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Abstract: The sunscreen nanocapsules were successfully synthesized by the way of layer-by-layer
self-assembly using charged droplets (prepared by emulsification of LAD-30, Tween-80 and EHA
(2-Ethylhexyl-4-dimethylaminobenzoate)) as templates. Chitosan/sodium alginate/calcium chloride
were selected as wall materials to wrap EHA. The emulsions with the ratio of Tween-80 to EHA
(1:1) were stable. A stable NEI negative emulsion can be obtained when the ratio of Tween-80
and LAD-30 was 9:1. Chitosan solutions (50 kDa, 0.25 mg/mL) and sodium alginate solutions
(0.5 mg/mL) were selected to prepare nanocapsules. The nanocapsules were characterized via some
physico-chemical methods. Based on the synergistic effects of the electrostatic interaction between
wall materials and emulsifiers, EHA was effectively encapsulated. DLS and TEM showed that the
sunscreen nanocapsules were dispersed in a spherical shape with nano-size, with the increasing
number of assembly layers, the size increased from 155 nm (NEI) to 189 nm (NEII) to 201 nm (NEIII)
and 205 nm after solidification. The release studies in vitro showed sustained release behavior of
the nanocapsules were observed with the increase of the number of deposition layers, implying a
good coating effect. The sunscreen nanocapsules could control less than 50% the release of EHA
after crosslinking of calcium chloride and sodium alginate, which also could effectively avoid the
stimulation of the sun protection agent on the skin.

Keywords: layer-by-layer self-assembly; EHA (2-Ethylhexyl-4-dimethy-laminobenzoate); sustained
release; sunscreen nanocapsule

1. Introduction

Recently, the skin damage caused by ultraviolet (UV) radiation has caused widespread
concern. In particular, excessive exposure to UV radiation can bring some serious diseases,
such as sunburn, photoageing and skin cancer [1]. Therefore, it is urgent to develop
some efficient sunscreens to protect the skin from UV damage [2]. Generally speaking,
sunscreens generally include inorganic and organic compounds. EHA (2-Ethylhexyl-
4-dimethylaminobenzoate), as a UV filter, is widely used in sunscreens and cosmetics.
However, the practical application of EHA has been limited due to its poor photostability.
In addition, the strong permeability of EHA into the deep skin could adversely affect
skin biology [3]. Therefore, some efficient and safe methods have been studied to protect
our skin.

In order to solve these problems, much effort has been made to develop micro-
nanocapsule technology for the sunscreen encapsulated [4]. It was a technology that
could be used in the micro-nanosize composite, emulsification and construction techniques
to encapsulate and release active materials under specific conditions [5]. Due to its nano-
size, surface effect and core–shell structure, the nanocapsules have been used in many
areas, such as food [6], medical [7], textile [8], cosmetic [9] and so on. EHA encapsulated
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by nanocapsules not only had a certain sunscreen effect, but also effectively avoided its
direct contact with skin. However, good dispersibility and sustained sunscreen-release
property have been two main challenges for the design of efficient nanocapsules. It has been
reported that most of the sunscreen nanocapsules had poor dispersibility in emulsion [10],
limiting their application in sunscreen products. The way of layer-by-layer self-assembly
(LBL) was a new strategy to prepare the nanocapsules with nano-size and good dispersibil-
ity [11]. Due to its mechanism that was deposited oppositely charged polyelectrolytes
with the interaction of electrostatic interaction, thus the morphology [12], size and other
properties of the nanocapsules could be controlled by adjusted the number of assembly
layers [13]. Unlike other methods, the nanocapsules prepared by LBL technology could
be adjusted according to demands, such as controlled the diffusion rate by adjusted the
thickness of wall, changed the shape by adjusted the pH and ionic strength of solutions,
prepared multi component composite shell by used many kinds of materials [14]. However,
it was necessary to prepare more than ten layers to construct the stable capsule [15]. The
ionic emulsifier was used to emulsify sunscreen to prepare the charged droplets, and then
adsorbed the wall on the surface of the droplet by layer self-assembly.

Chitosan (CS), is a natural biopolymer linear polysaccharide. Its chemical name is
(1,4)-2-amino-2-deoxy-β-D-glucan. It is the deacetylation product of chitin. Chitosan is
the only alkaline polysaccharide in nature. Its basic structural unit is glucosamine, which
is a substance existing in the human body [16]. Chitosan has a good affinity with human
cells, no toxicity, no stimulation, no rejection, good histocompatibility, and is safe in vivo.
Under acidic conditions (pH < 5), chitosan can be swelled to form gels. The drug is released
slowly, hydrophilic, but insoluble in water and stable in an alkaline medium [17]. Chitosan
has positive electricity and good biological adhesion [18], which enhances its adhesion and
prolongs the drug residence time under the condition of negative charge on the mucosal
surface. Chitosan has strong plasticity and can be made into films, pressed into tablets,
particles [19], microspheres and so on. Chitosan has many excellent physical, chemical,
biological and pharmaceutical properties, which can not be compared with other sustained-
release materials [20]. In addition, it has rich sources and low prices, so it is the best raw
material for drug sustained-release materials.

