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Abstract: Extensive reports on the use of supramolecular polymer networks (SPNs) in self-healing
materials, controlled release system and degradable products have led more researchers to tap their
potential owing to the unique properties. Yet, the attendant efforts in the visualization through con-
ventional luminescence methods during the formation of SPNs have been met with limited success.
Herein, we designed a special type of SPNs prepared by PPMU polymer chains containing pyrene
benzohydrazonate (PBHZ) molecules as AIEgens for the multicolor visualization with naked eyes.
The complete detection of the formation process of the networks relied on the PBHZ molecules with
aggregation-induced ratiometric emission (AIRE) effect, which enabled the fluorescence of the poly-
mer networks transits from blue to cyan, and then to green with the increasing crosslinking degree
derived from the hydrogen bonds between 2-ureido-4-pyrimidone (UPy) units of the polymer chains.
Additionally, we certificated the stimuli-responsiveness of the obtained SPNs, and the fluorescence
change, as well as observing the morphology transition. The AIEgen-enabled multicolor visualization
of the formation of SPNs may provide better understanding of the details of the crosslinking interac-
tions in the microstructural evolution, giving more inspiration for the multifunctional products based
on SPNs.

Keywords: aggregation-induced emission; crosslinking degree; multicolor visualization; supramolecular
polymer networks

1. Introduction

The progressive improvements in function and properties are observed apparently
during the crosslinking of primary linear polymer chains into polymer networks [1–3]. This
is why polymer networks have drawn extensive attention to their applications in biomed-
ical encapsulation and controlled release systems, healable and reprocessable materials,
etc. [2,4–8]. In terms of the interconnecting bonds, polymer networks can be classified
into covalent networks and supramolecular polymer networks (SPNs) [9–12]. Covalent
networks are produced by polymer chains through permanent covalent bonds, while SPNs
are based on non-covalent interactions [13,14]. When covalent networks are utilized to
construct tough materials for their strong crosslinks, SPNs are favored due to their unique
self-assembly capability, reversibility and stimuli-responsiveness provided by the weak
crosslinking motifs such as hydrogen bonding, metal–ligand coordination, host–guest
interactions and π–π interactions [15–23]. Sanjayan and co-workers proposed supramolec-
ular polymer networks cross-linked by Janus-faced hydrogen bonds, which combine the
advantages of recyclability, stability and reprocessability [24]. Zhao and co-workers pre-
pared Eu3+- and Tb3+-containing hydrogels through metal−ligand coordination for smart
confidential information protection. Huang and co-workers realized time-dependent infor-
mation encryption through the construction of self-assembled supramolecular host–guest
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networks comprised of pillar [5] arene host and nitrile guest [25]. Therefore, it is of great
necessity to monitor the formation of the supramolecular polymer networks aimed at
creating more customized functional products [26].

Fluorescence techniques as prevailing labeling methods are considered rationally;
their unique properties, superior to conventional nonfluorescent labeling, guarantee their
bright future in the visualization of microscopic processes such as the monitoring of the
formation of the cross-linked polymeric network [27–32]. Specifically, there are two types
of fluorophores applied in fluorescence techniques [33–40]. One type of fluorophores
includes fluorophores with an aggregation-caused quenching (ACQ) effect in which lu-
minescence is quenched in the aggregate state [35,39,40]. The other fluorophores with an
aggregation-induced emission (AIE) effect become emissive as a result of the aggregation
process [33,34,36–38]. As above, ACQ/AIE-active fluorophores are introduced into SPNs,
with the increasing crosslinking degree, the aggregation state caused by the polymer chains
close to each other has different effects on the luminescence of networks [41,42]. The
luminescence of AIE-active fluorophores-based SPNs can be fulfilled at high crosslinking
levels, but it fails at low levels, while ACQ networks behave conversely [41]. In spite of
the opposite luminous mechanism, both of the networks consisting of the two mentioned
fluorophores, when applied in the detection of the crosslinking, just exhibit fluorescence
“ON” at certain limited crosslinking degree with constant emission wavelength, which
sets the limits for the integrity of the monitoring process of the crosslinking as well as the
indicative meaning of the fluorescence color changes.

