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Abstract: The inhibiting performance of sodium succinate (Na2C4H4O4) was evaluated as an organic
environmentally friendly corrosion inhibitor for carbon steel rebars in 0.6 M Cl− simulated concrete
pore solution. Potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy
(EIS) measurements were utilized to evaluate the inhibitor performance at different temperatures and
concentrations. The investigated corrosion inhibitor showed strong corrosion inhibition performance
as it adsorbs on the surface of the rebar, creating a protective adsorption film. According to PDP,
the inhibitor is classified as a mixed-type inhibitor with an inhibitor efficiency of 77, 69, 59, and 54%
for 25, 35, 45, and 55 ◦C, respectively. EIS validated the PDP tests, showing that sodium succinate
displaces the water molecules at the interface, creating an adsorption film by complexing with
ferrous ions. The film thickness was calculated, and sodium succinate was able to produce a thicker
protective film (span of nanometers) relative to the reference at every temperature. The adsorption of
sodium succinate follows the Temkin adsorption isotherm. ∆G0

ads was found to be −32.75 kJ/mol,
indicating that the inhibitor adsorption is a combined physisorption and chemisorption process.
Different surface characterizations were utilized to substantiate the adsorption of sodium succinate,
these include scanning electron microscopy, energy-dispersive X-ray spectroscopy, and micro-Raman
spectroscopy. Finally, quantum chemical calculations showed that the delocalized electrons in the
carboxyl group have high HOMO energies and electrostatic potential, which facilitates the adsorption
of sodium succinate corrosion inhibitor onto the carbon steel rebar surface.

Keywords: corrosion inhibitor; activation energy; quantum chemical DFT; alkaline solution;
carbon steel; electrochemical impedance spectroscopy

1. Introduction

Carbon steel rebars embedded in concrete improve the durability and mechanical
performance of concrete structures by increasing its tensile strength [1]. Carbon steel is
initially protected against corrosion due to the formation of a passive film promoted by
the concrete alkaline environment (pH 12.6), nevertheless, passivity breakdown can occur
due to chloride attacks [2]. Concrete structures near marine environments will be exposed
to chloride ions that will diffuse into the concrete matrix and initiate an autocatalytic iron
acid hydrolysis reaction, as seen in Equation (1) [3]. This reaction will cause the local pH to
drop from 12.6 to 4, destabilizing the passive film [4]. As a result, corrosion will initiate and
oxyhydroxides, corrosion products, will form on the surface of the rebar. The volume of the
rebar will increase, causing stresses that will crack and spall the concrete, leading to a loss
of structural integrity [5]. There are many proactive methods used to mitigate the corrosion
process in reinforced concrete. These include the use of expensive stainless-steel rebars,
coatings, cathodic protection strategies, and the application of organic corrosion inhibitors.

Fe2+ + 2Cl− + 2H2O→ Fe(OH)2 + 2H+ + 2Cl− (1)
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Organic inhibitors encompass a wide variety of substances and include amines, alka-
nolamines, mono-carboxylates, and poly-carboxylates [2]. These organic inhibitors are
usually classified as mixed corrosion inhibitors, which decrease the corrosion rate without
a significant change in the corrosion potential (Ecorr). Organic corrosion inhibitors protect
the working electrode by forming an adsorption film that adheres to the surface of the
carbon steel rebar through a hydrophilic group, while a hydrophobic group faces the bulk
repelling water molecules and protecting the metal surface from the corrosive electrolyte
solution [6]. These corrosion inhibitors usually contain polar functional groups with N, S,
and O atoms that form five- or six-membered chelate rings due to the bonding between the
mentioned functional groups and the metal cation [2].

Among different organic corrosion inhibitors, carboxylic acids and their salts are
environmentally friendly and can be derived from fatty acids extracted from vegetable oil,
making them an appropriate candidate for corrosion protection in reinforced concrete [7].
These corrosion inhibitors contain a carboxylate group (–COOH) that facilitates the ad-
sorption on the surface of the rebar creating a hydrophobic film through the formation of
coordination complexes with ferrous ions [8,9]. The inhibitive properties of carboxylates
are attributed to the presence of delocalized electrons, making them nucleophilic reagents
for the adsorption process. Additionally, π-bonds, present in the carboxylate group, tend
to donate electrons to the metal surface, promoting the corrosion inhibitor adsorption,
forming complexes with iron cations, and creating a protective adsorption film [10–12].

To illustrate the inhibitive properties of carboxylates, a study investigated the inhibi-
tion performance of amines, alkanolamines, and carboxylic acids on carbon steel rebars
in 0.1 M Cl− de-aerated SCPS [10]. It was concluded that carboxylic acids had the best
inhibitive performance among different organic groups in decreasing the corrosion rate,
due to their chelating effect on the surface of the working electrode [10]. Additionally, a
quantitative structure–property relationship using Signature molecular descriptors was con-
structed to illustrate the significance of π-bond electrons (present in the carboxylic groups)
in the adsorption process [10]. Moreover, Fazayel et al. studied the corrosion inhibition
performance of polycarboxylate derivatives on carbon steel in 0.6 M Cl− SCPS; an inhibition
efficiency of 92% was achieved [11]. The standard Gibbs free energy of adsorption (∆G0

ads)
was calculated utilizing different adsorption isotherms and the mode of adsorption was
found to be a physicochemical adsorption process, due to electrostatic interactions and
electron donation between the corrosion inhibitor and the carbon steel sample [11].