Sodium alginate is a compound extracted from marine algae. A substance is defined
as a natural polymer “generally considered safe” by the US Food and drug administration.
Sodium alginate is a linear anionic polysaccharide compound whose molecular chain
is composed of β-D-mannuronic acid and α-L-guluronic acid is polymerized by (1–4)
glycosidic bond [21]. A large number of negatively charged carboxyl groups [22] in
sodium alginate interact with the positively charged primary amino groups in chitosan to
form composite microspheres. The composite microspheres can be used as the carrier of
sunscreen and enhance the stability and embedding rate of sunscreen.

The droplets with negative charge were prepared by emulsification of LAD-30, Tween-
80 and EHA in this paper. Then, the sunscreen nanocapsules were obtained by self-
assembly chitosan and sodium alginate on the surface of charged droplets, following
solidified by calcium chloride in Scheme 1. The stability of nanocapsules were evaluated
by measuring the size and zeta potential of dynamic light scattering (DLS). The release of
EHA from the EHA nanocapsules were also investigated using dialysis method. Based
on the emulsification and electrostatic incorporation the sunscreen nanocapsules showed
good stability and sustained EHA release properties, which also showed an excellent
sunscreen effect.
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Scheme 1. The synthetic route of the EHA nanocapsules by layer-by-layer self-assembly of chi-
tosan/sodium alginate/calcium chloride/EHA.

2. Materials and Methods
2.1. Materials and Reagents

Chitosan (Mn = 50,000) was obtained from Nantong Xingcheng Biologics Co., Ltd.
(Jiangsu, China). 2-Ethylhexyl-4-dimethylaminobenzoate (EHA) was supplied from Shang-
hai Macklin Biochemical Co., Ltd. (Shanghai, China). Tween-80 was purchased from
Tianjin Damao Chemical Reagents Co., Ltd. (Tianjin, China). Sodium alginate (ALG) was
brought from Shenzhen Yinuo Food Ingredients Co., Ltd. (Shenzhen, China). and Sodium
Lauroamp hoacetate (LAD-30) were acquired from Guangzhou Mingwang Biotechnology
Co., Ltd. (Guangzhou, China). Other reagents were of analytical grade and used without
further purification.

2.2. Preparation of the Sunscreen Nanocapsules
2.2.1. Preparation of Primary Nanoemulsions (NEI)

The ideal emulgators were chosen according to the previous literature [23]. A cer-
tain amount of emulgator and EHA were added into a beaker, which was immersed in
a water bath at 30 ◦C. Then, 50 mL deionized water was added into the beaker and kept
continue stirring for 15 min at the 750 rpm. Finally, a series of milky white emulsions
with different concentrations of emulgator was obtained (5, 10, 15, 20 and 25 mg/mL). The
absorbance of the distilled milky white emulsion was measured by a UV-Vis spectropho-
tometer (Shimadzu Corporation, Kyoto, Japan) at 540 nm. The mixed emulgators with
different proportions were prepared according to the previous literature [24]. 1.0 g of the
mixed solutions containing Tween-80, LAD-30 (Tween-80: LAD-30, 10:0, 10:1, 10:3, 10:5 and
10:7 at the whole mass, respectively) and 1.0 g of EHA were immersed into water bath at
30 ◦C under siting at 750 rpm. Then, 50 mL of deionized water was added into the beaker.
After stirring for another 15 min, NEI were obtained and measured by UV-Vis at 540 nm.

2.2.2. Preparation of NEII and NEIII Nanoemulsions

The NEII and NEIII nanoemulsions were prepared by layer by layer self-assembly [25].
10 mL NEI and 10 mL chitosan solutions with different concentrations (0.1, 0.25, 0.5, 0.75,
1.0, 1.5, 2.0, and 2.5 mg/mL, respectively) and molecular weight (30, 50, and 100 kDa,
respectively) were mixed in a beaker. After 15 min stirring, the NEII nanoemulsions were
obtained. Then, 20 mL NEII nanoemulsions were slowly added to 20 mL of different
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conernations (0.25, 0.5, 1.0, 1.5, and 3.0 mg/mL, respectively) of sodium alginate solutions
under stirring at 750 rpm. After 15 min, the NEIII nanoemulsions would be obtained.

2.2.3. Preparation of Sunscreen Nanocapsules

20 mL of NEIII nanoemulsions was slowly added into a series of concentrations of
calcium chloride solutions (2.0, 4.0, 6.0, 8.0 and 10.0 mg/mL, respectively). After stirring
for 15 min at 750 rpm, the sunscreen nanocapsules would be obtained.

