
Citation: Zhou, H.; Qiu, Y.; Yang, C.;

Zang, J.; Song, Z.; Yang, T.; Li, J.; Fan,

Y.; Dang, F.; Wang, W. Efficient

Degradation of Congo Red in Water

by UV-Vis Driven CoMoO4/PDS

Photo-Fenton System. Molecules 2022,

27, 8642. https://doi.org/10.3390/

molecules27248642

Academic Editors: Kunlei Wang and

Dong Ma

Received: 28 October 2022

Accepted: 1 December 2022

Published: 7 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Efficient Degradation of Congo Red in Water by UV-Vis Driven
CoMoO4/PDS Photo-Fenton System
Huimin Zhou 1, Yang Qiu 1, Chuanxi Yang 2,*, Jinqiu Zang 2, Zihan Song 2, Tingzheng Yang 2, Jinzhi Li 3,
Yuqi Fan 1, Feng Dang 4 and Weiliang Wang 2,*

1 Institute of Environment and Ecology, Shandong Normal University, Jinan 250358, China
2 School of Environmental and Municipal Engineering, Qingdao University of Technology,

Qingdao 266525, China
3 Middle School of Gantian, Chenzhou 424400, China
4 Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Shandong University,

Jinan 250061, China
* Correspondence: yangchuanxi1989@hotmail.com (C.Y.); sdqcsdnu@163.com (W.W.);

Tel.: +86-0532-85071262 (C.Y. & W.W.)

Abstract: In order to improve the catalytic activity of cobalt molybdate (CoMoO4), a PDS-activated
and UV-vis assisted system was constructed. CoMoO4 was prepared by coprecipitation and calci-
nation, and characterized by XRD, FTIR, Raman, SEM, TEM, XPS, TGA Zeta potential, BET, and
UV-Vis DRS. The results showed that the morphology of the CoMoO4 nanolumps consisted of stacked
nanosheets. XRD indicated the monoclinic structures with C2/m (C3

2h, #12) space group, which
belong to α-CoMoO4, and both Co2+ and Mo6+ ions occupy distorted octahedral sites. The pH of
the isoelectric point (pHIEP) of CMO-8 at pH = 4.88 and the band gap of CoMoO4 was 1.92 eV. The
catalytic activity of CoMoO4 was evaluated by photo-Fenton degradation of Congo red (CR). The
catalytic performance was affected by calcination temperature, catalyst dosage, PDS dosage, and
pH. Under the best conditions (0.8 g/L CMO-8, PDS 1 mL), the degradation efficiency of CR was
96.972%. The excellent catalytic activity of CoMoO4 was attributed to the synergistic effect of photo
catalysis and CoMoO4-activated PDS degradation. The capture experiments and the ESR showed that
superoxide radical (·O2

−), singlet oxygen (1O2), hole (h+), sulfate (SO4
−·), and hydroxyl (·OH−) were

the main free radicals leading to the degradation of CR. The results can provide valuable information
and support for the design and application of high-efficiency transition metal oxide catalysts.

Keywords: CoMoO4; PDS; Congo red; photo-Fenton

1. Introduction

Congo red (CR) is an azo dye in organic dyes (Figure 1), which is widely used in pa-
permaking, plastics, cosmetics, pharmaceuticals, and other fields. However, its widespread
use also brings a variety of problems, such as reduced visibility of water, resulting in water
ecological environment problems [1–3]. It is also harmful to human health, owing to its
teratogenicity and carcinogenic potential [4–7]. Thus, it is of great significance to find an
effective way to treat CR-polluted wastewater.

In general, membrane filtration processes, precipitation, coagulation, biological treat-
ment, adsorption, ion exchange, electrochemical processes, advanced oxidation processes
(AOPs), and ozonation are suitable choices [8–14]. AOPs were considered to be an effective
method for degrading organic dye wastewater [15]. Fenton technology has been widely
applied to the degradation of organic dye wastewater. However, the low pH, low utilization
of oxidant, large amount of reagent, and the formation of an iron sludge precipitation limit
its wide application [16]. In addition to Fenton oxidation, persulphate oxidation as a type of
AOPs has also attracted much attention in the field of wastewater treatment. Persulfate oxi-
dation can produce strong oxidizing sulfate radicals (SO4·−) under the different activation
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factors to degrade many organic compounds, presenting the advantages of strong oxidation
ability (E0 = 2.6–3.1 V), wide pH application range (2.0–10.0), and long half-life [17]. Recent
studies have shown that cobalt ions and their composites can more effectively decompose
the peroxydisulfate (PDS, S2O8

2−) to form the free radical species [18]. Furthermore, the
electron transition in Co2+ and Co3+ can also assist in the generation of radicals and non-
radicals. As a highly effective photo-Fenton catalyst to decompose RhB under visible light,
Li-prepared Zn/Co-ZIFs@MIL-101 (Fe) composites demonstrated a remarkable capability
to remove RhB [19]. Among transition metal oxides, molybdenum oxide is a promising
candidate for such applications because of its crystal structure, multiple oxidation states,
N-type semiconductors, and reversible small ion storage. Molybdenum atoms in molybdate
have a variety of coordination modes and redox activities, and molybdate is widely used
in optical, electrochemical, magnetic, antimicrobial, and other functional materials [20–24].
Molybdate can be prepared by various simple methods, including hydrothermal synthesis,
coprecipitation, and so on [25–28]. It is very noteworthy that these characteristics also cater
to PDS activation.
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Figure 1. Molecular structure of CR.