Succinic acid, or succinate, is one of the least researched carboxylates as a corrosion
inhibitor, especially in reinforced concrete, although it has desirable characteristics that
can make it a great candidate to be an environmentally friendly, effective, and economical
corrosion inhibitor [13,14]. Succinic acid is a dicarboxylic acid that is soluble in water with
two carboxylate groups (–COOH); it is used in many different industries such as medicine,
pharmaceuticals, food, and beverages. Succinic acid is also approved by the U.S. Food and
Drug Administration, allowing its use as a safe and eco-friendly corrosion inhibitor [14].
One study investigated the anticorrosive properties of succinic acid on carbon steel exposed
to produced water of crude oil at different pH: 2, 3, 4, 5, and 6 at 25 ◦C. It was found
that succinic acid was an effective organic corrosion inhibitor at pH ≤ 3 [14]. However,
the corrosion inhibition mechanism and quantum chemical properties were not discussed
nor studied, especially for reinforced concrete environments. Although, a recent study
showed that the addition of succinic acid can increase the compressive strength of concrete,
illustrating its compatibility in this environment [15].

The aim of this study is to investigate the corrosion inhibition performance and mecha-
nism of sodium succinate (Na2C4H4O4) for carbon steel rebars in 0.6 M Cl− SCPS (pH 12.6)
using potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS),
and density functional theory (DFT) calculations. Additionally, the effect of temperature
and concentration was studied to find the activation energy (Ea), standard Gibbs free en-
ergy of adsorption (∆G0

ads), and inhibition mechanism. Moreover, the surface morphology
of the carbon steel rebars was investigated by optical and scanning electron microscopy,
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as well as micro-Raman spectroscopy. Finally, a theoretical quantum chemical computa-
tional study was conducted to understand the corrosion inhibition mechanism of sodium
succinate on carbon steel.

2. Results and Discussion
2.1. Electrochemical Results
2.1.1. Potentiodynamic Polarization Curves

Figure 1 shows potentiodynamic polarization (PDP) curves of carbon steel rebars in
0.6 M Cl− SCPS in the presence and absence of 0.6 M sodium succinate at four different
temperatures: 25, 35, 45, and 55 ◦C. Results obtained from the PDP curves are shown in
Table 1 and include Ecorr, icorr, anodic Tafel slope (βa), and cathodic Tafel slope (βc). These
parameters were determined using Gamry Echem Analyst software, using a potential range
of ±20 mVOCP. The IE for sodium succinate was obtained by using Equation (2):

IE (%) =

(
1−

icorr,inh

icorr,ref

)
× 100 (2)

where icorr,inh and icorr,ref are the corrosion current density of the inhibited and uninhibited
carbon steel rebars (used as a reference), respectively.

Molecules 2022, 27, x FOR PEER REVIEW 3 of 23 
 

using potentiodynamic polarization (PDP), electrochemical impedance spectroscopy 
(EIS), and density functional theory (DFT) calculations. Additionally, the effect of temper-
ature and concentration was studied to find the activation energy (Ea), standard Gibbs free 
energy of adsorption (ΔG0ads), and inhibition mechanism. Moreover, the surface morphol-
ogy of the carbon steel rebars was investigated by optical and scanning electron micros-
copy, as well as micro-Raman spectroscopy. Finally, a theoretical quantum chemical com-
putational study was conducted to understand the corrosion inhibition mechanism of so-
dium succinate on carbon steel. 

2. Results and Discussion 

2.1. Electrochemical Results 
2.1.1. Potentiodynamic Polarization Curves 

Figure 1 shows potentiodynamic polarization (PDP) curves of carbon steel rebars in 
0.6 M Cl− SCPS in the presence and absence of 0.6 M sodium succinate at four different 
temperatures: 25, 35, 45, and 55 °C. Results obtained from the PDP curves are shown in 
Table 1 and include Ecorr, icorr, anodic Tafel slope (βa), and cathodic Tafel slope (βc). These 
parameters were determined using Gamry Echem Analyst software, using a potential 
range of ±20 mVOCP. The IE for sodium succinate was obtained by using Equation (2): 𝐼𝐸 (%)  =  (1 − 𝑖 ,𝑖 , ) 100 (2)

where icorr,inh and icorr,ref are the corrosion current density of the inhibited and uninhibited 
carbon steel rebars (used as a reference), respectively. 

 
Figure 1. PDP curves for carbon steel rebars in 0.6 M Cl− SCPS in the (a) absence, and (b) presence 
of 0.6 M sodium succinate at 25, 35, 45, and 55 °C. 

Figure 1. PDP curves for carbon steel rebars in 0.6 M Cl− SCPS in the (a) absence, and (b) presence of
0.6 M sodium succinate at 25, 35, 45, and 55 ◦C.



Molecules 2022, 27, 8776 4 of 23

Table 1. PDP curves electrochemical parameters of carbon steel in 0.6 M Cl− SCPS in the absence and
presence of 0.6 M sodium succinate at 25, 35, 45, and 55 ◦C.

Sample Temperature
(◦C)

Ecorr
(mVSCE)

icorr
(µA cm−2)

IE
(%)

βc
(mV/dec)

βa
(mV/dec)

Reference

25 –470 2.12 – 288 103
35 –484 3.56 – 309 77
45 –495 4.40 – 334 56
55 –510 5.50 – 445 54

Sodium
succinate

25 –429 0.48 77 250 222
35 –470 1.10 69 275 120
45 –490 1.80 59 287 127
55 −508 2.53 54 294 132

