phenethylacetamide inhibit EMT via
different pathways [94,95].

4.14. Carnosic Acid

Carnosic acid (CA), a polyphenolic diterpene found in rosemary (Rosmarinus offici-
nalis), has anti-cancer, anti-viral, and anti-inflammatory activities. CA suppresses cancer
cell migration and proliferation while lowering vascular endothelial growth factor expres-
sion. In leukemia and CRC cells, CA also causes cell cycle arrest at the G2/M phase by
downregulating cyclin expression and has been shown to trigger apoptotic cell death in
human NB and PrC cells [102]. CA inhibits EMT and cell migration in B16F10 cells in a
dose-dependent manner. It prevents Src/ AKT phosphorylation and, therefore, activation.
It decreases the secretion of uPAc, MMP-9, and TIMP-1, whereas it increases the secretion of
TIMP-2 and has no effect on the secretion of MMP-2 and plasminogen activator inhibitor-1
(PAI-1). It is also responsible for the decrease in the expression of Snail and Slug but does
not affect the expression of Twist in BI6F10 melanoma cells [95]. The mechanism of action
of CA is demonstrated in Figures 3 and 4.

4.15. N-Phenethylacetamide

N-Phenethylacetamide (NPA) is found in the Aquamarina Sp. (MCO085). Three com-
pounds, two diketopiperazines [cyclo(L-Pro-L-Leu) (1) and cyclo(L-Pro-L-Ile) (2), and one
NPA (3)] isolated with anti-cancer activity. By altering TGF-induced E.M.T., NPA inhibits
the TGF/Smad pathway and suppresses A549 cell metastasis. It prevents Snail and Slug ex-
pression by inhibiting Smad 2/3 phosphorylation. It also suppresses Snail and Slug, which
upregulates the epithelial markers E-cadherin, Zo-1, and claudin-1 while downregulating
VIM, FN1, CDH2, and MMP-2 expression, preventing metastasis [101]. The mechanism of
NPA is shown in Figure 4.

4.16. x-Solanine

a-Solanin (AS), a steroidal glycoalkaloid obtained from nightshade (Solanum nigrum
Linn.), suppresses tumor cell growth and causes apoptosis in colon, liver, cervical, lym-
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phoma, and stomach cancer cells. However, the mechanism by which it blocks cancer
cell metastasis remains unknown. An animal model of BC induces cell death and inhibits
cell proliferation and angiogenesis, resulting in chemotherapeutic actions [103,104]. It
also increases E-cadherin expression, reducing VIM expression and cell invasion, which
inhibits EMT. It also decreases extracellular inducer of matrix metalloproteinase (EMM-
PRIN), MMP-2, and MMP-9, increasing Cysteine-rich protein with Kazal motifs (RECK),
TIMP-1, and TIMP-2 mRNA expression levels. It downregulated the phosphorylation of
Akt, ERK1/2, and PI3K. Furthermore, it increases tumor suppressor miR-138 expression
while decreasing oncogenic miR-21 expression [6,105].

4.17. Baicalein, Wogonin (WG), and Oroxylin-A (ORA)

Baicalein (BAI), wogonin (WG), and oroxylin-A (ORA) are present in a plant, namely
Scutellaria baicalensis [105]. It has been reported that the extract of Scutellaria baicalensis
has anti-tumor activity. A study reported that using the combination of BAI (65.8%), WG
(21.2%), and ORA (13.0%) compounds against A549 lung adenoma cancer cells inhibited
the EMT process significantly [105]. The Total Flavonoid Aglycones Extract (TFAE) isolated
from Scutellaria baicalensis has shown inhibition against tumors by inducing apoptosis,
mainly BAI, WG, and ORA [106]. It was reported that the TFAE of Scutellaria baicalensis has
inhibited the EMT of A549 cells via PI3K/AKT-TWIST1 axis [105].

4.18. Coptidis Rhizoma

It was reported that the extract of Coptidis Rhizoma (CR) could inhibit the EMT
process via the TGF-f3 signaling pathway [107]. It has been shown that 30% ethanol extract
of Coptidis Rhizoma can inhibit cell migration and invasion via blocking E-cadherin and
decreasing expression of vimentin, Snail, and ZEB2 [107]. It has a potential anti-metastatic
effect and can be a candidate against cancer. The different pathways and proteins targeted
by all natural products discussed in the present review are summarized in Figure 5.
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Figure 5. Illustration of the different pathways targeted by the natural products discussed in the
present review.
5. Advantages of Targeting EMT

