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Abstract: A reaction between 4,4′,4′′-(benzene-1,3,5-triyltris(oxy))triphthalic acid (H6L) and lan-
thanide(III) nitrates (Ln = Eu3+, Tb3+) in water under the same conditions gave a molecular coor-
dination compound [Tb(H4.5L)2(H2O)5]·6H2O in the case of terbium(III) and a one-dimensional
linear coordination polymer {[Eu2(H3L)2(H2O)6]·8H2O}n in the case of europium(III). The crystal
structures of both compounds were established by single-crystal X-ray diffraction, and they were
further characterized by powder X-ray diffraction, thermogravimetric analysis and infrared spec-
troscopy. The compounds demonstrated characteristic lanthanide-centered photoluminescence. The
lanthanide-dependent dimensionality of the synthesized compounds, which are the first examples of
the coordination compounds of hexacarboxylic acid H6L demonstrates its potential as a linker for
new coordination polymers.

Keywords: europium; terbium; flexible ligands; metal–organic frameworks; coordination polymers;
luminescence; crystal structure

1. Introduction

Aromatic polycarboxylic acids are important building blocks for the construction of
metal–organic frameworks (MOFs), since the carboxylate groups are able to form strong
coordination bonds with most metal cations [1–4]. Rigid di-, tri- and tetracarboxylic
acids were successfully used for the preparation of robust MOFs [5–7]. In recent years,
an increasing amount of attention has been paid to flexible MOFs, which are able to
expand or contract their networks upon external stimuli, such as temperature, pressure
or electromagnetic irradiation [8–13]. The flexibility of MOFs can be induced by the
conformational flexibility of their organic linkers; the latter may be achieved by introducing
ether groups into their structures [14–17]. Increasing the number of the carboxylic groups
in MOF linkers may leave some of them uncoordinated by the metal nodes and improve
the functional properties of the resulting MOF, such as proton conductivity, adsorption
selectivity for gases from their mixtures or metal ions from solutions [18].

In this work, we explore the coordination chemistry of an ether-bridged hexa-carboxylate
ligand, 4,4’,4”-(benzene-1,3,5-triyltris(oxy))triphthalic acid (H6L, Scheme 1), for which no
coordination compounds have been reported before, although the compound itself was
first prepared two decades ago and used for the synthesis of hyperbranched organic poly-
mers [19]. Two lanthanide metals, europium(III) and terbium(III), were chosen as the central
ions for the synthesis of coordination compounds because of their potential luminescent
properties [20–27], possible applications as catalytic platforms [28,29], proton-conductive or
magnetic materials [30]. In addition, flexible polycarboxylate ligands are especially suitable
for the formation of lanthanide coordination polymers because of their ability to form
strong metal-oxygen bonds and saturate the high lanthanide coordination numbers [31,32].
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Scheme 1. Synthesis of Tb(III) and Eu(III) coordination compounds 1 and 2.

2. Results and Discussion
2.1. Synthesis of the Coordination Compounds

Terbium(III) and europium(III) coordination compounds were prepared as single
crystals by the reaction between H6L and metal nitrate hexahydrates (1:1 molar ratio)
in an aqueous solution under hydrothermal conditions (Scheme 1). It was found that
specific pH conditions are necessary for the formation of the products. Thus, 3 equivalents
(relative to the amount of the metal salt) of the base (KOH) were necessary to carry out the
reaction at 90 ◦C, followed by neutralization with HNO3 (2.5 equivalents) and prolonged
crystallization at room temperature. Numerous attempts to carry out the reaction under
other conditions (no acid of base added, only acid or base added, variable temperature)
did not result in the formation of any solid product. When the amounts of acid or base
used were different from the ones indicated above, only amorphous solids were obtained
that were not further characterized. It is interesting to note that under identical synthetic
conditions, Tb3+ formed a molecular complex with a 1:2 M:L ratio, while Eu3+ gave a linear
coordination polymer of a 1:1 M:L composition. Other M:L ratios from 6:1 to 1:6 were tested
as well, but they gave no solid products or only amorphous precipitates.