According to Table 1, the inhibited carbon steel rebars exhibit lower icorr values at every
temperature indicating a lower corrosion rate. This can be attributed to the adsorption
of the sodium succinate on the surface of the carbon steel rebar creating an adsorption
film that acts as a barrier between the rebar and the corrosive electrolyte [6,10]. This
corrosion protection ability of sodium succinate is clear since the IE is 77, 69, 59, and
54% at 25, 35, 45, and 55 ◦C, respectively. The strong corrosion inhibition performance
of sodium succinate can be attributed to the two delocalized negative charged centers
found in the succinate anion, helping the inhibitor to easily adsorb on the surface. Once
adsorbed the succinate anion will then form complexes with iron cations on the surface
of the rebar, creating an adsorption film—protecting the metal surface from the corrosive
environment [11,16]. According to Table 1, sodium succinate is classified as a mixed
corrosion inhibitor, since the shift in Ecorr is less than 85 mV, indicating that both the metal
dissolution (anodic half-reaction) and oxygen reduction reactions (cathodic half-reaction)
are being inhibited [17]. Increasing the temperature causes the icorr values for the reference
and sodium succinate inhibited carbon steel rebars to increase significantly. This is due
to accelerated electrochemical kinetics and desorption of the inhibitor from the surface of
the working electrode [18,19]. The desorption of the sodium succinate inhibitor will cause
areas of the carbon steel rebar to be exposed to the corrosive environment allowing the
corrosion process to initiate, thus increasing icorr. It should be noted that sodium succinate
can adsorb on the surface of the rebar and form coordination complexes in different modes.
According to Nakamoto, there are three main modes of adsorption between a carboxylate
and metal cation; these modes are presented in Figure 2 [8,9].
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Figure 2. The three main adsorption modes of R–COO– of sodium succinate on the metal surface:
(a) ή-shape mode, (b) bridging mode, and (c) chelating mode. Dashed line represents partial π-bonds
due to carboxylate resonance. The formation of an adsorption film will repel chloride ions, thus
protecting the carbon steel rebar. Ferrous ions are represented as orange spheres.
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2.1.2. Electrochemical Impedance Spectroscopy Measurements (EIS)

The electrochemical behavior of carbon steel in the absence and presence of sodium
succinate in 0.6 M Cl− SCPS was investigated by the means of EIS at 25, 35, 45, and
55 ◦C. EIS analysis can confirm the results obtained from the PDP curves and give critical
information about the electrochemical double-layer interface between the metal surface
and the corrosive electrolyte. Figure 3 illustrates the Nyquist plots of the reference and
0.6 M sodium succinate inhibited carbon steel rebar at the aforementioned temperatures.
The Nyquist plots need to be fitted to an electrical equivalent circuit (EEC) to find the
required quantitative electrochemical parameters. However, to ensure the robustness
of the data obtained before fitting it to an EEC, Kramers–Kronig (KK) transforms were
used to evaluate the validity of the experimental results. KK transforms are defined by
Equations (3) and (4) [20]:

Zreal(ω) = Zreal(∞)−
(

2
π

) ∫ ∞

o

xZim(x)−ωZim(ω)

x2 −ω2 dx (3)

Zim(ω) = −
(

2ω

π

) ∫ ∞

o

Zreal(x)− Zreal(ω)

x2 −ω2 dx (4)

where Zreal, Zim, ω, and x are the real impedance, imaginary impedance, frequency of the
transform, and frequency of the integration, respectively [20]. Comparing the theoretical
and the experimental Zreal and Zim can test the robustness of the EIS data obtained. Figure 4
shows a comparison between the experimental EIS data and data obtained from the KK
transforms for sodium succinate in 0.6 M Cl− SCPS at 25 ◦C. As seen in Figure 4, there is a
good agreement between the experimental (denoted as symbols) and KK transformed data
(denoted as crosses), confirming the robustness of the experiment.
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and calculated values using Kramers–Kronig (KK) transformation at 25 ◦C.

The Nyquist plots were fitted to an EEC as shown in Figure 5. The EEC shows different
hierarchy-distributed equivalent circuits, where Rs is the solution resistance, Rfilm is the
adsorption film resistance, and Rct is the charge transfer resistance. Moreover, the EEC is
made up of two constant phase elements (CPE): one represents the double layer (R–CPEdl)
corresponding to low frequencies and the other represents the adsorption film (R–CPEfilm)
corresponding to high frequencies. The effective electrochemical capacitance of the double
layer (Ceff,dl), effective capacitance of the passive film (Ceff,film), and effective film thickness
(deff,film) were calculated using Equations (5)–(7) [21,22]:

Ceff,dl = Ydl
1

ndl

(
1

Rs
− 1

Rct

)(
ndl−1

ndl
)

(5)

Ceff,film = Yfilm
(
ω
′′
m
)nfilm −1 (6)

deff,film =
εo εfilm
Ceff,film

(7)

where Ydl and Yfilm are the admittance of the double layer and film, respectively. Addition-
ally, nfilm and ndl are the CPE exponent of the adsorption film and the double layer, respec-
tively, where n = 1 indicates an ideal capacitor and n = 0 indicates an ideal resistor [23,24].
Finally, ω”, εo, and ε are the frequency where the maximum imaginary impedance is
achieved, the vacuum permittivity constant (8.85 × 10−14 F cm−1), and the dielectric
constant of the oxide film (a value of 30 was used [25]), respectively.
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45 11.97 1.23 × 103 3.96 × 103 7.86 × 10−6 0.71 3.95 × 10−4 0.73 – 4.44 × 10−4

55 13.94 8.46 × 102 1.37 × 103 1.50 × 10−5 0.77 7.84 × 10−4 0.78 – 5.25 × 10−4

Sodium
succinate

25 11.38 6.48 × 103 6.96 × 104 1.11 × 10−6 0.74 8.07 × 10−6 0.72 81.6 3.60 × 10−4

35 14.36 4.24 × 103 2.19 × 104 1.96 × 10−6 0.79 3.42 × 10−5 0.80 74.3 3.31 × 10−4

45 17.73 3.00 × 103 1.15 × 104 3.16 × 10−6 0.82 8.22 × 10−5 0.86 65.6 2.00 × 10−4

55 12.68 1.80 × 103 3.36 × 103 5.13 × 10−6 0.85 2.17 × 10−4 0.80 59.1 3.58 × 10−4

* Total error < 10%.