CoMoO4 as a promising electrochemical material due to its stable crystal structure,
high conductivity, fast electron transmission, and high redox ability, also shows good
catalytic activity in PMS activation for organic degradation [29]. In addition, CoMoO4 can
complete photogenerated electron transition under UV-vis irradiation, but the hole-electron
recombination is easy [30]. Previous studies of CoMoO4 as a photo-catalyst are shown
in Table 1 [29,31–34]. In comparison with PMS, PDS has drawn growing attention due
to its high solubility and stability under mild conditions. Accordingly, we chose PDS to
construct the CMO-PDS system [35]. Therefore, wolframite cobalt molybdate catalyst was
successfully synthesized by the coprecipitation and calcination method. After activation by
persulfate (PDS), the CR dye solution was degraded by photocatalytic reaction.

Table 1. Photocatalytic performance of the prepared CoMoO4 in comparison with literature.

Photocatalyst Light Source Dye (mg/L) Degradation (%) Time (min) Ref

CoMoO4@CMS UV-vis SDM 30 mg/L 98 10 min [29]
CoMoO4-Co3O4 UV-vis DBT 2000 ppm 100 180 min [31]

CoMoO4 UV-vis 4-CP 50 mg/L 88 275 min [32]
CoMoO4 UV-vis MB 100 mg/L 100 40 min [33]

CuNi/CoMoO4 UV-vis AF 15 mg/L 99.45 40 min [34]
CoMoO4 UV-vis CR 100 mg 96.975 35 min This work

In this study, CoMoO4 was prepared by co-precipitation and calcination, and charac-
terized by XRD, FTIR, Raman, SEM, TEM, XPS, TGA, DTG, Zeta, BET, UV-Vis DRS, and
ESR. Due to the excellent performance of CoMoO4 for organic dye pollutant degradation,
we chose it as a catalyst for the degradation of CR dye wastewater. The photo-Fenton
degradation of CR, capture experiment to evaluate the activity of the catalyst, and the
photo-Fenton catalytic activity of the catalyst were affected by calcination temperature,
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catalyst dosage, PDS dosage, and pH. The capture experiment and ESR verified that ·O2
−,

·OH, SO4
−·, h+, and 1O2 were the main active species (ROS). The experimental results

indicated that the transition metal oxides provided support for the degradation of organic
dyes. The results can provide valuable information and support the design and application
of high-efficiency transition metal oxide catalysts.

2. Experiment
2.1. Chemicals and Materials

Ammonium persulfate (PDS; 98.5%), Congo red (CR; 99%), sodium molybdate di-
hydrate (Na2(MoO3)3·2H2O; 99.95%), cobalt chloride hexahydrate (CoCl2·6H2O; 99.95%),
p-benzoquinone (p-BQ; 99%), L-histidine (99.5%), and ammonium oxalate monohydrate
(AO; 99.99%) were purchased from Shanghai Macklin Biochemical Co., Ltd. (Shanghai,
China). Sodium molybdate dihydrate (Na2MoO4·2H2O; 99%), ammonia solution (NH4OH),
sulfuric acid (H2SO4), methanol (MeOH), ethanol (EtOH) and tert-butyl alcohol (TBA) were
purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). All reagents
and chemicals used in this study were of analytical grade and were used without further
purification.

2.2. Preparation of Samples

CoMoO4 samples were synthesized by co-precipitation and calcination, and the spe-
cific process was as follows: CoCl2·6H2O and NaMoO4·2H2O were used as Co and Mo
sources, respectively. We dissolved 1 g of CoCl2 · 6H2O in 20 mL distilled water and stirred
at 70 ◦C; then, 30 mL deionized water containing 1.02 g of dissolved Na2MoO4 · 2H2O
was added and the solution was stirred for 5 h. The purple solid obtained was centrifuged
and dried at 120 ◦C overnight. The initial product was ground into powder, heat-treated
under air atmosphere for 180 min at 800 ◦C (900, 1000 ◦C) at a heating rate of 2 ◦C min−1

and naturally cooled to room temperature. The obtained products were named as CMO-8,
CMO-9, and CMO-1.