Given this situation, exploiting the potentially satisfying molecules capable of cir-
cumventing the problem to realize perfect visualization is urgently needed. In recent
years, the structure tunable pyrene benzohydrazonate-based (PBHZ-based) molecular
platform has been reported as one of the research hotspots benefiting from its distinctive
feature of aggregation-induced ratiometric emission (AIRE)—an uncommon AIE phe-
nomenon that emission wavelength changes with the increasing aggregation degree of
the molecule [43–46]. The PBHZ fluorophore was formed by linking pyrene with isolated
benzene. It owned the photophysical properties of pyrene at low concentrations, and as
the concentration increased, the formation of intermolecular hydrogen-bonding in the
aggregation state led to fixation of the molecular conformations, giving rise to longer-
wavelength emission of the fluorophore [47,48]. We envision that the introduction of the
special molecule instead of other conventional AIEgens into the polymerization system
may contribute to the improvement of the detection process. In this work, we put forward
a strategy of advanced multicolor visualization to reveal the formation of supramolecular
polymer networks (SPNs) relying on AIE fluorophores (Scheme 1). SPNs originated from
the self-assembly of the polymers PPMU, which consisted of AIEgen pyrene benzohy-
drazonate (PBHZ), poly(methyl methacrylate (PMMA) main chains and functionalized
2-ureido-4-pyrimidone (UPy) units. In the evolution of polymers to SPNs, the reduction of
the distance between polymers provided more opportunities for the UPy units to interact
based on the multiple hydrogen bonding, leading to the increasing aggregation degree of
the fluorescent molecules as well as crosslinking degree until SPNs are formed. At the same
time, PBHZ fluorophores of the polymers got close to each other, their changed intermolec-
ular aromatic stacking distances in the aggregation state endowed SPNs with the variation
of fluorescence colors from blue to green. On the basis of the luminescence principle, the
PBHZ-based SPNs not only emitted fluorescence at broad cross-linking degree, but also
owned discriminative power to indicate the cross-linking degree through the change of the
fluorescence colors.
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2. Results and Discussion 
2.1. Evidence of SPNs Formation 

As shown in Figure 1, there were stacked spectra for six 1H NMR spectroscopies of 
PPMU in CDCl3 (solution) in ascending order of concentrations from 4 mg/mL to 32 
mg/mL [49,50]. The signals of Ha, Hb, Hc and Hg belonged to the UPy units of the PPMU 
polymer chains, while the peaks marked with Hd, He,f corresponded to the PBHZ 
molecules. Through a vertical comparison, the signal enhancement of Ha was observed 
obviously with the increasing concentrations. The same occurred in the signals of Hb and 
Hc, additionally, both of which shifted to high-field. The proton signal Hb shifted from 
12.02 ppm to 11.83 ppm and Hc shifted from 10.51 ppm to 10.44 ppm. The changes of 
three signals disclosed the hydrogen bonding interactions between the UPy units in the 
high concentrations. The signals Hd and He,f circled by the squares had increased peak 
widths at high concentrations, which were caused by the hydrogen bonding originating 
from the close stacking of PBHZ molecules. Accordingly, the aggregation status of the 
mentioned units as well as the formation of SPNs can be reflected by the 1H NMR 
spectroscopies. 

 
Figure 1. Partial 1H NMR spectra (400 MHz, CDCl3, 298 K) of PPMU at different concentrations (4 
mg/mL, 8 mg/mL, 12 mg/mL, 16 mg/mL, 24 mg/mL, 32 mg/mL). 