2.3. Characterization of EHA Nanocapsules

Dynamic light scattering (DLS) (Zetasizer Nano ZS90, Malvern Instruments, Worcester-
shire, UK) was used to measure the distribution and zeta potential of the EHA nanocapsules.
A certain amount of EHA nanocapsules were added into the sample bottle and mixed with
5 mL deionized water and dilute to 5 µg/mL, shaken and mixed evenly, measured 1 mL
with a pipette gun, placed in the sample cell, and tested the particle size and zeta potential
at 25 ◦C. An average value was obtained by three repeated measurements at 25 ◦C for
each sample. Transmission electron microscopy (TEM) was conducted on JEM-2100 (HR)
electron microscope at an acceleration voltage of 200 kV. The samples were prepared by
placing a drop of the solution of the EHA nanocapsules onto the lacey support films and
dried at 30 ◦C for 10 h.

2.4. The Stability of the EHA Nanocapsules

The stability of the EHA nanocapsules was tested according to the variations of size
distribution measured by DLS during 7 days. The size distributions of NEI, NEII and NEIII
nanoemulsions were also measured by DLS, which showed the influence of preparation
processes such as pH, the speed of stir, the concentrations of chitosan solutions on the
size distribution.

2.5. Release of EHA from the EHA Nanocapsules In Vitro

The release of EHA from the EHA nanocapsules was also investigated using dial-
ysis method [26]. A certain amount of nanocapsules solutions were diluted to 4 mL by
phosphate-buffered solution (PBS) at pH 6.5. Then, the solutions were transferred to a
dialysis tube (MWCO: 3500 Da) and followed dialyzed against 30 mL of the PBS at 37 ◦C.
At a certain time interval, 4 mL of release media was sampled and replaced with an equal
volume of fresh media. The amount of EHA was determined by HPLC. Chromatographic
conditions: chromatographic column: wondasil c18-wr column (4.6 × 150 mm, 5 µm). The
mobile phase was methanol: Water (92:8), The flow rate was 1.0 min/mL. The detection
wavelength was 311 nm, Column temperature: 30 ◦C, and the injection volume was 10 uL.
The cumulative releases were calculated as:

Release(%) =
(Vt∑n−1

0 Ct + V0C0)× 100
m

(1)

where V0, C0, Vt, Ct and m were the total volume of the solutions, the initial concentration
of EHA, the volume sampled at t, the concentration of EHA at t and the total mass of
EHA, respectively.

2.6. Evaluation of Cutaneous Transdermal Permeation of EHA Nanocapsules In Vitro

Seven-week-old male hairless mice were obtained from the Medical Laboratory Ani-
mal Center of Sun Yat-Sen University. The animal protocol was approved by the University
of Sun Yat-Sen University Health Sciences Center Institutional Animal Care and Use Com-
mittee. Animals were sacrificed by CO2 asphyxiation and full-thickness abdominal and
dorsal skin was excised. Any extraneous subcutaneous fat was removed from the dermal
surface. The skin samples were stored at −18 ◦C until utilized. At the time of experi-
mentation, skin samples were slowly thawed, cut into pieces for appropriate size, and
mounted on standard Franz diffusion cells (TP-6, Tianguang Photoelectric Instrument
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Co., Tianjin, China). Each diffusion cell (donor surface area 2.25 cm2, receptor volume
10.1 mL) contained isotonic phosphate-buffered solution (pH 7.2). The receptor fluid was
maintained at 37 ± 0.5 ◦C and continuously stirred at 400 rpm using magnetic stirring
bars [27]. In order to investigate the transdermal absorption of EHA nanocapsules, EHA
nanocapsules were added to the sunscreen formula to make EHA nanocapsules sunscreen.
The addition concentration of EHA was 5%, compared with the unpacked EHA sunscreen.
The sunscreen formulations were prepared according to the 2015 edition “cosmetic safety
technical guide” (Table 1). Following a 1-h hydration period, 4.5 mg of EHA nanocapsules
sunscreen formulation (the content of EHA was 100 µg·cm−2) was spread uniformly over
each skin. After the start of the test, suck 2 mL of receiving solution at 0.5, 1, 2, 4, 6, 8, 10 and
12 h, respectively, and immediately replenish the same amount of receiving solution. The
content of EHA (Cn) in each receiving solution was determined by HPLC. The cumulative
value was the calculated permeability according to the following formula (Q, µg·cm−2) as

Q =

(
n

∑
i=1

Cn × V

)
/A (2)

where Cn is the EHA concentration measured at the nth sampling point (µg·mL−1), V is
the sampling volume (mL), A is the penetration area (cm2). Taking Q as the ordinate and
time as the abscissa, the in vitro transdermal curve was obtained.

Table 1. Sunscreen formula tested in the experiments.

Components Mass Fraction (%)

Phase A
Cetearyl Alcohol 2.21
PEG-40 Castor oil 0.63

Sodium Cetearyl Sulphate 0.32
Decyl Oleate 15.00

2-Ethylhexyl-4-dimethylaminobenzoate (EHA) 5.00
Propylparaben /Methylparaben 0.40

Water 54.75

Phase B
Disodium EDTA 0.10

Water 20.00
Carbomer 0.30

Sodium Hydroxide (45% solution) 0.30

The diffusion cells were dismantled, and each sample was carefully cleaned by the
application of a cotton swab imbibed with 1.0% (w/w) aqueous solution of sodium dodecyl
sulfate in order to mice skin cleansing with liquid soap. EHA deposited in the skin was
extracted by cutting the skin samples into small pieces and soaking in 4 mL of acetonitrile
overnight with continuous stirring at room temperature. The extraction samples were
centrifuged at 8000 rpm for 15 min and diluted (if required) prior to HPLC analysis.