2.3. Characterization

Powder X-ray diffraction (XRD) patterns of the as-prepared samples were obtained at
room temperature with a D/MAXRC X-ray diffractometer using Cu Ka radiation source
which operated at 45 kV and 40 mA. The structure and morphology of the sample was
performed by scanning electron microscopy (SEM, Zeiss Gemini 300, Gena, Germany) and
transmission electron microscopy (TEM, JEOL JEM-2100F Japan). Raman spectra were
obtained using a confocal Raman microscope Horiba LabRAM HR (Bruker, Billerica, MA,
USA) excited by a laser source of 10 W at a specific λ of 325 nm. The Fourier transform
infrared (FTIR) spectra were collected on a ThermoScientific Nicolet IS5 Fourier Transform
infrared spectrometer (Waltham, NJ, USA) in the wavenumber range of 400–4000 cm−1

resolution through the KBr pellet method. Thermal analysis was studied by a Netzsch
TG209F3 (Netzsch TG209F3, Bayern, Germany) at a heating temperature ramping rate of
10 ◦C min−1 in the temperature range of 40–800 ◦C under air/N2 atmosphere. The pH
of the isoelectric point (pHIEP) of materials was determined by using a Zetasizer Nano
analyzer (Malvern zetasizer nano ZS, Malvern, UK). The Brunauer-Emmett-Teller (BET)
specific surface area of the sample was measured using the Autosorb-iQ instrument (Tristar
II 3020, USA). The UV-vis diffuse reflectance spectra (UV-vis DRS) of the samples were
measured by UV-vis spectrophotometer (UV3600PLUS, Japan). The electron spin resonance
(ESR) measurements were performed on a Bruker EMXnano spectrometer (EMX10/12,
Bruker, Germany). The intermediate products of CR degradation were identified by high-
performance liquid chromatography equipped with mass spectrometry (Thermo Scientific™
Q Exactive™, Waltham, MA, USA).
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2.4. Catalytic Activation Experiments

We dispersed 0.8 g/L of catalysts in a 50 mL solution containing 100 mg/L of CR.
The solution was kept in the dark for 60 min for adsorption saturation to be achieved,
and the catalyst was dispersed in the water in the form of nanoplatelets. A 500 W xenon
lamp was selected. Degradation was initiated during the UV-vis process by adding PMS
solution (0.5 mM) to the suspension. The solution was stirred by a magnetic stirrer at room
temperature for the reaction. To analyze catalytic activity, 1 mL of the suspension was
sampled within a given time interval. The number of sampling times and time intervals
depended on the degradation rate. Each sample was quenched with 1 mL methanol and
filtered through a 0.22 µm membrane filter for further analysis. To test the reusability of
the material, after measurements, the catalysts were recycled by centrifugation, washed
with deionized water and ethanol, and then dried in an oven at 60 ◦C to further investigate
their reusability.

3. Results and Discussion
3.1. Characterization of CoMoO4

We selected CoMoO4 with ABO4 wolframite as the photocatalyst; Co ions occupy the
A six-coordinated, whereas Mo ions occupy the B six-coordinated as show in Figure 2a.
The crystal phase of the resultant samples was identified by X-ray diffraction (XRD). As
shown in Figure 2b, the diffraction peaks of all samples are consistent with the monoclinic
phase of CoMoO4 (JCPDS 25-1434) [36]. With the increase of temperature, the growth of
crystal will be changed to some extent. Thus, the XRD spectra of CMO-1 show an intense
peak around 27◦ compared with CMO-8 and CMO-9 [36]. In this form, both Co2+ and Mo6+

ions occupy distorted octahedral sites [37]. The calculated lattice parameters, a = 9.628 Å,
b = 8.865 Å, c = 7.694 Å, b = 112.62, and cell volume = 606.19 Å3, for the heated α-CoMoO4
sample match well with JCPDS 025-1434, confirming the formation of a pure monoclinic
α-CoMoO4, C2/m space group [38]. In α-CoMoO4, the main characteristic peaks are
obtained at 2θ of 14.159◦ (110), 25.063◦ (002), 32.267◦ (−222), 28.512◦ (220), 32.267◦ (−222),
and 43.340◦ (−330), and these can be indexed with JCPDS 025-1434. There are two types (α
phase and β phase) of molybdate, such as CoMoO4, FeMoO4, and NiMoO4 [36,37].
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Raman scattering was observed at 688, 874, and 927 cm−1 for CoMoO4, as shown in
Figure 2c. A strong band at 927 cm−1 and two weak bands centered around 874 cm−1

were the characteristic bands of CoMoO4 representing the Mo–O–Co vibrational stretching
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frequencies [39]. The FTIR spectra of CoMoO4 are shown in Figure 2d. For pure CoMoO4,
the bands in the range of 750–950 cm−1 are attributed to the stretching vibration of Mo–O
bonds of distorted MoO4 in CoMoO4 [40,41]. The bands in the lower frequency range
(400–700 cm−1) belong to Co–Mo–O stretching vibrations. The spectra at 613 and 950 cm−1

correspond to the Co−O and Mo−O−Mo vibration modes. It is believed that the absorption
peak at 3441 cm−1 can be attributed to the O–H stretching vibration and its corresponding
O–H bending vibration occurs at 1636 cm−1, due to chemically adsorbed water molecules;
the vibration band at around 947 cm−1 is attributed to the activation of υ1 vibration of the
distorted MoO4 tetrahedron present in CoMoO4 [42].