DOSY experiments were used to explore the flowability of the polymers in CDCl3 at 
different concentrations [51]. The diffusion coefficients of PPMU solutions over 

Scheme 1. Chemical structure of polymer chain PPMU, and cartoon representations of its proposed
crosslinking process into supramolecular polymer networks and the change of fluorescence color
with increasing concentrations of PPMU solutions.

2. Results and Discussion
2.1. Evidence of SPNs Formation

As shown in Figure 1, there were stacked spectra for six 1H NMR spectroscopies
of PPMU in CDCl3 (solution) in ascending order of concentrations from 4 mg/mL to
32 mg/mL [49,50]. The signals of Ha, Hb, Hc and Hg belonged to the UPy units of the
PPMU polymer chains, while the peaks marked with Hd, He,f corresponded to the PBHZ
molecules. Through a vertical comparison, the signal enhancement of Ha was observed
obviously with the increasing concentrations. The same occurred in the signals of Hb and
Hc, additionally, both of which shifted to high-field. The proton signal Hb shifted from
12.02 ppm to 11.83 ppm and Hc shifted from 10.51 ppm to 10.44 ppm. The changes of three
signals disclosed the hydrogen bonding interactions between the UPy units in the high
concentrations. The signals Hd and He,f circled by the squares had increased peak widths
at high concentrations, which were caused by the hydrogen bonding originating from the
close stacking of PBHZ molecules. Accordingly, the aggregation status of the mentioned
units as well as the formation of SPNs can be reflected by the 1H NMR spectroscopies.
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Figure 1. Partial 1H NMR spectra (400 MHz, CDCl3, 298 K) of PPMU at different concentrations
(4 mg/mL, 8 mg/mL, 12 mg/mL, 16 mg/mL, 24 mg/mL, 32 mg/mL).

DOSY experiments were used to explore the flowability of the polymers in CDCl3 at
different concentrations [51]. The diffusion coefficients of PPMU solutions over concentra-
tion range from 4 mg/mL to 32 mg/mL were recorded in Figure 2. It was clear that as the
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concentrations increased from 4 mg/mL to 32 mg/mL, the diffusion coefficients of the poly-
mer solutions decreased gradually from 3 × 10−11 m2 s−1 to less than 1 × 10−11 m2 s−1.
On the basis of the phenomenon that mobility was inversely proportional to concentra-
tion, these closer PPMU polymer chains in the high concentrations might prompt more
non-covalent crosslinking through hydrogen bonds between the UPy units. SPNs exhibited
lower mobility compared with the linear polymer chains capable of free movement.
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Figure 2. Diffusion coefficients of PPMU at 298 K in CDCl3 at different concentrations.

Then, we tried to discover how the viscosities of PPMU solutions change with in-
creasing concentrations as a way of demonstration of SPNs formation [49]. An Ubbelohde
viscometer was used to determine the data and to clarify the flow resistance of the polymer
solutions at various concentrations. As shown in Figure 3, the special viscosities of the
PPMU solutions at a concentration of 32 mg/mL was approximately ten times higher than
the solutions at 4 mg/mL, and the viscosities rose with the increasing concentrations in
the determination process. The rise in flow resistance of the PPMU solutions reflected
the microstructure evolved from polymer chains to SPNs since the increasing crosslinking
degree of the polymer solutions caused the difficulties in the flow process.
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The above characterizations, by 1H NMR, viscosity and DOSY experiments, strongly
supported more crosslinking interactions between polymer chains to form SPNs as the
concentrations increase.
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2.2. Visualization of SPNs Formation Process