As seen in Table 2, the Rs values for the inhibited and uninhibited carbon steel rebars
are relatively similar, between 11.35 and 16.03 Ω cm2. The Rfilm values for the inhibited
solution are 6.48 × 103, 4.24 × 103, 3.00 × 103, and 1.80 × 103 Ω cm2 compared to the
reference’s 2.47 × 103, 1.98 × 103, 1.23 × 103, and 8.46 × 103 Ω cm2 at 25, 35, 45, and 55 ◦C,
respectively. The increase in Rf in the presence of sodium succinate is due to the formation
of a protective adsorption film on the surface of the carbon steel rebar [26,27]. Moreover,
the decrease in the film resistance with increased temperature can be attributed to the
desorption of the corrosion inhibitor from the surface, hence increased metal dissolution.
The Rct values for sodium succinate are significantly greater than the reference, indicating
lower anodic dissolution kinetics in the presence of the succinate anion. As result, the IE
was 81.6, 74.3, 65.6, and 59.1% at 25, 35, 45, and 55 ◦C, corroborating the PDP measurements.
The strong anticorrosive performance of sodium succinate is attributed to the formation of
different complexes between the succinate anion and the iron cations creating an adsorption
film, thus protecting against chloride-induced attacks [6,10,28].

The Ceff,dl of the sodium succinate inhibited carbon steel rebar were lower than the
uninhibited (see Table 3), indicating a decrease in the local dielectric constant and/or
increase in the thickness of the electrochemical double layer suggesting that the inhibition
process is attributed to surface adsorption. Additionally, the lower values of Ceff,dl are
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due to the displacement of water molecules at the electrode/electrolyte interface [19,23,29].
The obtained values for Rct and Ceff,dl for carbon steel in the presence and absence of 0.6
M sodium succinate in 0.6 M Cl− SCPS at different temperatures are shown in Figure 6.
The variation between the Rct and Ceff,dl are in good agreement, where the highest value
of Rct corresponds to the lowest value of Ceff,dl—indicating the formation of a protective
film [30,31]. The same trend was observed for Ceff,film, lower in the presence of sodium
succinate (see Table 3), thus indicating the formation of a thick protective layer. Figure 7
and Table 3 illustrate the deff of the carbon steel rebar in the presence and absence of sodium
succinate at different temperatures in 0.6 M Cl− SCPS. Relative to the blank, a thicker film
was observed (scale of nanometers) in the presence of sodium succinate corrosion inhibitor,
indicating its adsorption and complexation. Nevertheless, at higher temperatures, the film
thickness decreased due to the desorption of the corrosion inhibitor.
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Figure 7. Effective film thickness (deff,film) of carbon steel rebars in the presence and absence of 0.6 M
sodium succinate in 0.6 M Cl− SCPS at 25, 35, 45, and 55 ◦C.

Table 3. Ceff,dl, Ceff,film, and deff of carbon steel rebar in the presence and absence of 0.6 M sodium
succinate in 0.6 M Cl− SCPS at 25, 35, 45, and 55 ◦C.

Sample Temperature
(◦C)

Ceff,dl
(F cm−2)

Ceff,film
(F cm−2)

deff
(nm)

Reference

25 4.51 × 10−6 6.37 × 10−6 4.16
35 7.24 × 10−6 7.53 × 10−6 3.52
45 5.24 × 10−5 1.17 × 10−5 2.27
55 2.20 × 10−4 2.17 × 10−5 1.22

Sodium
succinate

25 2.17 × 10−7 2.59 × 10−6 10.2
35 5.08 × 10−6 3.35 × 10−6 7.92
45 2.84 × 10−5 5.20 × 10−6 5.10
55 4.97 × 10−5 7.34 × 10−6 3.61

2.2. Activation Thermodynamic Parameters of the Corrosion Process

Different thermodynamic parameters can be obtained by testing sodium succinate
at different temperatures, these include the activation energy of the corrosion process
(Ea), enthalpy of activation (∆Ha), and entropy of activation (∆Sa). Equating the forward
cathodic and reverse anodic reaction rate at equilibrium will yield a transformed Arrhenius
relation enabling the calculation of Ea, as seen in Equation (8) [19,32]:

ln(icorr) = ln(A)− Ea

RT
(8)

where icorr is the corrosion current density, A is the pre-exponential factor, R is the universal
gas constant, and T is the temperature. As seen in Figure 9, plotting ln(icorr) against 1000/T
yields a negatively sloped line, where the slope is equivalent to −Ea/103R. Furthermore,
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using the Eyring transition state will yield ∆Ha and ∆Sa for the formation of the activated
complex, as seen in Equation (9) [33,34].