2.2. Crystal Structure of the Coordination Compounds

Single-crystal X-ray diffraction analysis revealed that compound 1 crystallizes in a
monoclinic crystal system, space group C2/c. The compound is a molecular complex,
consisting of one Tb3+ ion, five coordinated water molecules, two crystallographically
equivalent ligand molecules and six lattice water molecules (Figure 1a). Each Tb3+ ion
coordinates nine oxygen atoms, four of which are from the carboxylic groups of two organic
ligands and the remaining five are from the coordinated water molecules. According to
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the Shape 2.1 software package [33], the coordination environment is best described by
a muffin configuration (MFF) [34] (Figure 1b, Table S1). The Tb-O distances are 2.397(2)
and 2.547(2) Å for the carboxylate ligand and vary from 2.330(2) Å to 2.418(2) Å for the
coordinated water molecules, which are typical values for such types of coordination.
The proton of the carboxylic group at the ortho-position to the coordinated carboxylate
group participates in an intramolecular hydrogen bond (d(D···A) = 2.394(3) Å, d(H···A) =
1.25(4) Å, d(D–H) = 1.14(4) Å, ∠(D–H···A) = 174(3)◦) and is disordered over two equivalent
positions in two anionic ligands (Figure S1). To achieve electroneutrality, the terbium(III) co-
ordination sphere should therefore be composed as [Tb(H4.5L)2(H2O)5]. The benzene rings
in compound 1 participate in intermolecular π-π stacking interactions with the centroid-to-
centroid separation of 3.791 Å (the angle between the benzene ring planes is 10.9◦, Figure
S2), and the water molecules are involved in multipoint hydrogen bonds (Table S2), which
connect the molecules of compound 1 into a three-dimensional supramolecular framework
(Figure 1c).
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different crystal structure. Compound 2 crystallizes in a triclinic crystal system with space 

Figure 1. X-ray crystal structure of the compound 1: (a) molecular structure (both positions of
the disordered carboxylic proton are shown); (b) coordination polyhedron of Tb3+ cation; (c) 3D
supramolecular structure formed as a result of hydrogen bonding (purple dotted lines) and π-π
stacking (black dotted lines).

Although the Eu-compound 2 was synthesized by the same method as the
Tb-compound 1, the single crystal X-ray diffraction analysis of compound 2 reveals a
completely different crystal structure. Compound 2 crystallizes in a triclinic crystal system
with space group P-1; the asymmetric unit contains one Eu3+ ion, one H3L3- ligand, three
coordinated water molecules and four lattice water molecules (Figure 2a). Similarly to com-
pound 1, the coordination polyhedron of Eu3+ is close to the muffin shape (Table S1), but in
contrast to the Tb-compound 1, two Eu3+ cations are joined by the bridging carboxylate
groups into binuclear 8-connected [Eu2] secondary building units (Figure 2b), which are
connected by two H3L3- linkers into 1D infinite chains parallel to the ac-plane (Figure 2c).
The Eu–O distances for the coordinated carboxylate groups are 2.385(2) Å and 2.526(2) Å,
typical for europium(III) carboxylate compounds. Further, a 3D supramolecular structure
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is formed between one-dimensional chains through the hydrogen bonding interactions,
involving the coordinated carboxylate and the uncoordinated carboxylic groups (Table S3,
Figures 2d and S3).
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Figure 2. X-ray crystal structure of the compound 2: (a) elementary unit of the coordination polymer;
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interactions between the chains (two separate chains are colored blue and green).

Different coordination behaviors of Tb3+ and Eu3+ towards H6L ligand under the
same conditions may be attributed to the known lanthanide contraction effect. Despite a
weak monotonic change of the ionic radii in the lanthanide series, for a certain Ln3+ ion, a
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structure may cease to be stable due to the increased steric hindrance in the ever-shrinking
coordination sphere of the metal ion. This can lead to a change in the ligand connectivity,
including a change in dimensionality and topology. Gadolinium, which stands between
the europium and terbium in the lanthanide series, often appears to be a breaking point in
such alternations and one product is formed for lanthanides lighter than Gd and a different
product is obtained for heavier lanthanides [35–37].