The SEM images of CMO-8, CMO-9, and CMO-1 are shown in Figure 3a–f, respectively.
The nanolumps consist of stacked nanosheets, which expose a large number of active sites
and provide sufficient space for CR to attach. The rising temperatures cause nanosheets
to agglomerate in a way that makes them more compact with each other; accordingly, at
1000 ◦C, the nanosheets stack more tightly [43]. Thus, the degradation of CR for CMO-1
was poor compared with CMO-8 and CMO-9.
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Figure 3. SEM images of CMO-8 (a,b); CMO-9 (c,d); CMO-1 (e,f).

The images of SEM can also be indicated by TEM. Figure 4a–f represent the HRTEM
images of CMO-8, CMO-9, and CMO-1, respectively. The TEM images of CMO-8, CMO-9,
and CMO-1 provide a clear view of the morphological shape of the nanolumps that consist
of nanosheets as the temperature increase. The spacings of the lattice fringes of CMO-8,
CMO-9, and CMO-1 are measured to be 0.1591, 0.1616, and 0.1632 nm, respectively, which
can be ascribed to the (220) plane of α-CoMoO4, and both match well with the monoclinic
phase of CoMoO4 (JCPDS 25-1434). The calcination temperature did not change the crystal
structure, and the lattice spacing measured by the digital micrograph was consistent with
the XRD crystal structure.

The surface composition and chemical states of the CoMoO4 were further characterized
by XPS. The full-survey-scan spectra further demonstrate the presence of Co, Mo, O, and C
(Figures 5 and S1). Figure 5a shows the curves of Co 2p, which shows two obvious peaks of
2p3/2 and 2p1/2, and two satellites (marked as “Sat.”). Two low binding energy peaks at
780.35 and 796.7 eV are assigned to Co3+, while the other peaks at 781.82 and 797.0 eV are
well-matched with Co2+ [44,45]. Figure 5b displays Mo 3d XPS doublets, which correspond
to Mo 3d5/2 and Mo 3d3/2. The Mo 3d doublet binding energies of CoMoO4 shift towards
a lower level. The peaks at 232.2 and 235.25 eV come from the Mo6+ [45]. As shown in
Figure 5c, the peak at 530.18 eV was ascribed to the lattice oxygen (Olatt) bonds of metal
oxides; the peak at 531.28 eV might be owing to the defect site of low hypoxia coordination,
indicating that Ovac were created on the surface of CoMoO4 [46]. The ratios of Olatt and Ovac
were 77.773% and 22.227%. Figure 5d shows the C1s: the peak at 284.8 eV was ascribed to
the C-C, the peak at 286.4 eV was ascribed to the C-N, and the peak at 289 eV was ascribed
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to the O-C=O [47]. Figure S1 shows the survey spectra. This further confirms the formation
of CoMoO4.
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CMO-8 samples were heated from 40 ◦C to 800 ◦C under an air/N2 flow of 20 mL/min,
and the heating rates were 10 ◦C/min. In order to eliminate systematic error, blank tests
were performed before the experiment to provide the baseline, and repetitions were also
performed to ensure good reproducibility of the results. Figure 6a,b shows the TGA and
DTG curves of CMO-8 at 10 ◦C/min, with the 0.23682% and the 0.36296% of weightlessness
in air and N2 atmosphere, respectively. The CMO-8 sample exhibits excellent thermal
stability in both air and N2 atmospheres due to its negligible mass decrease.

Figure 6c shows the variation in the zeta potential of the CMO-8 sample at different
pH. The Zeta potential classes are −20 mV, −8.26 mV, 7.54 mV, and 20.1 mV at pH = 8,
pH = 6, pH = 4, and pH = 2, respectively. Figure 6d shows the pH of the isoelectric point
(pHIEP) of CMO-8 at pH = 4.88. When pH < 4.88, the adsorbent is positively charged; when
pH > 4.88, the adsorbent is negatively charged.