ln
(

icorr

T

)
=

[
ln
(

R
h Na

)
+

(
∆Sa

R

)]
− ∆Ha

RT
(9)

where ∆Ha, ∆Sa, h, and Na are the enthalpy of activation, entropy of activation, Planck’s
constant, and Avogadro’s number, respectively. As seen in Figure 8, plotting ln(icorr/T)
against 1000/T yields ∆Ha and ∆Sa through the slope and y-intercept, respectively. All the
activation parameters with the corresponding regression coefficient (R2) for the inhibited
and uninhibited carbon steel rebar in 0.6 M Cl− SCPS are provided in Table 4. The Ea
increased from 25.35 kJ/mol to 44.73 kJ/mol in the absence and presence of 0.6 M sodium
succinate, respectively, indicating a greater energy barrier for corrosion initiation in sodium
succinate inhibited solutions. This demonstrates the adsorption of the succinate anion on
the surface of the working electrode, blocking the active sites (lowest Ea) and causing the
less active (highest Ea) sites to corrode, thus increasing the Ea of the corrosion process,
making it harder to initiate [34,35].
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Similarly, ∆Ha has increased from 22.44 kJ/mol to 42.50 kJ/mol for the reference and
sodium succinate, respectively. The positive value of ∆Ha indicates that the steel dissolution
process is an endothermic reaction, therefore a positive correlation between the corrosion
rate and temperature [36,37]. It should be noted that ∆Ha follows the same trend as Ea and
their difference is around 2.6 kJ/mol, which is approximately equal to the average value of
RT at the four different temperatures used (see Equation (10)):

RT = Ea − ∆Ha (10)

Hence, the corrosion kinetics satisfy Equation (10) and validate the experimental
results, also confirming that the corrosion process is a unimolecular reaction with a single
transition state [38,39]. ∆Sa in the presence of sodium succinate is greater than the reference,
signifying increased energy dispersion in the presence of the inhibitor, which is attributed
to the displacement of water molecules by the adsorbed succinate anion on the surface of
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the carbon steel rebar; increased disorder [40]. Moreover, the negative values of the ∆Sa

indicate that the activated complex represents association rather than dissociation [41].
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Table 4. Activation parameters of carbon steel in the absence and presence of 0.6 M sodium succinate
in 0.6 M Cl− SCPS.

Sample R2 Ea
(kJ/mol)

∆Ha

(kJ/mol)
∆Sa

(J/mol K)
Ea − ∆Ha

(kJ/mol)

Reference 0.92 25.35 22.44 –276.93 2.91
Sodium succinate 0.95 44.73 42.50 −222.48 2.23

2.3. Adsorption Isotherm

The corrosion inhibition efficiency of organic molecules, in simple terms, depends
on the ability of the inhibitor to adsorb on the surface of the working electrode, thus
protecting it from the corrosive environment. In this process, water molecules will be
replaced/displaced by the organic corrosion inhibitor creating an adsorption film, as seen
in Equation (11) [42]:

Org(sol) + xH2O(ads) → Org(ads) + xH2O(sol) (11)

where Org(sol) is the organic inhibitor in the solution, Org(ads) is the adsorbed organic
molecule on the metal surface, H2O (ads) is the water molecules adsorbed on the surface of
the rebar, and x is the number of water molecules displaced by the inhibitor. Adsorption
isotherms provide information about the interaction of the adsorbed inhibitor and the
surface of the carbon steel rebar, which includes the Gibbs free energy of adsorption
(∆G0

ads) and the adsorption equilibrium constant (Kads) [43,44]. In this regard, the effect of
sodium succinate concentration was studied, where three different [Na2C4H4O4]/[Cl−]
ratios were tested (0.1, 1, and 1.5) and illustrated in Figure 10. Extrapolating the Tafel
slopes yields an icorr of 1.2, 0.48, and 0.27 µA cm−2 for [Na2C4H4O4]/[Cl−] ratio of 0.5,
1, and 1.5, respectively. The experimental results indicate a positive correlation between
the concentration of sodium succinate and the corrosion inhibition efficiency, since the IE
is 48, 77, and 87% for 0.5, 1, and 1.5, respectively, at 25 ◦C in 0.6 M Cl− SPCS. Increased
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concertation of sodium succinate will ensure the formation of a complete and mature film,
preventing the adsorption of Cl− ions.
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specific concentrations of sodium succinate at 25 ◦C.

Table 5 shows all electrochemical parameters for the PDP curves of sodium succinate
inhibited and uninhibited carbon steel rebars at the aforementioned [Na2C4H4O4]/[Cl−]
ratios, where the degree of surface coverage (θ) and the concentration of corrosion in-
hibitor (Cinh) were used to test and fit different adsorption isotherms including Langmuir
(Equation (12)), Temkin (Equation (13)), and Freundlich (Equation (14)) [29,45]:

Cinh
θ

=
1

Kads
+ Cinh (12)

e(−2aθ) = KadsCinh (13)

θ = KadsCn
inh (14)

where Kads is the equilibrium constant of the adsorption reaction and “a” describes the
molecular interactions in the adsorption layer.

Table 5. PDP curves electrochemical parameters for carbon steel in the presence and absence of
different concentrations of sodium succinate at 25 ◦C.

Sample [Na2C4H4O4]/[Cl−] Ecorr
(mVSCE)

icorr
(µA cm−2)

IE
(%) 888

βc
(mV/dec)

βa
(mV/dec)

Reference – −470 2.12 – – 288 103

Sodium
succinate

0.5 −540 1.20 48 0.48 313 354
1.0 −429 0.48 77 0.77 250 222
1.5 −360 0.27 87 0.87 184 149

It was found that the most accurate fit between the experimental results and the
isotherm function, as seen in Figure 11, was achieved by using the Temkin adsorption
isotherm which was in accordance with previously published works [14]. Thus, indi-
cating that the adsorption mechanism of sodium succinate obeys the Temkin isotherm
having a regression coefficient (R2) of 0.996. As a result, by utilizing the slope and y-
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intercept of the fitting in Figure 11, Kads was found and ∆G0
ads can be obtained through

