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Abstract: Accurate and precise measurement of the relative protein content of blood-based samples 

using mass spectrometry is challenging due to the large number of circulating proteins and the dy-

namic range of their abundances. Traditional spectral processing methods often struggle with accu-

rately detecting overlapping peaks that are observed in these samples. In this work, we develop a 

novel spectral processing algorithm that effectively detects over 1650 peaks with over 3.5 orders of 

magnitude in intensity in the 3 to 30 kD m/z range. The algorithm utilizes a convolution of the peak 

shape to enhance peak detection, and accurate peak fitting to provide highly reproducible relative 

abundance estimates for both isolated peaks and overlapping peaks. We demonstrate a substantial 

increase in the reproducibility of the measurements of relative protein abundance when comparing 

this processing method to a traditional processing method for sample sets run on multiple matrix-

assisted laser desorption/ionization-time of flight (MALDI-TOF) instruments. By utilizing protein 

set enrichment analysis, we find a sizable increase in the number of features associated with biolog-

ical processes compared to previously reported results. The new processing method could be very 

beneficial when developing high-performance molecular diagnostic tests in disease indications. 

Keywords: proteomics; mass spectrometry; spectral processing; set enrichment analysis;  

peak detection 

 

1. Introduction 

Protein abundance in blood is related to outcomes in many systemic diseases and 

cancer. Standard measurements of known (pre-defined) proteins via enzyme-linked im-

munoassays (ELISAs) used in medical diagnostics typically measure small numbers of 

proteins [1–4], sometimes in combination with clinical attributes [5]. Due to the complex-

ity of pathway interactions, it is likely that a multiplexed measurement of many proteins 

will allow for more accurate characterization of a patient cohort in a particular disease. 

Indeed, such diagnostic tests have been developed based on highly sensitive high-

throughput matrix-assisted laser desorption/ionization (MALDI) profiling, Deep 

MALDI® [6] analysis, which enables the simultaneous measurement of proteins varying 

in abundance by four orders of magnitude. These highly multiplexed data can be com-

bined into diagnostic tests using machine learning techniques designed to work well in 

the clinical setting where we generally have more attributes than samples, without over-

fitting [7,8]. Multiple tests in the area of oncology were developed using this approach [9–

21]. 

One challenge with using MALDI profiling is the reliable definition and characteri-

zation of many hundreds to thousands of Deep MALDI peaks with a dynamic range of 

peak intensity varying over four orders of magnitude and with overlapping peaks in the 
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presence of background and noise. Reliable and reproducible peak intensity estimates are 

necessary as input into machine learning algorithms. Typical peak picking approaches 

[22–26] often miss many peaks. They often rely on simply finding candidate peaks, either 

through local intensity maxima or by finding minima in the second derivatives of the in-

tensity, and then using intensity thresholding to select real peaks from the selection of 

candidate peaks. Although this method is computationally fast, it can fail to detect peaks 

when they overlap and may struggle to work well when there are large changes in peak 

intensity [27,28]. Improved peak detection algorithms using a continuous wavelet trans-

form exhibit improved peak detection, but they often may not be accurate in the case of 

overlapping peaks or highly asymmetric peaks [25,26]. We propose an improved peak 

detection approach based on characteristics of Deep MALDI spectra. We separate well-

defined (using the measured m/z, mass-charge ratio, dependent peak half-width) individ-

ual peaks from broad structures. These well-defined peaks are then fitted using a pre-

defined peak shape function either individually, when isolated, or in a multi-peak fit al-

gorithm, when overlapping. Finally, the intensity of the broad structures is added back to 

the intensity of the previously estimated well-defined peaks to give an expression value 

for a peak. 

In this paper, we start by describing the data arising from a typical Deep MALDI 

application, and the associated peak shape function. Then, we show how to separate well-

defined peaks from broad structures, and how to fit the list of peaks. We evaluate our 

approach on spectra from two different MALDI-TOF instruments using coefficients of 

variation (CVs) as the primary metric. Furthermore, we compare these results with those 

obtained from a common peak-fitting software package. Finally, we examine the associa-

tion of the peak intensities with biological processes using set enrichment techniques 

[6,29] to evaluate the amount of useful biological information extracted from the spectra. 