Figure 7a–c showed the BET of CMO-8, CMO-9, and CMO-1, respectively. The specific
surface area of CMO-8, CMO-9, and CMO-1 were 0.5451, 0.5186, and 0.4531 m2/g, respec-
tively. Among them, the CMO-8 exhibited the highest surface area and pore volume, which
may be beneficial to the diffusion and adsorption of CR molecules and expose more active
sites to activate PDS to generate SO4−· and ·OH.
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To determine the band gap energy of semiconductor materials, two prominent meth-
ods are used: (i) Tauc method: α = A (hv-Eg) 2/λ for direct (allowed) and α = A (hv-Eg) 1/2/
λ for indirect (allowed) (α = absorption coefficient; A = absorption constant for indirect
transitions depending on the transition probability) [48–52]. Figure 7d–f shows the UV-
visible diffuse reflectance spectra (DRS) of CoMoO4. The optical band gap energy (Eg) of
CMO-8, CMO-9, and CMO-1 were both found to be 1.92 eV, which is in accordance with
the value already published [53].

3.2. Degradation of CR in Different Condition

The initial concentration of CR was 100 mg/L in all experiments. All experiments were
carried out under UV-vis after 1h adsorption in dark conditions, and PDS (0.5 mmol/L)
was added after adsorption. The number of sampling times and time intervals depended
on the degradation rate.

Figure 8a,b shows that the dosage of CMO-8, CMO-9, and CMO-10 was 20 mg.
Figure 8a shows that without PDS, the removal rates of CR were 63.68% (63.68% ± 0.555%),
21.561% (21.561% ± 0.12%), and 15.753% (15.753% ± 0.145%) under UV-vis after 240 min,
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respectively. Figure 8b shows that the removal rates of CR were 96.29% (96.29% ± 0.158%),
93.782% (93.782% ± 0.446%), and 45.024% (21.561% ± 0.12%) after the addition of 1 mL
PDS under UV-vis for 25 min, respectively. This indicated that there is an excellent syn-
ergy between the CoMoO4 catalyst and PDS, and this is more noticeable with CMO-8.
The removal of CR with CMO-9 and CMO-1 were poor compared with CMO-8, which
were closely consistent with their morphologies. Thus, we chose CMO-8 as the optimal
photocatalyst for subsequent experiments.
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Figure 8c shows the degradation of CR by CMO-8 at different concentrations ranging
from 0.8–1.5 g/L. At dosages of 40 mg (0.8 g/L), 50 mg (1 g/L), 60 mg (1.2 g/L), and
75 mg (1.5 g/L) with 1 mL PDS, the removal rates of CR were 97.169% (97.169% ± 1.051%),
95.982% (95.982% ± 0.185%), 94.38% (94.38% ± 2%), and 95.147% (95.14% ± 0.129%) after
15 min, respectively. Therefore, we chose the optimal dosage of 40 mg for subsequent
experiments. Figure S2a shows the removal of CR by reused CMO-8 at different dosages of
concentrations ranging from 40–75 mg (0.8–1.5 g/L). At dosages of 40 mg (0.8 g/L), 50 mg
(1 g/L), 60 mg (1.2 g/L), and 75 mg (1.5 g/L) with 1 mL PDS, the removal rates of CR were
73.181%, 79.203%, 82.798%, and 81.05% after 40 min of UV-vis, respectively. Therefore, we
chose the optimal dosage of 60 mg for subsequent experiments. This result indicated that
the more PDS was required to active reused CMO-8.

Figure 8d shows the degradation of CR with a CMO-8 dosage of 40 mg; different
dosages of PDS ranging from 0.5–2 mL were studied. As the dosage was increased from
0.5 mL, 1 mL, 1.5 mL, and 2 mL with 0.8 g/L catalyst, the removal rates of CR were 95.776%
(95.776% ± 0.139%), 96.121% (96.121% ± 0.594%), 92.874% (92.874% ± 0.1%), and 85.526%
(85.526%± 0.402%) after 30 min of UV-vis, respectively. When the dosage of PDS was below
1 mL, the removal of CR was increased. In contrast, when the dosage of PDS was over
1 mL, the removal of CR was decreased. This is closely related to the degree of activation
of the dosed catalyst. Therefore, we chose a dosage of 1 mL of PDS as the best option
for subsequent studies. Figure S2b shows the removal of CR with a dosage of 60 mg at
different concentrations of PDS ranging from 0.5–2 mL. At concentrations of 0.5 mL, 1 mL,
1.5 mL, and 2 mL with 60 mg (1.2 g/L) of reused catalyst, the removal rates of CR were
48.03%, 64.184%, 67.275%, and 68.367% after 30min of UV-vis, respectively. Therefore, we
chose the dosage of 2 mL of PDS as the best option in subsequent studies of the reused
catalyst. As the dosage of PDS increased, the removal rate of CR increased. Due to the
secondary utilization of CMO-8, the synergistic effect was weakened. Thus, the CMO-8
activation required more dosage of PDS.
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CR is an anionic dye in nature and at neutral pH, it appears as a red color in aqueous
solutions. The color of CR changes with the solution pH. At low pH, it appears blue due
to tautomerism. Thus, the adsorption of CR onto CMO-8/PDS was studied at pH 3–9.
Figure 8e shows the degradation of CR by 40 mg CMO-8 and 1 mL PDS at different pH.
When pH = 3, 5, and 9, the degradation efficiencies of CR were 85.203% (85.203% ± 3.281%),
92.16% (92.16% ± 1.677%), and 96.077% (96.077% ± 1.764%) after 15 min of UV-vis, re-
spectively. With the increasing pH, CMO-8 degradation toward CR increased. Under
alkaline conditions, CR is an anionic dye with a positive charge due to a higher solution
concentration of OH−. Due to mutual attraction between positive and negative charges,
CR can be more quickly adsorbed and decomposed at pH = 9, relative to pH = 3 and 5. The
degradation efficiency was excellent. Under subsequent illumination, the concentration
increased due to desorption and side reactions. When the pH is decreased, the adsorption
was poor. We evaluated the Zeta potential to estimate the surface charge of CMO-8 to better
understand the effect of pH on the adsorption process. Figure S2c shows the degradation
of CR with 60 mg of the reused CMO-8 catalyst and 2 mL of PDS at different pH. When
pH = 3, 5, and 9, the degradation efficiencies of CR were 88.504%, 92.001%, and 96.955%,
respectively, after 35 min of UV-vis. These results further validate the above conclusions.