Equation (15) [46,47]:
∆G0

ads = −RT ln(55.5 Kads) (15)

where R is the universal gas constant, T is the temperature, and Kads is the equilibrium
constant of the adsorption/desorption process, and 55.5 is the molar concentration of
water [48]. ∆G0

ads values greater than −20 kJ/mol consists of adsorption through electro-
static interaction between the charged metal surface and inhibitor—physisorption. On the
other hand, ∆G0

ads values less than −40 kJ/mol involves adsorption on the metal surface
through charge transfer between the inhibitor and the metal surface—chemisorption. More-
over, values of ∆G0

ads between −20 kJ/mol and −40 kJ/mol, indicates that the adsorption
of the corrosion inhibitor is a combined physisorption and chemisorption process [49]. The
experimentally calculated value of ∆G0

ads was found to be −32.75 kJ/mol, indicating that
the adsorption of sodium succinate presents a combined contribution of chemisorption
and physisorption. The chemical aspect of the adsorption can be attributed to the donation
of π-bond electrons in the carboxyl group to the vacant d orbitals on the surface of the
carbon steel. On the other hand, the physical aspect of the adsorption process is governed
by the electrostatic interaction between the charged carboxylate ion and the charged metal
surface [11]. Once the inhibitor is adsorbed it will create an adsorption film blocking
active sites on the surface of carbon steel rebar, hence creating an energy barrier that will
hinder charge transfer, thus decreasing icorr and imparting corrosion protection. Finally,
the negative value of ∆G0

ads indicates that the adsorption process of sodium succinate on
the surface of carbon steel is spontaneous and stable.

Molecules 2022, 27, x FOR PEER REVIEW 13 of 23 
 

∆𝐺 =  −RT ln(55.5 𝐾 ) (15)

where R is the universal gas constant, T is the temperature, and Kads is the equilibrium 
constant of the adsorption/desorption process, and 55.5 is the molar concentration of wa-
ter [48]. ΔG0ads values greater than −20 kJ/mol consists of adsorption through electrostatic 
interaction between the charged metal surface and inhibitor—physisorption. On the other 
hand, ΔG0ads values less than −40 kJ/mol involves adsorption on the metal surface through 
charge transfer between the inhibitor and the metal surface—chemisorption. Moreover, 
values of ΔG0ads between −20 kJ/mol and −40 kJ/mol, indicates that the adsorption of the 
corrosion inhibitor is a combined physisorption and chemisorption process [49]. The ex-
perimentally calculated value of ΔG0ads was found to be −32.75 kJ/mol, indicating that the 
adsorption of sodium succinate presents a combined contribution of chemisorption and 
physisorption. The chemical aspect of the adsorption can be attributed to the donation of 
π-bond electrons in the carboxyl group to the vacant d orbitals on the surface of the carbon 
steel. On the other hand, the physical aspect of the adsorption process is governed by the 
electrostatic interaction between the charged carboxylate ion and the charged metal sur-
face [11]. Once the inhibitor is adsorbed it will create an adsorption film blocking active 
sites on the surface of carbon steel rebar, hence creating an energy barrier that will hinder 
charge transfer, thus decreasing icorr and imparting corrosion protection. Finally, the neg-
ative value of ΔG0ads indicates that the adsorption process of sodium succinate on the sur-
face of carbon steel is spontaneous and stable. 

  
Figure 11. Fittings of different adsorption isotherms for carbon steel in the presence of sodium suc-
cinate in 0.6 M Cl− SCPS at 25 °C. (a) Langmuir adsorption isotherm, and (b) Temkin and Freundlich 
adsorption isotherms. 
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succinate in 0.6 M Cl− SCPS at 25 ◦C. (a) Langmuir adsorption isotherm, and (b) Temkin and
Freundlich adsorption isotherms.
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2.4. Surface Analysis
2.4.1. SEM/EDX Analysis

The surface morphology of carbon steel rebars in the presence and absence of sodium
succinate corrosion inhibitor in 0.6 M Cl− SCPS at 25 ◦C was studied by the means of
an optical microscope and SEM. Figure 12 depicts the surface of the corroded carbon
steel rebar in the absence of sodium succinate inhibitor. It is apparent that corrosion has
occurred extensively on the surface of the rebar due to chloride induced attacks. Moreover,
Figure 12b shows a clear indication of the formation of corrosion products due to the iron
dissolution on the uninhibited carbon steel sample, also this can be corroborated using the
EDX spectrum (Figure 12c) showing intense oxygen and iron peaks due to the formation of
iron oxyhydroxides.
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25 ◦C. (a) Surface of the rebar at ×10, (b) surface of the rebar at ×40, and (c) EDX elemental spectrum
of the surface of the rebar.

Figure 13 represents an SEM micrograph of the surface of carbon steel inhibited
by 0.6 M sodium succinate. A clear distinction can be made between the reference and
inhibited carbon steel rebar, as almost no corrosion products can be observed on the
surface of the working electrode, as seen in Figure 13a. This is attributed to the adsorption
of sodium succinate on the surface of the rebar, forming complexes with iron ions and
creating an adsorption film that protects the rebar from corrosion [10,11]. These complexes
can be observed on the surface in Figure 13c and substantiated by the EDX spectrum
presented in Figure 13d. The spectrum shows an abundance of iron, oxygen, carbon, and
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sodium with a wt.% of 29.72, 19.0, 15.61, and 30.71%, respectively, revealing the presence of
complex formation created by the sodium succinate inhibitor consisting of R–COO–Fe [6].
Additionally, chloride ions may be included in the complex formation as R–COO–Cl–Fe
explaining their presence in the EDX spectrum [6,50]. It should be noted that the abundance
of sodium is due to the presence of sodium atoms in the sodium succinate molecule.
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Figure 13. Optical and SEM micrograph of the 0.6 M inhibited carbon steel rebar in 0.6 M Cl−

SCPS at 25 ◦C. (a) Surface of the rebar at ×10, (b) surface of the rebar at ×2200, (c) surface of the
rebar at ×8850, and (d) EDX elemental spectrum of the complex formation on the surface of the rebar.