EMT is recognized as playing a key role in developing cancer, metastasis, and chemother-
apy resistance, and its crucial roles throughout cancer progression have recently been
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discovered and investigated. Although there is still debate about whether EMT causes
cancer metastasis, its importance in cancer chemoresistance is becoming more widely
recognized, with many EMT-related signaling pathways implicated in cancer cell chemore-
sistance [39]. Targeted cancer treatments have been an emerging field in the recent decade.
Several monoclonal antibody therapies and small chemicals, particularly kinase inhibitors,
have been discovered/synthesized and undergo clinical trials with improved anti-cancer
effectiveness. While many targeted therapeutic medications demonstrated encouraging
preliminary clinical outcomes, such as enhanced overall survival, a significant percentage
of patients who received targeted therapy acquired drug resistance following long-term
treatment [108]. As a result, cancer drug resistance will determine the success of forthcom-
ing targeted treatment medications. Drug resistance can be caused by various mechanisms,
including drug efflux, drug metabolism, and drug target mutations [1,109]. The func-
tion of EMT in cancer therapy resistance has recently been explored. In the early 1990s,
a relationship between EMT and cancer cell treatment resistance was proposed. Heck-
ford et al. discovered that EMT occurred in two Adriamycin-resistant MCE-7 cells and
vinblastine-resistant ZR-75-B cells [110]. Attempts have been devoted to targeting the ABC
transporters to overcome drug resistance [111,112]. When it became obvious that EMT
plays a critical role in drug resistance, scientists began exploring drugs targeting EMT
to overcome drug resistance. Gupta et al. created EMT cells using E-cadherin shRNA
and used this cell line to develop CSC-selective small molecule inhibitors. Using high-
throughput screening, they discovered an antibiotic named Salinomycin that eliminated
breast CSCs preferentially [113]. Salinomycin also reduced EMT caused by doxorubicin
exposure and improved doxorubicin sensitivity in HCC cells [114]. It inhibited the expres-
sion and operation of drug efflux pumps in BC cells, resulting in a considerable reduction
in doxorubicin resistance [115]. In addition to Salinomycin, several minor pharmacologic
inhibitors of EMT have been discovered and tested in vitro and in vivo cancer treatment
resistance models. Mocetinostat, a histone deacetylase (HDAC) inhibitor that restored
miR-203 and decreased ZEB1 (EMT-TF) expression, reversed EMT in drug-resistant cancer
cells and sensitized them to the chemotherapeutic agent docetaxel [116]. Curcumin, a
component of curry, was discovered to sensitize 5-fluorouracil-resistant colorectal cancer
cells via inhibiting EMT via miRNA [117]. According to Namba et al., EMT mediated by
the Akt/GSK3/Snaill pathway was a critical signaling event in acquiring gemcitabine
resistance in PC cells. The anti-viral zidovudine inhibited these signaling pathways, restor-
ing gemcitabine sensitivity in cancer cells. Co-administered zidovudine with gemcitabine
reduced tumor growth and prevented cancer cells from establishing the EMT phenotype
in mice with a gemcitabine-resistant pancreatic tumor xenograft [118]. Oncologists have
recently focused on metformin since it has anti-cancer and chemopreventive qualities
independent of anti-hyperglycemic effects [119,120]. Hirsch et al. later discovered that
metformin targets BCSCs [121]. According to follow-up studies, metformin lowers CSCs by
targeting EMT Metformin triggered transcriptional re-programming of BCSCs by lowering
major EMT-TFs such as SNAIL2, Twistl, and ZEB1, according to Vazquez-Martin and
colleagues [121]. Metformin has been shown to prevent EMT in lung cancer by inhibiting
the IL-6/STAT3 axis in lung adenocarcinoma [122]. Although the direct molecular target
of metformin in suppressing EMT is unknown, the Stimulation of AMPK may play a
significant role in the drug’s anti-EMT activity [123,124]. Metformin is being studied in
over 200 human clinical studies for cancer therapy because of its possible CSC, anti-cancer
properties, and favorable safety profile [125]. As a result, targeting EMT has been viewed
as a unique strategy for combating cancer treatment resistance. In addition to the small
compounds that have been created, a lot of pharmacological screening is being done to
find new EMT inhibitors. Chua et al. created an EMT spot migration recognition method
that can be utilized for high-content screening to screen small molecule EMT inhibitors
that target certain growth factors. Scientists could undertake high throughput screening of
small compounds utilizing enhanced screening platforms thanks to advancements in EMT
and CSC biology [126]. Aref et al. also created a microfluidic device that mimics the 3D
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tumor microenvironment by including tumor cell spheroids and an adjacent endothelial
monolayer. This approach is very beneficial in identifying EMT medicines active in a
complex in vivo tumor microenvironment with several cell kinds interacting [127,128].
As a result, targeting EMTs with the natural chemical entity is viewed as a unique and
innovative approach to combating cancer treatment resistance.