Figure 8f shows the degradation of CR in UV-vis, CMO-8, UV-vis with CMO-8, PDS,
PDS with UV-vis, CMO-8 with PDS, and CMO-8 with PDS and UV-vis; the corresponding
degradation was 0, 5.519% (5.519% ± 0.207%), 10.486% (10.486% ± 0.168%), 31.922%
(31.922% ± 0.218%), 33.532% (33.53% ± 0.551%), 94.989% (94.989% ± 0.1%), and 96.972%
(96.972% ± 0.5%) after 25 min, respectively. In this study, it can be concluded that there
is a good synergy between the CMO-8 catalyst and PDS, and with the participation of
UV-vis, the degradation effect of the whole system on CR is greatly improved. Thus, the
CMO-8/PDS-UV-vis system for CR degradation was successful.

3.3. Degradation Mechanism by CMO under PDS Activation and Visible Light Irradiation

Generally speaking, ROS, such as ·OH, SO4·−, O2·−, and 1O2, play important roles in
the oxidation of organic pollutants in PDS-based AOPs. To confirm the presence of ROS in
the CoMoO4/PDS system, various quenching tests were deduced. As is reported, MeOH
could be used as a capture compound for the total flux of ·OH and SO4·− because of its high
reactivity with both of these species (k OH/MeOH = 9.7 × 108 M−1s−1; kSO4·−/MeOH =
1.6 × 107 M−1s−1) [54,55]. The p-BQ was also chosen as scavengers for HO2·/O2·− with a
rate constant of (k O2·−/p-BQ = 1.0 × 109 M−1s−1) [56]. TBA was used as a special ·OH
capture because TBA reacts with ·OH approximately 1000 times greater than it reacts with
SO4·− (k·OH/TBA = (3.8–7.6) × 108 M−1s−1; kSO4·−/TBA = (4–9.1) × 105 M−1s−1) [57].
In addition, L-histidine (L-His, 1O2 scavenger, K1O2 = 1.2 × 108 M−1 S−1) was used [55].
Figure 9 shows that the degradation of CR was significantly suppressed from 97.168%
(97.168% ± 0.3%) (control) to 43.33% (43.33% ± 0.181%), 43.739% (43.739% ± 0.135%),
53.684% (53.684% ± 0.124%), 58.507% (58.507% ± 0.21%), and 4.17% (4.17% ± 0.331%)
with the addition of 1 mM TBA, 1 mM MeOH, 1 mM (NH4)2C2O2, 1 mM His, and 1 mM
p-BQ to the system, respectively. Therefore, ·OH, SO4−·, h+, 1O2, and ·O2

− were the active
substances in the CMO-PDS-UV-vis system. ·O2

− showed the strongest effect among five
active species (·O2

−> ·OH > SO4
−· > h+ > 1O2).