It is envisioned that the key point of the multicolor visualization lies in the special
AIEgen fluorophore PBHZ molecules with AIRE effect. As the concentration increased
from 4 mg/mL to 100 mg/mL, spatial constraints brought polymer chains close together,
naturally resulting in the aggregation state of the UPy units and PBHZ fluorophore. When
the UPy units were responsible for non-covalent crosslinking through hydrogen bonds, the
PBHZ molecules worked on the fluorescence color changes of the polymer solutions with
the help of the AIRE effect (Figure 4a).
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Figure 4. (a) Schematic illustration of cross-linked polymers during the formation of the supramolec-
ular polymer networks with the increasing concentrations of PPMU solutions; (b) Fluorescent pho-
tographs and (c) Normalized fluorescent spectra of PPMU at different concentrations (4 mg/mL,
8 mg/mL, 12 mg/mL, 16 mg/mL, 24 mg/mL, 32 mg/mL, 100 mg/mL) in CHCl3 at 298 K.
λex = 365 nm. Slit: 10/8 nm.

Thus, the fluorescence colors of the polymer solutions were monitored at different
concentrations from 4 mg/mL to 100 mg/mL under 365 nm UV light in Figure 4b. The
blue color can be observed with the naked eye at low concentrations of 4–12 mg/mL,
subsequently experiencing a transition to the cyan color at medium concentrations of
16–32 mg/mL, and then changing to green color at high concentration of 64 mg/mL. To
reconcile with the observations, the normalized fluorescent spectra (Figure 4c) had been
recorded over the same concentration range. Treated with the same excitation wavelength
of 365 nm, significant redshifts from 450 nm to 515 nm were observed in the emission
maximum of the polymers when concentrations increased.

In addition, the consistent approach of CIE chromaticity coordinate diagram (Figure 5a)
was adopted, providing the corresponding CIE coordinates of the solutions at different
concentrations. Looking in the direction indicated by the black arrow, the locations of CIE
coordinates moved to the upper right corner gradually with the increasing concentrations,
whose corresponding colors coincided with what human eye perceives. The detailed CIE
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coordinates affected by the concentrations are listed in Figure 5b, and on it, it can be found
that the value x increased from 0.22 to 0.25, while the value y increased from 0.34 to 0.51.
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corresponding relationship between PPMU concentrations (Cconc) and CIE coordinates (Ccoor).

Apart from the photographs, the measurements of the fluorescent spectra and CIE
chromaticity diagram with CIE coordinates also demonstrated the feasibility of the visual-
ization during the formation of SPNs at high crosslinking degree. As was stated above, the
synchronicity between the crosslinking degree and fluorescent colors fulfilled the multi-
color visualization equipped with the distinguished power to judge the crosslinking degree
by the color of the polymers.

2.3. Stimuli-Responsiveness of SPNs

Stimuli-responsiveness is regarded as one of symbolic properties of SPNs. To demon-
strate the significant characteristic, UPy-MMA monomers were added to the prepared
SPNs. We anticipated that the wandering UPy-MMA molecules participated in the interac-
tions between the UPy units of the polymer chains as strong competitors. The UPy units of
PPMU chains in the original dimerization turned to form hydrogen bonds with the free
UPy-MMA molecules, leading to the disassociation of SPNs with the reduced hydrogen
bonding sites between polymer chains (Figure 6a) [52]. The 1H NMR spectra of SPNs
before (Figure 6bi) and after (Figure 6bii) the addition of the UPy-MMA monomers were
given to support the hypothesis. It could be found that the intensity of the proton signal of
Ha, Hb, Hc, owned by the UPy structures, were lower than the solutions fixed with free
UPy-MMA molecules. Furthermore, all of the three signals varied from broad peaks to
narrow peaks after the addition. Both of the changes suggested the hydrogen bonds for
the construction of SPNs had been destroyed by the excessive UPy-MMA monomers. As
shown in Figure 6c, the green gel referring to SPNs of high crosslinking degree, suffering
from the damage of the hydrogen bonds between the polymer chains, transformed to
the blue liquid on behalf of SPNs of low crosslinking degree. The fluorescent spectra of
the solutions before and after treated with the stimulus are shown in Figure 6c as well,
being surprisingly in agreement with the color change. There was a blue shift between the
maximum emission wavelengths of SPNs from 515 nm to 485 nm.
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λex= 365 nm. Slit: 10/8 nm. Inset: Fluorescent photographs of PPMU in CHCl3 before and after the
addition of UPy-MMA recorded under a handheld UV lamp.