6. Targeting EMT Process by Molecular Docking (MD)

MD is a promising approach for estimating the interaction between biological molecules,
such as proteins and ligands [129,130]. In the last decade, MD has emerged as a promising
tool in identifying lead molecules against different ailments. MD is applied to cancer stem
cells (CSC) associated metabolic and signaling pathways. Different metabolic pathways
participate in CSC survival concerning cancer progression and alterations [130]. This is
why metabolic re-programming is considered one of the cancer symbols [131].

Natural products are considered the grounds of multi-targeting molecules. Alkaloids,
a class of natural producers, are one of the promising molecules that have the strength to
combat CSCs via MD [130,131]. The drugs like salasonine and tylophorine have shown that
they altered the Hedgehog (Hh) pathways and exerted anti-cancer effects on CSCs [130,131].
The targeting of overexpressed receptors in cancer tissues has demonstrated anti-cancer po-
tential by natural products earlier through MD and experimental approaches [130,131]. It is
reported that natural products represent a rich source of therapeutically active compounds
which can interact with numerous cellular targets and minimize the side effects [132]. MD
may help us find the natural lead molecules against the EMT process. Different recep-
tors play a role in the EMT process, so it will be more important to screen out natural
compounds against those receptors to find lead molecules.

7. Future Prospective

EMT has long been suspected of contributing to cancer therapy resistance. It became
clear when scientists observed strong parallels in gene expression profiles and marker
expression between EMT cells and CSCs. The resistance of CSCs against pharmacother-
apy is a major challenge and poses a significant threat to cancer patients. The pathways
involved in EMT have been deciphered by scientists, and have developed several method-
ologies to investigate the phenotypes in EMT. These understandings form the basis for
drug screening against EMT-mediated cancer. The miRNA and some chemical agents
demonstrate inhibitory activity against EMT, but no currently available miRNAs in clinical
settings can solve this problem. So natural compounds showing good results can be the
game changers in mitigating the EMT process. Several small chemical agents have been
discovered to help drug-resistant cancer cells targeting EMT become more chemo-sensitive.
Many of these, including Ligustrazine Penisuloxazin A, Halichondramide, Sophocarpine,
Fucoidan, and Diketopiperazines, were investigated in human clinical trials with standard
chemotherapies or targeted treatments.

Furthermore, EMT inhibitors’ long-term safety is unknown. This is especially true
if EMT inhibitors activate the MET pathway, which has been linked to cancer metastasis.
Moreover, studies need to be conducted to investigate the link of EMT with different
pathways involved in Cancers. There is a need to develop nanoformulations targeting
the cancerous to avoid off-target side effects. Moreover, with the advancement of the
compounds screening assays, more novel natural compounds need to be explored to find a
more potent EMT inhibitor. Novel in vitro and in vivo approaches should be developed to
reduce translational failure [133].

8. Conclusions

The part of EMT-MET in cancer cell dispersion and distant metastasis has been ac-
knowledged. Recent research suggests that EMT may not be required for cancer cell metas-
tasis despite its importance in chemoresistance. However, this is controversial because of
the EMT phenotype’s variability and adaptability. Only a fraction of EMT populations may
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be controlled by Fspl. Finally, EMT is a critical cancer cell characteristic contributing to
medication resistance. Inhibitors of this biological mechanism will be suitable “partners”
for chemotherapy or targeted therapy medications, allowing current cancer therapies to
achieve better clinical outcomes. Natural products play a dynamic role in controlling the
process of EMT in cancer; many assays have been performed to prove their activity. EMT is
a progression where cells can lose their epithelial properties like E-cadherin and a few more
and gain mesenchymal properties like CDH2, VIM, FN1, etc. EMT has long been investi-
gated for its involvement in cancer treatment resistance and metastasis. Assay techniques
to analyze EMT phenotypic and drug screening have been created based on a better knowl-
edge of natural chemicals and critical signaling pathways in EMT. Natural compounds that
downregulate EMT phenotype and, as a result, drug resistance and metastasis have been
identified, allowing scientists to discover natural compounds as EMT inhibitors capable
of improving chemosensitivity of drug-resistant cancer cells while inhibiting metastasis.
However, additional research is needed to fully comprehend the significance of EMT in
cancer treatment resistance, cell proliferation, invasion, metastasis, and natural chemicals
and their involvement in blocking EMT.
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