2.7. The Release Kinetics Mode of the EHA Nanocapsules

The release behavior of the EHA nanocapsule was investigated by three kinds of
kinetics mode such as zero-order kinetics model, first-order kinetics model and Hiauchi
model to obtain the best kinetics mode. The Q represented the cumulative release of EHA
and t was the release time of EHA from the EHA nanocapsule.

Zero-order kinetics model:
Q = a + bt (3)

First-order kinetics model:

ln(Q∞ − Qt) = a + bt (4)
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Hiauchi model:
Qt = bt1/2 (5)

2.8. UV Absorption Effect of the EHA Nanocapsules

According to the light industry standard QB/T2410-1998 “The evaluation method of
sunscreen effect of sunscreen cosmetic-UV absorbance method”, the sunscreen performance
of the EHA sunscreen nanocapsules was tested by UV-Vis. In detail, the same contents
of EHA and EHA nanocapsules were smeared on the 3 M tape, and then they were
scanned from 280 to 400 nm. Finally, the UV absorption curves were drawn based on the
above results.

2.9. Statistical Analysis

The results were evaluated according to the Analysis of Variance (ANOVA), and the
means were compared by the Tukey test, considering the significance level of 5% (p < 0.05),
using the software STATISTICA 7.0 (StatSoft Inc., Tulsa, OK, USA).

3. Results and Discussion
3.1. Screening and Blending of Emulsifier

According to the principle of emulsion drop birefringence, the absorbance of emulsi-
fiers TDAB, Tween-80 and Span-80 was measured at 540 nm by UV-Vis, using EHA as core
materials. As shown in Figure 1a, three kinds of emulsifiers presented the same trends,
and the absorbance increased at the beginning, and then decreased with the increasing of
concentration of emulsifiers. The stability of the emulsion in the emulsification process can
mainly be controlled by reducing the interfacial tension of the oil/water interface, and it can
form a boundary film [28]. When the concentration was 20 mg/mL, the maximum value
of the absorbance was observed, indicating that the emulsion was the most stable under
the concentration. Compared to TDAB and Span-80, the emulsion formed by Tween-80
showed the maximum absorption value of 0.592, implying that Tween-80 can emulsify
EHA very well.
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As we know, the steadiness of the emulsion was also affected by the concentration of
core materials. A series of emulsions with different mass ratios of Tween-80 and EHA was
shown in Figure 1b. The precipitation appeared in emulsions when the ratio of Tween-80
to EHA was less than 1:1 after a period of static storage, but there was no precipitation in
the emulsion with the ratio of 1:1 (Tween-80: EHA), suggesting the emulsions with the
ratio of Tween-80 to EHA (1:1) were stable. Therefore, the 1:1 molar ratio was used in the
following experiment.

In order to obtain a better emulsification effect, blending emulsifier is a good method
that has been widely investigated by researchers [29]. As shown in Figure 1c, the absorbance
increased at the beginning, then slightly decreased and increased significantly with increas-
ing the molar ratio of Tween-80 to LAD-30 from 2:8 to 9:1. The maximum UV absorption
value was obtained when the ratio was 9:1, which indicated the emulsions prepared under
this condition were most stable. It was due to the fact that the negative charge had an
influence on the emulsifying effect [30]. When the content of LAD-30 was reduced from 3:7
to 5:5, the electrostatic repulsion between emulsifier molecules was reduced, which was
beneficial to the surface arrangement of the EHA and the strength of the oil/water mask,
thus improving the stability of the emulsion [31]. However, the electrostatic repulsion
between droplets was also decreased with the decreasing the content of LAD-30, leading
to the droplet colliding and rupturing during movement, decreasing the stability of the
emulsion. When the ratio increased to 9:1, the emulsifier molecules with lower electrostatic
repulsion among them, which could be arranged on the surface of the core, forming a high
intensity oil/water mask and effectively preventing the collision and reunion between
the droplets and increasing the stability of the emulsion. In order to prepare negatively
charged droplets as self-assembled templates, the ratio of Tween-80/LAD-30 (9:1) was used
to prepare the primary nanoemulsions.

3.2. Prepare of Sunscreen Nanocapsules

In this study, sunscreen nanocapsules were successfully prepared by layer-by-layer
self-assembly [32]. NEI with negative charge was prepared using Tween-80 and LAD-30 as
emulgators. Then, NEII and NEIII nanoemulsions were obtained in the presence of chitosan
solutions and sodium alginate solutions, respectively. Finally, with the solidification of
calcium chloride solutions, the EHA nanocapsules were obtained. The effects of stirring
speed, stirring time and EHA concentration on the stability of NEI were investigated by
DLS. The results showed that the relatively stable primary emulsion could be achieved
Under optimal process conditions, 750 pm, 12.5 min and 10 mg/mL of EHA. The stability
of the obtained NEI was further investigated by DLS. Figure 2a showed the size of NEI
tended to increase slightly and then be stable in 7 days, which was due to the hydration
aquation of NEI. The size of NEI was 170 nm, indicating the low austenite ripening rate [33]
and good NEI stability. The zeta potential of NEI was also measured by DLS. As shown in
Figure 2b, NEI showed negative zeta potential with −27.1 mV, and zeta potential increased
at the beginning. and then reduced to negative charges in 7 days, which was consistent
with the results of particle size, indicating that NEI has good stability and could be used as
a self-assembly template.