3. Materials and Methods
3.1. Reagents and Chemicals

The reagents and chemicals used were commercially available from suppliers.

3.2. Synthesis of PPMU Polymer

The component units making up PPMU polymers included methyl methacrylate,
PBHZ molecules (compound 3) and UPy units (compound 4), whose respective dia-
grams of synthetic routes were given in the Supplementary Materials (Schemes S1–S3,
Figures S1–S14, Table S1).

3.2.1. Synthesis of PBHZ Molecule

The preparation of PBHZ molecule (compound 3) proceeded in three steps along with
intermediate products compound 1, compound 2.

Compound 1: Methyl 4-hydroxy benzoate (9.12 g, 60.0 mmol) was added to Hydrazine
hydrate (46.5 mL, 960 mmol) and the mixture refluxed overnight. The solid obtained by
filtration was washed with hexane to obtain compound 1.

Compound 2: Compound 1 (3.80 g, 25.0 mmol) and pyrene-1-carbaldehyde (3.80 g,
25.0 mmol) were dissolved in methanol (200 mL) in a 500 mL round-bottom flask at room
temperature. Glacial acetic acid (0.625 mL) was added to the well-stirred solution. The
temperature of the mixture was raised to 80 ◦C. After 5 h, the obtained solid was washed
with methanol to obtain compound 2.

Compound 3: In a 500 mL round-bottom flask, compound 2 (625 mg, 1.71 mmol) and
TEA (347.5 mg, 3.44 mmol) were mixed well in CH2Cl2 (200 mL) at room temperature. After
the dropwise addition of Methacryloyl chloride (207.5 mg, 2 mmol) at 0 ◦C, this reaction
lasted for 12 h at room temperature. Then, CH2Cl2 was removed from the mixture through
vacuum filtration to acquire the solid, which was purified by column chromatography
(silica gel, CH2Cl2: methanol = 300:1, v/v, eluent) to obtain compound 3 [53].
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3.2.2. Synthesis of UPy Unit

The solution of 6-Methylisocytosine (7.34 g, 58.6 mmol) in DMSO was heated to 170 ◦C
with an oil bath. Then, 2-isocyanatoethyl methacrylate (ICEMA) (10.0 g, 64.5 mmol) was
added immediately to the solution with water bath instead of oil bath just in case of a
vigorous reaction where the molecules were quenched quickly for the polymerization. The
pure compound 4 was obtained after the precipitated solid was washed with cyclohexane
and dried under reduced pressure [54].

3.2.3. Synthesis of PPMU Polymer Chain

The PPMU polymer chain was obtained by the free radical polymerization of com-
pound 3, compound 4 and methyl methacrylate. Compound 4 (841 mg, 3.00 mmol),
compound 3 (32.5 mg, 0.075 mmol) and methyl methacrylate (3.75 g, 37.5 mmol) were
dissolved in 30 mL DMSO, followed by the addition of azobisisisobutyronitrile (AIBN)
(9.25 mg, 0.056 mmol), immediately followed by a stream of nitrogen (N2) bubbling through
the reaction mixture for 15 min. Then, the solution was heated to 80 ◦C and stirred continu-
ously for 10 h. The reaction was stopped by freezing the reaction mixture in ice water. The
resulting solution was added to methanol (3 × 300 mL) and then filtered through vacuum
to obtain PPMU polymers.

3.3. Preparation of PPMU Solutions in CHCl3
Afterwards, a series of PPMU solutions in CHCl3 were prepared at different concen-

trations (4 mg/mL, 8 mg/mL, 12 mg/mL, 16 mg/mL, 24 mg/mL, 32 mg/mL, 100 mg/mL)
by mixing different masses of PPMU polymers with chloroform.