To further verify the free radical and non-radical species mentioned above, Figure 10a–d
show that electron spin resonance (ESR) technology was applied to verify the quenching
test [50]. Figure 10a–c show that when DMPO was added to the CMO-8/PDS reaction
system for 5 min, the signal peaks of DMPO-SO4

−·, DMPO-·OH, and DMPO- O2
−· can be

observed, confirming the generation of SO4
−·, ·OH, and O2

−· radicals. The intensity of
the characteristics peaks of DMPO-SO4

−·, DMPO-·OH, and DMPO- O2
−· became stronger

when DMPO was added for 10 min. Figure 10c shows that after adding TEMP to the
system, a series of 1O2-based characteristic signals were found, indicating that 1O2 was
also involved in the catalytic reaction, which was the non-radical oxidation pathway of
the CMO-8/PDS system. Figure 10d shows that the peak intensity of the CMO-8-vis-PDS
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system (Figure 10d 5 min/10 min) was weaker than that of the CMO-8-vis-PDS (Figure 10d
0 min). The peak strength of the CMO-8-vis-PDS system decreased with time. The reason
for these phenomena was that the h+ generated by photoexcitation of CMO-8 was captured
by TEMPO to generate TEMPOH without paramagnetism, which reduced the intensity
of the EPR spectrum. Moreover, after adding TEMPO, these observations were consistent
with the studies on PDS, clearly indicating that CMO-8 can effectively activate PDS through
radical and non-radical oxidation pathways to degrade CR. These results demonstrate that
·O2
−, ·OH, SO4

−·, h+, and 1O2 were very reactive oxygen species (ROSs) to degrade the
dye pollutants in the CMO-8-vis-PDS system.
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Figure 11 shows the detailed mechanism of radical species generation and transport
in the CMO-vis-PDS system. During the photoactivation process, the CMO photo catalyst
was activated by visible light, generating photoexcited e− and h+ pairs when electrons
were excited from the VB to the CB of CMO (Equation (1)). SO4−· radicals were produced
from S2O8

2− by gaining e− from the CB (Equation (2)), ·O2− radicals were produced from



Molecules 2022, 27, 8642 11 of 17

O2 by gaining e− (Equation (4)), and the ·OH radicals were produced by reacting with
·O2−, h+, and H2O (Equations (6) and (7)) [57,58]. Thus, the photo-generated h+, SO4

−·,
·O2−, e−, and ·OH radicals participated in the degradation process. At the same time, PDS
was activated by Co2+, producing SO4

−· radicals. Combined with the abovementioned
discussion in Figure 8, the excellent degradation performance of CMO could be attributed
to the reactive ·O2

− species, which was mainly produced from the activation of PDS by
CMO (Equation (8)) [59]. Furthermore, it can be seen from Equations (9) and (11) that the
Co element could undergo a reciprocal transformation between Co3+ and Co2+ during
the reaction process. Electron shuttling facilitates the circulation between Co3+ and Co2+.
The possible photocatalytic and persulfate activation and equations mentioned above are
listed below.

CoMoO4 (photo catalyst) + h v→ e− + h+ (1)

S2O8
2− + e−→ SO4

−· + SO4
2− (2)

SO4
−· + H2O→ HSO5

− + ·OH + H+ (3)

O2 + e−→ ·O2
− (4)

·O2
− + ·OH→ 1O2 + OH− (5)

H2O + ·O2
−→ ·OH (6)

H2O/OH− + h+→ ·OH + H+ (7)

Co2+ + HSO5
−→ Co3+ + SO4

−· + OH− (8)

Co3+ + HSO5
−→ Co2+ + SO5

−· + H+ (9)

HSO5− + SO5
−·→ SO4

−· + HSO4− + 1O2 (10)

Co3+ + e−→ Co2+ (11)

CR + radicals (·O2
−,·OH, SO4

−·, h+, 1O2)→ degraded products +CO2 + H2O (12)
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Figure 11. Photo-Fenton mechanism of CoMoO4/PDS system.