The conformational flexibility of the potentially hexacarboxylate ligand H6L is evident
from the variability of the dihedral angles between the benzene rings connected by ether
bonds in Tb-compound 1 and Eu-compound 2 from 61.5◦ to 88.8◦ (Figure 3).
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2.3. X-ray Powder Diffraction, IR Spectroscopy and Thermogravimetric Analysys

The phase purity of compounds 1 and 2 was confirmed by powder X-ray diffraction.
As shown in Figure S4, the experimental diffractograms recorded at room temperature and
the simulated patterns obtained from single crystal data are in good agreement.

The IR spectra of the H6L ligand, Tb-compound 1 and Eu-compound 2 are shown in
Figure S5. The IR spectrum of Tb-compound 1 features an absorption peak near 3037 cm−1,
which is attributed to the C–H stretching vibrations of the aromatic ring. The benzene ring
vibration bands were observed at 1582 cm−1 and 1549 cm−1. In addition, the spectrum
of Tb-compound 1 demonstrates a wide O-H stretching vibration peak near 3390 cm−1

from water molecules and protonated carboxylate groups involved in hydrogen bonding.
The characteristic peaks at 1737 cm−1 and 1711 cm−1 may be assigned to the stretching
vibrations of the protonated carboxyl groups, in accordance with incomplete deprotonation
of the H6L ligand. The strong bands at 1582 cm−1, 1549 cm−1, 1455 cm−1 and 1425 cm−1

correspond to the asymmetric and symmetric stretching vibrations of the carboxylate
groups. The IR spectrum of Eu-compound 2 demonstrated features similar to the spectrum
of Tb-compound 1. Thus, the peaks near 3080 cm−1 and 3390 cm−1 were attributed to
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C–H and O–H stretching vibrations, and correspondingly, the benzene ring vibrations were
observed at 1596 cm−1 and 1431 cm−1. The band at 1721 cm−1 corresponds to the C = O
carbonyl stretching of COOH groups, while the bands near 1596 cm−1, 1554 cm−1 and
1431 cm−1 were assigned to the asymmetric and symmetric stretching vibrations of the
carboxylate groups.

The TG curve of Tb-compound 1 exhibited a weight loss of 14.3%, which occurred
in two steps within 30–200 ◦C (Figure S6). The first step in the range of 30–150 ◦C is due
to the removal of free water molecules (found: 7.4%, calc.: 6.8%), and the second step at
150–200 ◦C is due to the removal of coordinated water molecules (found: 6.9%, calc.: 5.7%).
After dehydration, Tb-compound 1 remains stable up to 360 ◦C, indicative of good thermal
stability.

2.4. Luminescent Properties of the Ligand and the Coordinaion Compounds

The solid-state luminescent spectra of H6L ligand, Tb-compound 1 and Eu-compound
2 were measured for the powdered samples at room temperature. As shown in Figure S7,
the H6L ligand showed a broad emission peak with a maximum of 456 nm (λex = 370 nm).
The excitation spectra of both Tb-compound 1 and Eu-compound 2 showed broad bands
with maxima near 300 nm (Figure S8), suggesting ligand-centered absorption. When excited
at 300 nm, the Tb-compound 1 exhibited the following four characteristic emission peaks
from the Tb3+ ion: 490, 545, 584 and 622 nm, attributed to 5D4→7F6, 5D4→7F5,

5D4→7F4,
5D4→7F3 transitions [38], respectively (Figure 4a). Likewise, upon excitation at 310 nm,
the Eu-compound 2 exhibited the following four characteristic emission peaks from the
Eu3+ ion: 593, 615, 649 and 694 nm, attributed to 5D0→7F1, 5D0→7F2, 5D0→7F3, 5D0→7F4
transitions [39], respectively (Figure 4b). The luminescence lifetime of the Tb-compound 1
obeys a single exponential equation (characteristic lifetime of 0.68 ms), which indicates that
a single coordination environment exists for Tb3+ ion (Figure 4c). The luminescence lifetime
of the Eu-compound 2 was 0.28 ms (Figure 4c). The quantum yields of the Tb-compound 1
and the Eu-compound 2 were 8% and 2%, respectively. Relatively low quantum yields may
be due to the conformational flexibility of the ligand, leading to vibrational non-radiative
energy dissipation, often observed for lanthanide coordination polymers with flexible
ligands [40,41]. In addition, the presence of five or three coordinated water molecules in the
lanthanide coordination sphere in compounds 1 and 2 also leads to deactivation through
O–H vibrations [42].