2. Results 

Deep MALDI spectra were collected on two different MALDI-TOF instruments: the 

Bruker RapifleX (Bruker, Billerica, MA, USA) and the SimulTOF100 (SimulTOF Systems, 

Marlborough, MA, USA). Unless stated otherwise, the results shown in the main text are 

from the RapifleX and the corresponding results on the SimulTOF100 are shown in the 

Supplementary Materials. 

In the Deep MALDI process, for each sample preparation, multiple 800 laser shot 

(“raster”) spectra are collected. Individual raster spectra have significant noise, and only 

the strongest peaks can be accurately resolved, as shown in Figure 1. To improve the meas-

urement sensitivity and to decrease the noise one averages 500 aligned raster spectra to 

create a single 400,000 shot-averaged spectrum. The 400,000 shot Deep MALDI averaged 

spectrum shows a greatly improved signal-to-noise ratio (SNR) and well-defined peaks 

are now visible that were previously hidden within the noise of a single raster spectrum. 

Although the sensitivity of our Deep MALDI spectra could be improved further by aver-

aging more individual rasters, we determined that the 400,000 shot-averaged spectra re-

sult is a good compromise between sensitivity and instrument run time. We refer readers 

to Tsypin et al. [6] for further information on this technique. 
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Figure 1. Example spectra collected on the RapifleX of an individual raster spectrum (black) and a 

400,000 shot Deep MALDI averaged spectrum (red) from 7.5 to 9 kDa m/z range. The inset shows 

the same spectra over the full 3 to 30 kDa range analyzed in this work. 

Because of the large number of proteins and peptides in serum samples, we observe 

complex structure in the baseline-corrected spectra. We often find that a baseline-cor-

rected spectrum contains sharp features (peaks) sitting atop broad, wide features 

(“bumps”), as shown in Figure 2. The origin of the peaks is easy to understand as coming 

from proteins or peptides of a given mass. The bumps can be attributed to unresolved 

peaks, e.g., those arising from clusters of highly overlapping mixtures of prominent and 

less prominent peaks, or from multiply charged, higher-mass proteins (see Figure 2b). Be-

cause the bumps originate from biological content in the sample and are not purely an 

artifact of the measurement process, including the background, removing the bumps dur-

ing the baselining process will reduce the potential information content available in a sin-

gle spectrum. To address this problem, we separate and analyze these two components of 

the spectrum: the peaks (or “fine structure”) and the bumps (“bumps”). As detailed be-

low, we find better reproducibility when we include information from both the fine struc-

ture and the bumps when determining the feature values for each peak. To maintain a 

consistent naming convention used in previously published literature [6,7,11–15], we will 

use the general term “feature” to refer to the peaks and “feature value” to be the semi-

quantitative numerical value we calculate to represent the relative abundance of that fea-

ture (protein or peptide) within the sample. High-resolution images of a representative 

unprocessed and processed MALDI-TOF spectrum across the entire acquisition range 

(m/z = 3 to 30 kDa) is shown in the Supplementary Materials Figure S1. 
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(a) (b) 

Figure 2. Spectral component analysis showing the baseline corrected Deep MALDI spectrum 

(black), fine structure (green), and bumps (orange) for peak clusters around (a) 14 kDa and (b) 21 

kDa. 