The reusability of materials is significant in measuring the economic feasibility and
propensity of secondary pollutants [60]. Figure 12a shows the CR removal rate for
6 cycles to measure the reusability of CMO-8. Before reusing, we used EtOH and deion-
ized water to wash used CMO to remove the adsorbed PDS. Compared with the first
cycle (97.7% ± 0. 6%), the removal efficiency of CR in the 2nd (89.9% ± 0.16%), 3rd
(77.968% ± 1%), 4th (72.901% ± 0.18%), 5th (71.433% ± 0.41%), and 6th (70.27% ± 0.244%)
cycle decreased by 7.203% (±0.6%), 19.235% (±1%), 24.302% (±0.18%), 25.77% (±0.41%),
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and 26.933% (±0.244%), respectively. Thus, the CMO-8/PDS-UV-vis system exhibits ex-
cellent performance in CR degradation. Figure 12b shows the XRD of reused CMO-8;
after reuse, the peaks at 14.159◦ (110), 28.512◦ (220), and 43.340◦ (−330) were the main
characteristic peaks that had a sharp decline. The XRD data of the reused CMO-8 and
after reuse CMO-8 are compared with the unreacted catalyst; the results showed that the
main peak shape had not changed, indicating the stability of the CMO-8 composite catalyst
structure before and after the reaction (the crystal shape had not changed). In summary, the
stability of both the performance and structure reflected the good cyclability and stability
of the reaction system. Thus, it can be indicated that the reason of the activity liveness
competence of CMO-8 decreased. Therefore, this is the reason that the degradation of CR
expressed a gradual decline downdrift.
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Figures S3 and S4 show the XPS spectra of reused CMO-8 and after reuse CMO-8.
Figure S3a shows the curves of Co 2p, which shows two obvious peaks of 2p3/2 and 2p1/2,
and two satellites (marked as “Sat.”). Two low binding energy peaks at 780.38, 780.4
and 796.71, 796, 73 eV are assigned to Co3+, while the other peaks at 781.81, 781.8 and
797.85, 797.85 eV are well-matched with Co2+. Figure S3b displays Mo 3d XPS doublets,
corresponding to Mo 3d5/2 and Mo 3d3/2. The peaks at 232.35, 232.45 and 235.5, 235.6 eV
come from the Mo6+. As shown in Figure S3c, the peak at 530.18 eV was ascribed to the
lattice oxygen (Olatt) bonds of metal oxides and the peak at 531.28 eV might be owing to the
defect site of low hypoxia coordination, indicating that Ovac were created on the surface of
CoMoO4. Figure S3d shows the C1s: the peak at 284.8 eV was ascribed to the C-C, the peak
at 286.4 eV was ascribed to the C-N, and the peak at 289 eV was ascribed to the O-C=O.
Figure 12c shows that the ratios of Co3+, Co2+ are 36.56% and 33.51%, and 63.44% and
66.49% for reused CMO-8 and after reuse CMO-8, respectively. Figure 12d shows that the
ratios of Olatt, Ovac are 72.739% and 73.817%, and 27.261% and 26.183% for reused CMO-8
and after reuse CMO-8, respectively. The Co2+ and Ova were increased by 4.277% and
7.327%, and 5.034% and 3.956% compared with the initial CMO-8, respectively. Based on
this study, the repeatability of the CMO-8 catalyst is excellent.

3.4. MS Analysis of Oxidation Intermediates from CR

CR is easily soluble in water, with -NH2 and SO3
− groups in its molecular formula,

just as phenol may be hydrolyzed in water, such as: SO3
− + H2O→ HSO3 + OH− [61].
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Figure 13 shows the degradation pathways of CR by ·OH were established from
the pattern of degradation of the dye and nature of the compounds formed. Since no
peak corresponding to the molecular ion peak of the dye was obtained in Figure 13a,
degradation of the dye was thus confirmed. The MS method, as reported above, was used
for the analysis of organic compounds of CR. CR is attacked by ·OH at the N attached to
the small moiety bearing NH2 and SO3

−, undergoes electron transfer and bond cleavage
reactions, and forms products III and IV through the loss of N2 group [62–64]. Product IV
under the ·OH persistent attack is composed of products I and III; these intermediates are
less toxic molecules compared with Congo red dye. Additionally, other than these peaks,
several more peaks of negligible intensity are present in the spectrum, indicating that most
of the Congo red dye molecules have been mineralized. Although several by-products
are expected to form in the dye oxidation, the identification of all the products becomes
difficult due to their low solubility in methanol [63].
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4. Conclusions

In this study, a CoMoO4 photocatalyst was successfully synthesized by the coprecipita-
tion method and calcination method. The CoMoO4 primary product could be synthesized
quickly and efficiently by the coprecipitation method. α-CoMoO4 with high activity
was further synthesized by the calcination method, and PDS activated the CR-simulated
wastewater under UV-vis. The removal rate of Congo red was 96.972% after 35 min of light
exposure, and 70.27% after the 6th re-use of the material. The excellent catalytic activity
of CMO-8 was attributed to the synergistic effect of photocatalysis and Co2+-activated
PDS degradation. The capture experiments showed that superoxide radical (·O2), singlet
oxygen (1O2), sulfate (SO4

−), hole (h+), and hydroxyl (OH−) were the main free radicals
leading to the degradation of CR, which was also indicated in EPR. The effects of initial
concentration, catalyst dosage, PDS dosage, and pH on CR degradation efficiency were
systematically investigated. The stability of both performance and structure reflected the
good cyclability and stability of the reaction system. Therefore, CMO-8 catalysts can be
used for the efficient removal of dye organic wastewater.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27248642/s1, Figure S1: XPS spectra of survey; Figure S2:
(a) Effect of reused CMO-8 loading; (b) Effect of PMS concentration; (c) Effect of pH; Figure S3: XPS
spectra of (a) Co 2p; (b) Mo 3d; (c) O 1s; (d) C 1s of CMO-8 reuse and CMO-8 after reuse.; Figure S4:
XPS spectra of survey of CMO-8 reuse and CMO-8 after reuse.
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