As shown in Figure 4d, the emission of compounds 1 and 2 is characterized by the
chromaticity coordinates (0.3318, 0.5769) and (0.6425, 0.3464). The color temperature of the
green emission of Tb-compound 1 was 5600 K, and the red emission of the Eu-compound 2
had a color temperature of 8870 K, both of which correspond to the cool colors (>5000 K
are called cool colors).

In order to gain insight into the photoluminescence mechanism, TD-DFT calculations
for the H6L ligand and its triply deprotonated form (as lithium salt, Li3H3L) were carried
out. In the optimized structure of the Li3H3L model, the dihedral angles corresponding
to the rotation of the phthalate rings are in good agreement with the values obtained
from the X-ray crystal structure of compound 2, suggesting that the predicted conforma-
tion of the anionic ligand is approximately the same as in the structure of compound 2
(Figure S9, Table S4). Therefore, the obtained geometry of Li3H3L may be used for further
calculations of the photophysical properties. According to TD-DFT calculations, the UV-
Vis absorption of H6L is associated with the S0→S1 excitation; the calculated maximum
is 302 nm. The S0→S1 excitation is accompanied by the following three major electron
transitions: HOMO→LUMO (contribution 49%), HOMO-1→LUMO (contribution 41%),
HOMO-2→LUMO (contribution 10%). As one can see from the localization of the molecu-
lar orbitals, the S0→S1 excitation is a π→π* transition with the charge transfer between the
aromatic rings of H6L (Figure S10).
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The calculated position of the absorption maximum of Li3H3L is 316 nm, which is in
reasonable agreement with the experimentally observed value of 308 nm for compound
2. The S0→S1 excitation is characterized by the following two major electronic transitions:
HOMO→LUMO (68%) and HOMO-1→LUMO (32%). The charge transfer accompanying
the π→π* excitation in Li3H3L is even more pronounced compared to the protonated ligand
H6L (Figure 5).
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Figure 5. Isosurfaces (at 0.02 e/Bohr3) of the molecular orbitals of Li3H3L ground state calculated at
B3LYP[GD3BJ] 6–31 + G(d) level of theory.

Relatively long luminescence lifetimes of the coordination compounds 1 and 2 suggest
an emission due to f-f lanthanide transitions. At the same time, the broad absorption bands
near 310 nm suggest a ligand-centered excitation; therefore, an intersystem crossing S1-T1
process must be assumed, followed by an energy transfer from the T1 state to 5D0 or 5D4
states of Eu3+ or Tb3+ ions. A comparison of the energies of these states indicates that in
both cases, such transitions are energetically favorable (Figure 6).
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3. Materials and Methods
3.1. Starting Materials and Synthetic Procedures

All reagents were commercially available and used without further purification. The
ligand 4,4′,4′′-(benzene-1,3,5-triyltris(oxy))triphthalic acid (H6L) was obtained from Jinan
Henghua Sci. & Tec. Co. Ltd. (Jinan, China) and used as received.
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3.1.1. Synthesis of Compound [Tb(H4.5L)2(H2O)5]·6H2O (1)

A mixture containing Tb(NO3)3·6H2O (3.6 mg, 0.008 mmol), H6L (5 mg, 0.008 mmol)
were dissolved in H2O (2 mL) and then 24 µL of 1 M KOH solution was added. The
solution was sealed in a screw-cap vial and heated at 90 ◦C for 48 h, gradually cooled
to room temperature and 20 µL of 1 M HNO3 solution were added. The resulting clear
solution was heated at 100 ◦C for 24 h, gradually cooled to room temperature again and
allowed to stand for 2 weeks to obtain pale yellow flaky crystals. Yield: 47% (based on
H6L). Elemental analysis calcd. (%) for C60H55O41Tb: C, 45.3; H, 3.5. Found (%) C, 45.3; H,
3.2. IR (cm−1, KBr): 3390 (m), 3073 (m), 2929 (m), 2612 (w), 2144 (w), 1737 (m), 1711 (m),
1662 (m), 1582 (s), 1549 (s), 1455 (s), 1425 (s), 1374 (s), 1329 (m), 1307 (m), 1264 (m), 1223 (s),
1128 (m), 1064 (m), 1010 (m), 924 (w), 883 (w), 857 (w), 795 (w), 774 (w), 743 (w), 711 (w),
670 (w), 638 (w), 533 (w), 473 (w), 439 (w).