2.4.2. Micro-Raman Spectroscopy

A micro-Raman spectrometer was used to analyze the composition of the surface of
the rebar and further substantiate the formation of the adsorption film. Figure 14 illustrates
the Raman spectrum of the reference and 0.6 M sodium succinate inhibited carbon steel
in 0.6 M Cl− SCPS at 25 ◦C. The peaks around 220, 290, 410, and 1320 cm−1 are attributed
to iron oxides and oxyhydroxides, such as magnetite (Fe3O4), goethite (α–FeOOH), and
lepidocrocite (γ–FeOOH) [51,52]. The peak around 670 cm−1 is assigned to C=O bending
which can be attributed to the carboxylate groups of the succinate anion [53]. This peak
was absent in the uninhibited carbon steel rebar, indicating that sodium succinate was able
to adsorb and form a protective film on the surface by complexing with ferrous ions. As a
result, the Raman spectrum elucidates the presence of complex formation consisting of iron
oxides and sodium succinate corrosion inhibitor.
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Figure 14. Raman spectroscopy on the inhibited (0.6 M sodium succinate) and uninhibited (reference)
rebar surface after exposure to 0.6 M Cl− SCPS at 25 ◦C.

2.5. Quantum Chemical Calculations

Quantum chemical calculations were used to find a correlation between the inhibitor
molecular/electronic structure and its inhibitive properties. The succinate anion molecular
geometry was optimized and different quantum chemical parameters were calculated
using density functional theory (DFT) method with a Becke’s three-parameter hybrid
functional and Lee–Yang–Parr correlation (B3LYP)/6–31G (d,p). Figure 15 represents the
optimized molecular structure of the succinate anion followed by the HOMO, LUMO,
and electrostatic potential mapping. The calculated quantum chemical data includes
the energy of the highest occupied energy molecular orbital (EHOMO = −4.64 eV), the
energy of the lowest unoccupied molecular orbital (ELUMO = 2.37), and the energy gap
(∆Egap = ELUMO – EHOMO = 7.01 eV). Molecules with high EHOMO tend to donate electrons
to the metal surface compared to molecules with a lower one [54,55]. In contrast, lower
ELUMO values indicate the ability of a molecule to accept an electron from the metal surface
creating a feedback bond [54,56]. The smaller the difference between EHOMO and ELUMO
(i.e., ∆Egap) determines the kinetic stability, chemical reactivity, and polarizability of a
molecule [10,54]. Studies have shown a positive correlation between a low ∆Egap and
corrosion inhibition, however, it should be noted that the inhibition process is a complex
one and many factors can affect it [6,54]. The calculated quantum chemical parameters can
be found in Table 6.

Table 6. Calculated quantum chemical parameters for succinate ion (C4H4O4
2−).

Quantum Parameter C4H4O42−

EHOMO (eV) −4.64
ELUMO (eV) 2.37
∆Egap (eV) 7.01

η (eV) 3.50
χ (eV) 1.13

∆N 0.83
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while red represents a negative orbital wave function. In (d) red indicates high electrostatic potentials
while blue indicates a low electrostatic potential.
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According to Figure 15b, HOMO energies are concentrated at the terminal end of the
carboxyl group due to the presence of delocalized electrons, indicating the tendency of
succinate ion to donate electrons to the unoccupied/vacant d orbital of the metal surface.
In contrast, the LUMO energies are concentrated on the C–C bonding of the succinate
ion, showing that not only succinate donates electrons but also accepts electrons from the
metal surface creating a feedback bond, enhancing the adsorption process. Figure 15d
shows the electrostatic potential map of the succinate ion, where blue and red colors
represent electrophilic and nucleophilic activities, respectively. The red region (most
negative potential) of the electrostatic potential map is concentrated between the oxygen
atoms at the terminal end of both carboxylic groups. Moreover, the Mulliken charges
analysis was performed, as seen in Figure 16, showing that the carboxyl groups hold an
excess negative charge indicating that this part of the structure can act as a nucleophilic
reagent [36]. Hence, indicating that these positions act as sites for adsorption, where the
inhibitor will interact with the metal surface forming complexes with ferrous ions, thus
protecting the surface. As a result, sodium succinate corrosion inhibitor is attracted to the
steel surface through the electrostatic charge found at the terminal ends of the succinate
anion (physisorption), also the adsorption process can occur through sharing electrons
from the carboxyl group with unoccupied d orbital of the iron surface (chemisorption).
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According to Pearson, if two different molecules are brought into proximity of each
other, then there will be a charge flow/transfer of electrons from the molecule with low
absolute electronegativity to the one with high absolute electronegativity until chemical
potential equilibrium is reached [57]. Accordingly, an approximation of the fraction of the
electrons transferred (∆N) from the inhibitor to the metallic surface can be calculated using
Pearson’s method as seen in Equation (16) [48,57]:

∆N =
χFe − χinh

2(ηFe + ηinh)
(16)

where χFe, χinh, ηFe, and ηinh are the absolute electronegativity of iron, absolute electronega-
tivity of inhibitor, chemical hardness of iron, and chemical hardness of inhibitor, respectively.
These parameters are related to the electron affinity (A) and ionization potential (Ip), as
seen in Equations (17) and (18) [36]:

χ =

(
Ip + A

)
2

(17)
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η =

(
Ip − A

)
2

(18)

where Ip and A are related to EHOMO and ELUMO as seen in Equations (19) and (20) [36]:

Ip = −EHOMO (19)

A = −ELUMO (20)

The χinh and ηinh parameters were calculated using different values of Ip and A
obtained from quantum chemical calculations, while χFe and ηFe were 7 eV and 0 eV for
iron, respectively [58]. ∆N is a function of global hardness (η) and electronegativity (χ) for
iron and inhibitor, these parameters are calculated and tabulated in Table 6. Finally, the
value of ∆N > 0 indicates that sodium succinate was the electron donor, while the carbon
steel surface was the electron acceptor in the adsorption process [58,59].