2.1. MALDI Peak Shape Analysis 

To improve upon the accuracy of our peak detection algorithm, particularly for over-

lapping peaks, we utilize a convolution approach whereby the spectrum is convoluted 

with the peak shape function of the instrument. Previous work has successfully used 

Gaussian functions to describe the peak shape of MALDI-TOF mass spectra [28,30], but 

we find this simpler approach insufficient, especially at higher masses. Individual peaks 

that we have observed in typical spectra are asymmetrically broadened, with the right 

side (high-mass side) being wider than the left side (low-mass side). This asymmetric 

broadening comes from a convolution of the instrument broadening and the isotope dis-

tribution, which are m/z and mass dependent, respectively. The overall peak shape of the 

peaks in our spectra were empirically determined to fit well to an asymmetric Gaussian 

of the form 

�(�) = �
����(����)���(�)/��

�
, � < ��

����(����)���(�)/��
�
, � ≥ ��,

 (1)

where �� is the amplitude, �� is the peak center, and σ� and σ� are the left and right 

half widths at half max (HWHM), respectively. 

Figure 3a shows a typical, isolated peak in a Deep MALDI averaged spectrum and 

the symmetric (red-dashed) and asymmetric (blue-solid) Gaussian fits. Only data points 

with an intensity greater than 0.25 times the maximum intensity were used in the fit. The 

dotted lines show the calculated error between the raw data and the fitted peak. The sum 

of the absolute error in the fitting range is 1158.4 a.u. for the symmetric Gaussian fit and 

150.6 a.u. for the asymmetric Gaussian fit. The asymmetric Gaussian fit shows a consistent 

improvement over the symmetric Gaussian fit across the entire m/z range of the peak. 
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(a) (b) 

Figure 3. Peak shape determination of Bruker RapifleX MALDI-TOF spectral peaks. (a) Raw sample 

data (black stars) and peak fit to an asymmetric (blue-solid) and symmetric (red-dashed) Gaussian. 

Fit error is shown by the dotted lines. (b) Peak shape parameters as a function of m/z. Overall fitted 

trend is shown with solid lines and the linear (dashed) and quadratic (dotted) piecewise portions 

for σ� and σ�of the fits are extended past the trend range for reader visibility. 

A selection of 19 prominent and isolated peaks, selected to span the acquisition range, 

was fitted to asymmetric Gaussians to determine the m/z dependence of the peak width. 

Figure 3b shows the full width at half max (FWHM), σ� , and σ� as a function of the m/z 

range. The right HWHM is consistently larger than the left HWHM across the range; alt-

hough, at higher masses, the difference is less pronounced. 

The trends of left and right HWHM across the m/z range were empirically found to 

fit well to a piecewise function of the m/z coordinate, m, as 

��(�) = �
�� + ���, � < ����

�� + ��� + ����, � ≥ ����
, (2)

where ���� is the intersection of the linear and quadratic portions of the piecewise func-

tion. The FWHM is simply 

����(�) = ��(�) + ��(�). (3)

The average results of 12 different reference sample preparations were used to 

generate the peak width parameters for the RapifleX shown in Table 1. These parameters 

are stable over the course of multiple months and run hundreds of samples on the 

instrument, as shown in the Supplementary Materials, Figure S4. The corresponding peak 

shape parameters for the SimulTOF100 are shown in the Supplementary Materials, Table 

S1, but it is worth noting that, due to the difference in instrumentation, we found that the 

peak shape trends fitted well to a single quadratic for the SimulTOF100 and, therefore, we 

set ���� = 0 in Equation (1). 

Table 1. The average peak width parameters for the FWHM, and the left and right HWHM for the 

RapifleX. 

 �� �� �� �� �� ����
 

FWHM 2.878 5.89E-04 5.764 -1.13E-03 1.05E-07 

14471 σ�  1.374 2.55E-04 -3.143 -9.53E-06 3.99E-08 

σ� 1.504 3.33E-04 8.907 -1.12E-03 6.54E-08 

2.2. Spectral Analysis of Deep MALDI Spectra 

2.2.1. Background Estimation 

The 400,000 shot average has a pronounced background that varies across the acqui-

sition range, as shown in Figure 4. The background was estimated using Eilers’ estimation 

[31,32]. This method for background estimation allows for an elastic background that is 
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penalized differently for errors above and below the background line. For our spectra, we 

found Eilers’ parameters of λ� = 10��, λ� = 10�, and � = 0.001 provided a good back-

ground estimation, (BG1)), without over-fitting to the spectral peaks. For further descrip-

tion of the Eilers’ method and selection of its parameters, we direct the reader to Boelens 

et al. [32]. 