It has been reported that the molecular weight and concentration of wall materials
have an influence on the stability of emulsions prepared by layer-by-layer self-assembly [34].
Therefore, three kinds of NEII were prepared with a different molecular weight of chitosan
(30 kDa, 50 kDa and 100 kDa, respectively) in this study. The size and potential were
also measured by DLS. Compared to the size variation of NEII prepared by chitosan with
30 kDa, the negligible changes were shown in Figure 3a. For the size of NEII prepared
by 50 kDa and 100 kDa chitosan in 3 days, it may due to the higher molecular weight of
chitosan with more -NH2 groups, leading to higher positive zeta potential and reducing
the absorption between NEII drops, which was confirmed by Figure 3b. Meanwhile, as
shown in Figure 3b, the positive zeta potential was further demonstrated that NEII were
successfully prepared by absorbing chitosan in the surface of NEI. The same results were
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observed in Figure 3c. The stability of NEII prepared by different concentrations of chitosan
indicated that the concentrations of chitosan have significant effects on the stability of NEII.
Then, 0.25 mg/mL chitosan solutions (50 kDa) were used to prepare NEII. Moreover, the
conditions of preparing NEII were also investigated. Optimized process conditions such as
pH = 4.5, 750 rpm and 15 min have also been obtained.
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The same way was used to obtain NEIII by absorbing the sodium alginate on the
surface of NEII. The negative zeta potential shown in Figure 4a indicated the sodium
alginate with a negative charge at pH = 4.5 was successfully absorbed on the surface
of NEII and the NEIII was obtained. As the concentration of sodium alginate solutions
increased, the size of NEIII increased and then reduced, and finally stabilized when the
concentration of sodium alginate solutions was higher than 0.5 mg/mL. Figure 4b showed
the size would be larger after the solidification by calcium chloride than NEIII, indicating
the surfaces of NEIII were successfully solidified by calcium chloride and the sunscreen
nanocapsules were obtained. The lower or the higher concentration of calcium chloride
made the sunscreen nanocapsules lose or gather with bigger sizes [35], which was not
beneficial for the stability and application of the EHA nanocapsules. The smaller particle
size difference between the sunscreen nanocapsules and NEIII indicated the existence of
solidification, which made the nanocapsules more compact and stable.
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3.3. Characterization of Sunscreen Nanocapsules

The size and zeta potential of the EHA nanocapsules were characterized by DLS and
TEM. As shown in Figure 5 and Table 2, with the increasing number of assembly layers,
the size increased from 155 nm (NEI) to 189 nm (NEII) to 201 nm (NEIII) and 205 nm after
solidification; the zeta potential was changed from −27.1 mV to +21.1 mV, then to −8.44 mV,
which indicated the successful assembly of each layer and the successful preparation of
the nanocapsules [36]. The results indicated that the size and zeta potential of the EHA
nanocapsules were 205 nm and −8.44 mV, respectively.
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Table 2. The incorporation parameters of EHA for the different nanocapsules prepared.

Stages NEI NEII NEIII Nanocapsule

C
(EHA)/mg·mL−1 10 10 10 10

C(Tween-
80)/mg·mL−1 10 10 10 10

Tween-80/LAD-
30 9:1 9:1 9:1 9:1

M(CS)/KD 50 50 50
C(CS)/mg·mL−1 0.25 0.25 0.25
C(ALG)/mg·mL−1 0.5 0.5
C(CaCl2)/mg·mL−1 8.0

pH 10.0 4.5 9.5 7.0
Stirring speed

(r/min) 750 750 750 750

Stirring
time/min 12.5 12.5 12.5 12.5

LAD-30: Lauroamp hoacetate, CS: Chitosan, ALG: alginate.
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TEM observation (Figure 6) also showed the NEI and the EHA nanocapsules dispersed
in spherical shape with nano-size. The bright center and the gray surrounding indicated
that NEI and the EHA nanocapsules had core–shell structure, which was due to the density
difference between the center and the surrounding leading to the different electron beam
scattering angle to the core and shell, causing the imaging brightness to be different [37].
The average diameter of sunscreen nanocapsules on the basis of the TEM image (200 nm)
was larger than the size of NEI, which further indicated the sunscreen nanocapsules were
successfully prepared.
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3.4. The Release Behavior of EHA from the EHA Nanocapsules In Vitro