3.1.2. Synthesis of Compound {[Eu2(H3L)2(H2O)6]·8H2O}n (2)

Compound 2 was synthesized in the same way as compound 1, except that
Tb(NO3)3·6H2O was replaced by Eu(NO3)3·6H2O (3.6 mg, 0.008 mmol). Yield: 52% (based
on H6L). Elemental analysis calcd. (%) for C60H50Eu2O40: C, 42.0; H, 2.9. Found (%) C, 42.2;
H, 2.9. IR (cm−1, KBr): 3386 (m), 3082 (m), 2925 (w), 1721 (m), 1674 (m), 1596 (s), 1554 (s),
1431 (s), 1385 (s), 1322 (m), 1267 (m), 1221 (s), 1142 (m), 1118 (m), 1069 (w), 1008 (m), 922 (w),
850 (w), 836 (w), 821 (w), 804 (w), 781 (w), 710 (w), 680 (w), 656 (w), 637 (w), 610 (w),
572 (w), 458 (w).

3.2. Physical Methods of Analysis

Powder X-ray diffraction (PXRD) measurements were carried out using a Bruker D8
ADVANCE diffractometer (Bruker Corporation, Billerica, MA, USA), Cu-Kα radiation,
λ = 1.5406 Å, 2θ range 3–40◦. Elemental analyses for C and H were performed using a Vario
MICRO Cube analyzer (Elementar Analysensysteme GmbH, Langenselbold, Germany).
Thermogravimetric analysis (TGA) was carried on a NETZSCH TG 209 F1 Iris Thermo
Microbalance (Erich NETZSCH GmbH & Co. Holding KG, Selb, Germany) heated from
30 to 850 ◦C under helium atmosphere with the heating rate of 10 ◦C/min. IR spectra
were recorded on a Bruker Scimitar FTS 2000 spectrometer (Bruker Corporation, Billerica,
MA, USA) in the range 4000–400 cm−1. Luminescence spectra, luminescence lifetimes and
quantum yields were obtained on Horiba Jobin Yvon Fluorolog 3 (HORIBA Jobin Yvon
SAS, Edison, NJ, USA) photoluminescence spectrometer equipped with 450W ozone-free
Xe-lamp, a cooled photon detection module and an integrating sphere.

3.3. Single-Crystal X-ray Diffraction

Diffraction data for single crystals compounds 1 and 2 were collected with a Bruker D8
Venture diffractometer with a CMOS PHOTON III detector and IµS 3.0 source (mirror optics,
λ(CuKα) = 1.54178 Å). The ϕ-andω-scanning techniques were employed to measure the
intensities. The crystal structures were solved and refined by means of the SHELXT [43] and
SHELXL [44] programs using OLEX2 GUI [45]. Atomic displacement parameters for non-
hydrogen atoms were refined anisotropically. Hydrogen atoms were placed geometrically
and refined in the riding model. The crystallographic parameters and the details of the
diffraction experiment are given in Table 1. The bond lengths and bond angles for the
Tb-compound 1 and Eu-compound 2 are provided in Tables S5 and S6.
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Table 1. Crystallographic data and details of the structure refinement for the compounds 1 and 2.

Parameter Compound 1 Compound 2

Molecular formula C60H43O35Tb C30H29EuO22
Formula weight, g·mol−1 1481.85 893.49

Temperature, K 150(2) 150.00
Crystal system Monoclinic Triclinic

Space group C2/c P-1
a, Å 38.585(2) 8.66180(10)
b, Å 13.1992(7) 10.0305(2)
c, Å 11.9356(7) 19.2763(3)
α/◦ 90 87.9920(10)
β, ◦ 106.289(2) 80.1830(10)
γ/◦ 90 87.1930(10)

Cell volume, Å 5834.6(6) 1647.66(5)
Z 4 2

ρcalc, g/cm3 1.687 1.801
µ, mm−1 1.320 2.000

F(000) 2988.0 896.0
Independent reflections 9710 [Rint = 0.0508, Rsigma = 0.0445] 5809 [Rint = 0.0405, Rsigma = 0.0402]
Goodness-of-fit on F2 1.061 1.036