3. Materials and Methods

Grade 75 carbon steel rebar was used in all electrochemical tests conducted in this
study; the composition of the carbon steel rebar can be found in Table 7. The rebar was
cut into 4 cm length samples cleaned with ethanol and acetone, then dried with air. The
rebar was connected to a copper wire, sealed with red lacquer, and dried for 24 h, with an
exposed area of 7.96 cm2.

Table 7. Elemental composition of grade 75 carbon steel rebar (wt.%).

C Mn P S Si Cu Ni Cr Mo V Fe

0.28 1.08 0.019 0.043 0.20 0.37 0.16 0.16 0.050 0.0379 Bal.

A SCPS was used to simulate the alkalinity of concrete by using a saturated calcium
hydroxide solution (Ca(OH)2). This solution was filtered and stored at room tempera-
ture having a pH of 12.6. The SCPS was contaminated with 0.6 M NaCl to mimic con-
crete structures exposed to marine environments. Sodium succinate corrosion inhibitor
(Na2C4H4O4, analytical grade) was added in three different concentrations to have a 0.5,
1.0, and 1.5 molar ratio with Cl−. Four different temperatures were used to find different
activation parameters: 25, 35, 45, and 55 ◦C. The pH of the electrolyte solution was mea-
sured and maintained at 12.6 after the addition of sodium succinate. It should be noted
that sodium succinate will dissociate into succinate anions because of its pKa1 and pKa2
values of 4.16 and 5.64, respectively [60,61].

Electrochemical tests were used to evaluate the corrosion inhibition properties of
sodium succinate in 0.6 M Cl− SCPS. A three-electrode, temperature-controlled config-
uration cell was used with a Gamry reference 600 potentiostat. The carbon steel rebar
was the working electrode (WE), a saturated calomel electrode (SCE) was the reference
electrode (RE), and a platinum mesh was the counter electrode (CE). The open circuit
potential (OCP) was monitored until a steady-state Ecorr was achieved. Consequently,
electrochemical impedance spectroscopy (EIS) was performed at Ecorr in a frequency range
between 105 Hz to 10−2 Hz with an applied 10 mV AC excitation signal and a rate of
5 steps/decade, following the ASTM G106-89 standard [62]. Finally, potentiodynamic
polarization (PDP) was performed with a scan rate of 0.1667 mV/s from −0.2 VOCP to 0.2
VOCP, according to the ASTM G61-86 standard [63]. All tests were performed in triplicates
to ensure reproducibility.

The surface analysis of the corroded carbon steel rebars was conducted using a Hitachi–
TM3030 scanning electron microscope (SEM) with elemental compositional analysis ob-
tained using energy dispersive X-ray spectroscopy (EDX). A micro-Raman spectrum was
obtained using a Horiba LabRam HR micro-Raman spectrometer to elucidate sodium
succinate’s adsorption on the rebar’s surface. Finally, quantum chemical calculations were
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performed using Gaussian 16, where full geometry optimization was carried out on the
succinate corrosion inhibitor.

4. Conclusions

• Sodium succinate, an environmentally friendly organic compound, possesses physic-
ochemical properties that inhibit corrosion for carbon steel rebars in 0.6 M Cl− con-
taminated SCPS. Na2C4H4O4 creates an organic adsorption film on the surface of
the rebar, by forming complexes with ferrous ions that protect the rebar from Cl−

induced corrosion.
• The IE of Na2C4H4O4 according to PDP curves were 77, 69, 59, and 54% at 25, 35,

45, and 55 ◦C, respectively. The decrease in IE with temperature is attributed to the
increased corrosion kinetics and desorption of Na2C4H4O4 on the surface of the rebar.

• The IE of sodium succinate according to EIS were 83.6, 71.2, 65.0, and 59.0% for 25, 35,
45, and 55 ◦C, respectively, corroborating PDP curves. The Ceff,dl was calculated at
each temperature and was found to be lower than the reference indicating a decrease
in the local dielectric constant and/or increase in the thickness of the electrochemical
double layer suggesting that the inhibition process is attributed to surface adsorption.
The film thickness increased in the presence of sodium succinate at every temperature,
due to the formation of R–COO–Fe complexes.

• The activation energy (Ea) is greater in the presence of the inhibitor compared to the
reference. This is attributed to the adsorption of the inhibitor on the surface of the
carbon steel rebar, making corrosion harder to initiate. Enthalpy of activation (∆Ha) is
positive signifying the endothermic nature of the steel dissolution process. Entropy
of activation (∆Sa) in the presence of the inhibitor is greater than the reference due to
disorder from the displacement of water molecules by the adsorbed sodium succinate.

• Sodium succinate follows the Temkin adsorption isotherm. The ∆G0
ads was found to

be −32.75 kJ/mol, indicating a combined physicochemical adsorption process.
• Different quantum chemical parameters were calculated to elucidate the experimental

results. HOMO energies were found concentrated at the end of the carboxylic group,
while LUMO energies were found at the C–C bonds, indicating that the corrosion
inhibitor can donate and accept electrons from the metal surface. Finally, the electro-
static potential map shows that the terminal carboxyl groups act as an active site for
the adsorption process.
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