As an ideal sunscreen nanocapsule, zero and the controlled EHA-release performance
are the main challenges [38]. Therefore, the EHA release behavior of the EHA nanocapsules
was investigated in the acetate buffer solution (ABS, pH 6.5), compared with free EHA,
NEI, NEII and NEIII. The cumulative amount of EHA release was monitored from the
EHA nanocapsules solutions placed in a dialysis tube. As shown in Figure 7, the free EHA
showed the highest release rate of EHA among emulsions and nanocapsules in the same
period. As the layer increased, the release rate of EHA was reduced. About 80.0%, 76.4%,
70.5% of EHA could be released from free EHA, NEI and NEII, respectively, while less than
50% was released from sunscreen nanocapsules, and no burst release was observed. The
adding of the layer would delay the EHA release and display more sustained EHA release
behavior [39]. EHA release depended on the number of layers indicated that sunscreen
nanocapsules with higher layer showed a lower release rate of EHA than free EHA and
NHI, NHII, NHIII with no or lower layer in the same time period. It has been reported that
EHA is released by diffusion [40]. The absorbing of chitosan with high molecular weight
on the surface of NEI made the release rate from NEII slower than NEI. Similarly, the
release rate of EHA from NEIII with sodium alginate outside was slower than NEII. Due
to the cross-linking between calcium ion and alginate outside on the surface of NEIII, the
sunscreen nanocapsules showed the slowest release rate of EHA, which effectively avoids
the irritation of EHA to skin. These results confirmed that the ideal sunscreen nanocapsules
could be obtained by the way of layer-by-layer self-assembly.
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3.5. The EHA Nanocapsules Transdermal Permeation In Vitro

In this experiment, sunscreen containing non-wrapped UV filters of EHA and the
sunscreen with the EHA nanocapsules were used. The optimal exposure time of 12 h
was selected according to the results of the previous study [41]. In order to compare the
permeability of encapsulated sunscreen EHA and unpacked sunscreen EHA on the skin.
The same sunscreen formula was added with wrapped and unwrapped EHA, respectively,
and the concentration of EHA is 5%. The application concentration of the experimental
skin was 100 µg·cm−2. The permeation results showed that a UV filter was present in the
receptor compartment. The experimental results were shown in Figure 8, the cumulative
permeability of non-wrapped EHA sunscreen within 12 h was 20.12 ± 0.47 µg·cm−2 and
the EHA nanocapsules sunscreen was 9.03 ± 0.67 µg·cm−2. However, the cumulative
permeability of non-wrapped EHA sunscreen (13.52 ± 0.74 µg·cm−2) was more than the
EHA nanocapsules sunscreen (4.78 ± 0.54 µg·cm−2) within 6 h. Skin accumulation of EHA
was found in Figure 9, the non-wrapped EHA (38.24 ± 1.32 µg·mg−1) within 12 h was
higher than wrapped EHA (16.47 ± 0.76 µg·mg−1). Experiments showed that encapsulated
EHA can greatly reduce transdermal absorption.
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3.6. The Release Kinetics Model of Sunscreen Nanocapsules

The release behavior of EHA from sunscreen nanocapsules was matched by three
kinds of model, zero-order kinetics model, first-order kinetics model and the Hiauchi
model, with the comparison of free EHA, NEI, NEII and NEIII. The fitting curves were
shown in Figure 10. The correlation coefficient R values were obtained by the equations and
shown in Table 3. The lower R value calculated by zero-order kinetics equation indicated
no burst release appeared during the EHA release for 12 h. The highest R value calculated
by first-order kinetics equation indicated the release behavior of EHA was suitable for
first-order kinetic equation [42]. The release behavior of EHA was a relatively stable process
controlled by many mechanisms. The diffusion rate of EHA from the wall to the capsule
was the key of the whole release behavior, similar to the mass transfer model [43], which
was affected by the densification of membrane layer, the better densification leading to the
slower release rate.
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Table 3. Related parameters of release kinetics model.

Models
Parameters

EHA NEI NEII NEIII Sunscreen
Nanocapsules

Zero-order 0.6678 0.6708 0.7119 0.5269 0.6249
First-order 0.9875 0.9956 0.9935 0.9614 0.9927