Final R indexes [I ≥ 2σ(I)] R1 = 0.0353, wR2 = 0.0756 R1 = 0.0263, wR2 = 0.0547
Final R indexes [all data] R1 = 0.0458, wR2 = 0.0786 R1 = 0.0295, wR2 = 0.0565

3.4. Computational Chemistry Details

The calculations were performed using Gaussian 09 package [46]. The isolated H6L
molecule was used to model the free ligand, while a triply deprotonated form (balanced
by three lithium cations, Li3H3L) was used to represent the anionic ligand in compound 2.
Singlet ground state geometry optimizations of H6L were carried out in the gas phase at the
DFT level of theory employing the three-parameter hybrid B3LYP functional [47–50] and
6–31 + G(d) basis set [51–54]. An empirical dispersion correction was applied using the D3
version of Grimme’s empirical dispersion with Becke-Johnson damping [55]. The frequency
calculations in a harmonic approximation were performed for the optimized geometries in
order to establish the nature of the stationary points, lack of imaginary vibration modes for
the optimized structures indicates that the stationary points found corresponded to minima
on the potential energy surface. The first singlet and triplet exited states of H6L and Li3H3L
were computed at time-dependent DFT (TD-DFT) level, using the optimized ground state
geometry and the same functional and basis set used for the ground state calculations.

4. Conclusions

In summary, the coordination chemistry of a flexible aromatic triether-bridged hex-
acarboxylate ligand (4,4′,4′′-(benzene-1,3,5-triyltris(oxy))triphthalic acid) was studied for
the first time, and two new lanthanide coordination compounds were prepared and char-
acterized. It was found that the nature of the lanthanide affects the dimensionality of
the compounds formed. Thus, in identical reaction conditions, Tb3+ forms a discrete co-
ordination compound, while Eu3+ yields a 1D coordination polymer. Both compounds
demonstrated characteristic lanthanide-centered emission and ligand-centered excitation,
in accordance with the experimental absorption spectra and TD-DFT calculations. There-
fore, the aromatic ligand acts as an antenna for lanthanide excitation and further studies of
its coordination chemistry may lead to the preparation of efficient light emitters. It should
also be noted that the observed difference in the reactivity of Eu3+ and Tb3+ may contribute
to solving the problem of lanthanide separation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27227849/s1, Figure S1. Fragment of the molecular
structure of compound 1 showing a hydrogen bond between the coordinated and un-coordinated

https://www.mdpi.com/article/10.3390/molecules27227849/s1
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carboxylic groups; Figure S2. Fragment of the crystal structure of compound 1 showing π-π inter-
action between the benzene rings of two molecules (green dashed line); Figure S3. Fragment of the
crystal structure of compound 2 showing hydrogen bonds between the coordinated carboxylate and
uncoordinated carboxylic groups in two different coordination polymer chains; Figure S4. Calculated
and experimental PXRD patterns of the compounds 1 (a) and 2 (b); Figure S5. FT-IR spectra of
H6L ligand, compound 1 and compound 2; Figure S6. Thermogravimetric analysis curve for the
compound 1; Figure S7. The solid-state excitation (λem = 450 nm) and emission (λex = 370 nm) spectra
of H6L at room temperature; Figure S8. The solid-state excitation spectra of the compounds 1 (λem =
545 nm) and 2 (λem = 615 nm) at room temperature; Figure S9. Optimized geometry of H6L obtained
at B3LYP[GD3BJ] 6–31 + G(d) level of theory; Figure S10. Isosurfaces (at 0.02 e/Bohr3) of the molecu-
lar orbitals of H6L ground state calculated at B3LYP[GD3BJ] 6–31 + G(d) level of theory; Table S1.
Continuous shape measures criteria (S) for nine-coordinated metal centers in the compounds 1 and
2; Table S2. Geometrical parameters of the hydrogen bonds in compound 1; Table S3. Geometrical
parameters of the hydrogen bonds in compound 2; Table S4. Calculated and experimental geometrical
parameters of H3L3–; Table S5. Selected bond distances (d) and angles (ϕ) for compound 1; Table S6.
Selected bond distances (d) and angles (ϕ) for the compound 1; CIF files and CheckCIF reports for
the compounds 1 and 2.
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