3.4. Characterization

In the characterization stage, 13C NMR spectra and 1H NMR spectra were recorded
with a Bruker Advance 400 MHz spectrometer at 298 K. High-resolution electrospray ion-
ization mass spectra (ESI-MS) were recorded with a Bruker microOTOF II. Gel permeation
chromatography (GPC) measurements were carried out on an Elite P230pII Elite HPLC
system in tetrahydrofuran (THF). Fluorescent emission spectra were measured with a
Perkin Elmer LS55 fluorescence spectrophotometer at 298 K. The DOSY experiments were
based on the 1HNMR spectroscopy. The viscosity data were obtained through Ubbelohde
viscometer using chloroform as solvent at room temperature.

Compound 1 yield: 6.84 g; 75%; white solid. 1H NMR (DMSO-d6, 400 MHz, 298 K)
δ 9.74 (brs, 1H), 9.49 (s, 1H), 7.68 (d, J = 8.5 Hz, 2H), 6.77 (d, J = 8.3 Hz, 2H), 4.37 (s, 2H).
13C NMR (DMSO-d6, 100 MHz, 298 K) δ 166.36, 160.44, 129.26, 124.42, 115.27. HRMS (ESI+)
Calcd for C7H8N2O2 [M+H]+: 153.0659, found: 153.0870.

Compound 2 yield: 6.22 g; 68%; orange solid. 1H NMR (DMSO-d6, 400 MHz, 298 K) δ
11.90 (s, 1H), 10.23 (s, 1H), 9.53 (s, 1H), 8.83 (d, J = 9.4 Hz, 1H), 8.60 (d, J = 8.2 Hz, 1H), 8.37
(d, J = 7.9 Hz, 4H), 8.25 (q, J = 8.9 Hz, 2H), 8.13 (t, J = 7.6 Hz, 1H), 7.94 (d, J = 8.7 Hz, 2H), 6.96
(d, J = 8.7 Hz, 2H). 13C NMR (DMSO-d6, 100 MHz, 298 K) δ 163.18, 161.28, 146.02, 132.24,
131.34, 130.63, 130.19, 129.15, 128.77, 127.90, 127.67, 127.07, 126.53, 126.19, 125.73, 125.37,
124.64, 124.28, 122.91, 115.61. HRMS (ESI+) Calcd for C24H16N2O2 [M+H]+: 365.1285,
found: 365.1194.

Compound 3 yield: 207.2 mg; 28%; yellow solid. 1H NMR (DMSO-d6, 400 MHz, 298
K) δ 12.12 (s, 1H), 9.53 (s, 1H), 8.83 (d, J = 9.4 Hz, 1H), 8.60 (d, J = 8.2 Hz, 1H), 8.38 (d,
J = 7.6 Hz, 4H), 8.26 (q, J = 8.9 Hz, 2H), 8.11 (dd, J = 19.2, 8.1 Hz, 3H), 7.43 (d, J = 8.6 Hz,
2H), 6.34 (s, 1H), 5.96 (s, 1H), 2.04 (s, 3H). 13C NMR (DMSO-d6, 100 MHz, 298 K) δ 165.53,
162.74, 153.71, 147.13, 135.57, 132.45, 131.50, 131.34, 130.63, 129.69, 129.29, 129.15, 128.93,
128.69, 127.90, 127.39, 127.12, 126.63, 126.28, 125.75, 125.56, 124.63, 124.25, 122.89, 122.57,
18.50. HRMS (ESI+) Calcd for C28H20N2O3 [M+H]+: 433.1547, found: 433.1143.