Higuchi 0.9626 0.9296 0.9696 0.9668 0.9626

3.7. The UV Absorption Effect of Sunscreen Nanocapsules

In this study, the sunscreen effect of the EHA nanocapsules was investigated by
UV-Vis. As shown in Figure 11, the free EHA and sunscreen nanocapsules all have high
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absorbance between 280 and 320 nm, and the maximum absorption intensity of 2.11 was
311 nm, which suggested sunscreen nanocapsules had a better sunscreen effect than free
EHA. The maximum absorbance of the sunscreen nanocapsules was larger than that of
free EHA, indicating that the sunscreen effect of sunscreen nanocapsules was better than
that of free EHA, which due to the sunscreen nanocapsules were not only had the UV
absorption function of chemical sunscreen, but also had the effect of physical sunscreen
on ultraviolet reflection [44]. In detail, firstly, the EHA encapsulated by nanocapsules
still had a good effect in sunscreen, secondly, the sunscreen nanocapsules as a spherical
particle with nano-size had different degrees of scattering and refraction to ultraviolet
rays except absorbing ultraviolet rays, leading to higher absorbance, thirdly, due to the
nano-size, the sunscreen nanocapsules could be arranged closely on the 3 m tape and the
clearance between particles was small, which had a certain diffraction effect on ultraviolet
light, leading to the light transmittance reduced and the absorbency improved. In a word,
all the results suggested the EHA encapsulated by nanocapsules were not only reduced the
sunscreen effect, but also improved the sunscreen effect.
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sorbing ultraviolet rays, leading to higher absorbance, thirdly, due to the nano-size, the 
sunscreen nanocapsules could be arranged closely on the 3 m tape and the clearance be-
tween particles was small, which had a certain diffraction effect on ultraviolet light, lead-
ing to the light transmittance reduced and the absorbency improved. In a word, all the 
results suggested the EHA encapsulated by nanocapsules were not only reduced the sun-
screen effect, but also improved the sunscreen effect. 

280 300 320 340 360 380 400
0.0

0.5

1.0

1.5

2.0

A
bs

or
ba

nc
e

Wavelength (nm)

 EHA
 Nanocapsules

 

 
Figure 11. UV absorbability of the EHA nanocapsules. Figure 11. UV absorbability of the EHA nanocapsules.

4. Conclusions

In this study, the sunscreen nanocapsules encapsulated by EHA were prepared suc-
cessfully by layer-by-layer self-assembly. DLS indicated the nano-size and good stability of
the sunscreen nanocapsules, and also showed the size of nanocapsules increased with the
increasing of the layer. The zeta potential indicated that the sunscreen nanocapsules with
negative charge and charge conversion would appear after each layer self-assembly. The
sunscreen nanocapsules showed more sustained EHA release behavior than free EHA with-
out an initial burst, and effectively delayed the EHA release. The UV absorption suggested
the sunscreen effect of sunscreen nanocapsules, as well as free EHA and the sunscreen
nanocapsules, were even higher than free EHA. The results implied the sunscreen nanocap-
sules prepared by the way of layer-by-layer self-assembly would have good potential used
in sunscreen products with sustained release and high sunscreen effect properties.
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21. Jadach, B.; Świetlik, W.; Froelich, A. Sodium Alginate as a Pharmaceutical Excipient: Novel Applications of a Well-known
Polymer. J. Pharm. Sci. 2022, 1–12. [CrossRef]

22. Bennacef, C.; Desobry-Banon, S.; Probst, L.; Desobry, S. Advances on alginate use for spherification to encapsulate biomole cules.
Food Hydrocoll. 2021, 118, 106782. [CrossRef]

23. Abbas, S.; Bashari, M.; Akhtar, W.; Li, W.W.; Zhang, X. Process optimization of ultrasound-assisted curcumin nanoemulsions
stabilized by OSA-modified starch. Ultrason. Sonochem. 2014, 21, 1265–1274. [CrossRef]

http://doi.org/10.1016/j.scitotenv.2020.142486
http://doi.org/10.1016/j.ijwd.2020.08.008
http://doi.org/10.1021/acs.biomac.8b01006
http://doi.org/10.1021/acsapm.1c00003
http://doi.org/10.1021/acs.chemrev.9b00553
http://doi.org/10.1021/acsami.0c06530
http://doi.org/10.1021/acsnano.0c10724
http://doi.org/10.1021/acsanm.0c02819
http://doi.org/10.1021/acs.langmuir.0c02595
http://doi.org/10.1021/acsami.0c13504
http://doi.org/10.1021/acsnano.0c09382
http://doi.org/10.1021/acs.accounts.0c00438
http://doi.org/10.1021/acs.biomac.0c00672
http://doi.org/10.1021/acs.biomac.0c00558
http://doi.org/10.1016/j.jobab.2021.01.002
http://doi.org/10.1016/j.heliyon.2021.e08674
http://doi.org/10.1016/j.marpolbul.2021.113068
http://doi.org/10.1016/j.carbpol.2021.118858
http://doi.org/10.1016/j.xphs.2021.12.024
http://doi.org/10.1016/j.foodhyd.2021.106782
http://doi.org/10.1016/j.ultsonch.2013.12.017


Molecules 2022, 27, 1148 15 of 15

24. Vilasau, J.; Solans, C.; Gómez, M.J.; Dabrio, J.; Mújika-Garai, R.; Esquena, J. Phase behaviour of a mixed ionic/nonionic surfactant
system used to prepare stable oil-in-water paraffin emulsions. Colloids Surf. A Physicochem. Eng. Asp. 2011, 384, 473–481.
[CrossRef]

25. Belbekhouche, S.; Bousserrhine, N.; Alphonse, V.; Le Floch, F.; Charif Mechiche, Y.; Menidjel, I.; Carbonnier, B. Chitosan based
self-assembled nanocapsules as antibacterial agent. Colloids Surf. B Biointerfaces 2019, 181, 158–165. [CrossRef]

26. Gogna, D.; Jain, S.K.; Yadav, A.K.; Agrawal, G.P. Microsphere based improved sunscreen formulation of ethylhexyl methoxycin-
namate. Curr. Drug Deliv. 2007, 4, 153–159. [CrossRef]

27. Godwin, D.A.; Kim, N.-H.; Felton, L.A. Influence of Transcutol® CG on the skin accumulation and transdermal permeation of
ultraviolet absorbers. Eur. J. Pharm. Biopharm. 2002, 53, 23–27. [CrossRef]

28. Kharazi, M.; Saien, J.; Yarie, M.; Zolfigol, M.A. The superior effects of a long chain gemini ionic liquid on the interfacial tension,
emulsification and oil displacement of crude oil-water. J. Pet. Sci. Eng. 2020, 195, 107543. [CrossRef]

29. Zhang, C.; Wang, P.; Li, J.; Zhang, H.; Weiss, J. Characterization of core-shell nanofibers electrospun from bilayer gelatin/gum
Arabic O/W emulsions crosslinked by genipin. Food Hydrocoll. 2021, 119, 106854. [CrossRef]

30. Cheng, W.; Mcclements, D.J. Biopolymer-stabilized conjugated linoleic acid (CLA) oil-in-water emulsions: Impact of electrostatic
interactions on formation and stability of pectin-caseinate-coated lipid droplets. Colloids Surf. A Physicochem. Eng. Asp. 2016, 511,
172–179. [CrossRef]

31. Jia, H.; Wu, H.; Wei, X.; Han, Y.; Wang, Q.; Song, J.; Dai, J.; Yan, H.; Liu, D. Investigation on the effects of AlOOH nanoparticles
on sodium dodecylbenzenesulfonate stabilized o/w emulsion stability for EOR. Colloids Surf. A Physicochem. Eng. Asp. 2020,
603, 125278. [CrossRef]

32. Fernando, I.P.S.; Lee, W.; Han, E.J.; Ahn, G. Alginate-based nanomaterials: Fabrication techniques, properties, and applications.
Chem. Eng. J. 2020, 391, 123823. [CrossRef]

33. Galindo-Alvarez, J.; Le, K.A.; Sadtler, V.; Marchal, P.; Perrin, P.; Tribet, C.; Marie, E.; Durand, A. Enhanced stability of nanoemul-
sions using mixtures of non-ionic surfactant and amphiphilic polyelectrolyte. Colloids Surf. A Physicochem. Eng. Asp. 2011, 389,
237–245. [CrossRef]

34. Van Tran, V.; Loi Nguyen, T.; Moon, J.-Y.; Lee, Y.-C. Core-shell materials, lipid particles and nanoemulsions, for delivery of active
anti-oxidants in cosmetics applications: Challenges and development strategies. Chem. Eng. J. 2019, 368, 88–114. [CrossRef]

35. Rather, S.A.; Akhter, R.; Masoodi, F.A.; Gani, A.; Wani, S.M. Effect of double alginate microencapsulation on in vitro digestibility
and thermal tolerance of Lactobacillus plantarum NCDC201 and L. casei NCDC297. LWT-Food Sci. Technol. 2017, 83, 50–58.
[CrossRef]

36. Peng, L.; Meng, Y.; Li, H. Facile fabrication of superhydrophobic paper with improved physical strength by a novel layer-by-layer
assembly of polyelectrolytes and lignosulfonates-amine. Cellulose 2016, 23, 2073–2085. [CrossRef]

37. Zhang, K.; Wang, J.; Xu, L.; Xie, H.; Guo, Z. Preparation and thermal characterization of n-octadecane/pentafluorostyrene
nanocapsules for phase-change energy storage. J. Energy Storage 2021, 35, 102327. [CrossRef]

38. Wu, P.S.; Huang, L.N.; Guo, Y.C.; Lin, C.C. Effects of the novel poly(methyl methacrylate) (PMMA)-encapsulated organic
ultraviolet (UV) filters on the UV absorbance and in vitro sun protection factor (SPF). J. Photochem. Photobiol. B Biol. 2014, 131,
24–30. [CrossRef]

39. Kanha, N.; Regenstein, J.M.; Surawang, S.; Pitchakarn, P.; Laokuldilok, T. Properties and kinetics of the in vitro release of
anthocyanin-rich microcapsules produced through spray and freeze-drying complex coacervated double emulsions. Food Chem.
2021, 340, 127950. [CrossRef]

40. Kamburova, K.; Mitarova, K.; Radeva, T. Polysaccharide-based nanocapsules for controlled release of indomethacin. Colloids Surf.
A: Physicochem. Eng. Asp. 2017, 519, 199–204. [CrossRef]

41. Daneluti, A.L.M.; Neto, F.M.; Ruscinc, N.; Lopes, I.; Robles Velasco, M.V.; Do Rosário Matos, J.; Baby, A.R.; Kalia, Y.N. Using
ordered mesoporous silica SBA-15 to limit cutaneous penetration and transdermal permeation of organic UV filters. Int. J. Pharm.
2019, 570, 118633. [CrossRef]
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