Compound 4 yield: 15.75 g; 96%; white solid. 1H NMR (CDCl3, 400 MHz, 298 K)
δ 12.96 (s, 1H), 11.95 (s, 1H), 10.50 (s, 1H), 6.17 (s, 1H), 5.78 (s, 1H), 5.54 (s, 1H), 4.26 (t,
J = 5.7 Hz, 2H), 3.57 (q, J = 5.7 Hz, 2H), 2.23 (s, 3H), 1.93 (s, 3H). 13C NMR (CDCl3, 100 MHz,
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298 K): 172.85, 167.33, 156.75, 154.48, 148.32, 136.11, 125.83, 106.69, 63.07, 38.76, 18.95, 18.29.
HRMS (ESI+) Calcd for C12H16N4O4 [M+Na]+: 303.1069, found: 303.1123.

PPMU polymer: 1H NMR (400 MHz, CDCl3) δ 12.89 (s, NH), 11.79 (s, NH), 10.40 (s,
NH), 9.39 (d, NH), 8.60–8.02 (m, CH), 5.74 (s, CH), 4.33–3.71 (m, CH2), 3.53 (s, OCH3). The
ratio of x/y/z was (1)/(66.87/3)/(4.06), namely, 1/22.29/4.06.

4. Conclusions

In summary, we realized the intuitive multicolor visualization to monitor the for-
mation of SPNs by the introduction of fluorophores with AIRE effect into the PPMU
polymer chains, which were composed of AIEgens pyrene benzohydrazonate (PBHZ),
poly(methyl methacrylate (PMMA) main chains and functionalized 2-ureido-4-pyrimidone
(UPy) units. A series of PPMU solutions at different concentrations represented the incre-
mental crosslinking degree in the evolution of polymer system from polymer chains to
SPNs, where the UPy units of the polymer chains played a crucial role through the multiple-
hydrogen-bonding arrays. Meanwhile, the increasing aggregation degree of PBHZ AIEgens
accompanied with the polymer chains becoming closer to each other, due to the AIRE effect,
allowing the fluorescence color change of SPNs from blue to green with the increasing
crosslinking degree. Furthermore, we verified the stimuli-responsiveness of the prepared
SPNs by the addition of the free UPy-MMA molecules.

The method facilitates the visualization of the formation process of SPNs regardless of
whether the crosslinking degree is high or not, and performs the optimization in the recogni-
tion of the crosslinking degree through the fluorescence colors. We believe that the strategy
opens up new vistas for the rational design of SPNs through a deeper understanding of the
formation process of the networks, leading to improved functional materials.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27227881/s1, Scheme S1: Synthetic route of compound
3; Scheme S2: Synthetic route of compound 4; Scheme S3: Synthetic route of PPMU polymer;
Figure S1: 1H NMR spectrum (DMSO-d6, 400 MHz, 298 K) of 1; Figure S2: 13C NMR spectrum
(DMSO-d6, 100 MHz, 298 K) of 1; Figure S3: HR-ESI+-MS spectrum of 1; Figure S4: 1H NMR spectrum
(DMSO-d6, 400 MHz, 298 K) of 2; Figure S5: 13C NMR spectrum (DMSO-d6, 100 MHz, 298 K) of 2;
Figure S6: HR-ESI+-MS spectrum of 2; Figure S7: 1H NMR spectrum (DMSO-d6, 400 MHz, 298 K) of
3; Figure S8: 13C NMR spectrum (DMSO-d6, 100 MHz, 298 K) of 3; Figure S9: HR-ESI+-MS spectrum
of 3; Figure S10: 1H NMR spectrum (CDCl3, 400 MHz, 298 K) of 4; Figure S11: 13C NMR spectrum
(CDCl3, 100 MHz, 298 K) of 4; Figure S12: HR-ESI+-MS spectrum of 4; Figure S13: 1H NMR spectrum
(CDCl3, 400 MHz, 298 K) of PMMU polymer; Figure S14: GPC trace of PPMU polymer; Table S1:
GPC analysis of PPMU polymer using conventional calculations, with poly-styrene as the standard
and THF as the solvent.
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