 

Figure 4. Example of a 400,000 shot-averaged Deep MALDI spectrum collected on the RapifleX and 

the associated Eilers’ background estimation. 

2.2.2. Fine Structure Determination and Peak Fitting 

As described above, the fine structure is defined to be only the component of the 

MALDI spectra that contains the sharp features on a flat background. This was calculated 

by subtracting a relaxed Eilers’ background (λ� = 10�, λ� = 10� , and � = 0.001) (BG2), 

from the Deep MALDI spectra. The bumps were calculated as the difference between the 

relaxed and stiff backgrounds: 

�����(�) = ���(�) − ���(�). (4)

The visual representation of the spectral components is shown in Figure 5a. 

   

(a) (b) (c) 

Figure 5. Visual representation of peak fitting and feature value determination. (a) A single-pro-

cessed Deep MALDI spectrum showing the fine structure (green) and bumps (yellow) components. 

(b) Initial peak finding and result of applying the fitting algorithm to the fine structure of a single 

spectrum in the range 7.5–7.9 kDa. (c) The complete fitting of the same range using the master list 

of all peaks. The triangles indicate locations of fitted peaks and the red trace at the bottom shows 

the error in the peak fit. 
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A peak-finding algorithm (see Section 4.4.4 for details) was used to determine the 

largest peaks that could be used to align spectra to a common m/z axis and to generate a 

master peak list from multiple samples. The master peak list is a collection of all unique 

peaks found across all samples and is used to accurately fit the entire spectrum, even 

peaks that are only sporadically present. Briefly, we first calculated the convolution of the 

spectrum fine structure with the peak shape function to differentiate true peaks from ar-

tifact structures, such as noise. The algorithm then searched for peaks that had SNR > 10 

and whose centers were more than one FWHM away from adjacent peaks. Figure 5b 

shows a sub-range of the entire spectrum that has the fit of the peaks found by this algo-

rithm. Typically, between 700 and 800 peaks with SNRs in this range are found for an 

individual 400,000 shot Deep MALDI spectrum acquired from 3–30 kDa on the RapifleX. 

This peak list was used to align the sample to a common m/z axis to allow direct compar-

ison across different samples. 

Although the peak fitting clearly does a good job of fitting the strongest features, 

there are some peaks (such as near 7.75 kDa or 7.85 kDa shown in Figure 5b) that are not 

fit, because they were not identified by the peak fitting algorithm with the specified 

parameters. Because each sample will have a different relative abundance of proteins, the 

intensity of individual peaks will vary across samples. This means that, if a peak is not 

detected by the peak finding algorithm for a given sample, either because the peak is low 

intensity, too close to a more prominent peak, or not present in the sample, it may be 

detected in a different sample. We assume that most proteins are present across different 

samples albeit at very different concentrations. To determine the set of potential peaks, in 

blood-based samples, we could detect the lists of peaks from the qualification set of 40 

different samples and from the reference sample (measured with 220 unique preparations 

and acquisitions as described in Section 4.2) which were merged into a master list of 

unique peaks, resulting in a total of 1657 peaks for the RapifleX and 1256 peaks for the 

SimulTOF100 instruments. 

Accurate peak intensities can be calculated by fitting the pre-defined peak shape 

function, described in Section 2.1, to each peak in the master peak list, yielding a semi-

quantitative feature value for each peak (“Standard” feature value). Here, we utilize the 

fitted peak amplitude, ��, as the standard feature value, but we note that other choices of 

the feature value, such as the area under the fitted peak, could also be used. The result of 

the fit of all peaks is shown in Figure 5c for the same acquisition and m/z range, as was 

shown in Figure 5b. 

2.3. Reproducibility 

To determine the reproducibility of the spectral processing and the resulting feature 

values, Deep MALDI spectra obtained from 20 replicate preparations of the reference sam-

ple were processed and the variations in the calculated feature values were compared. 

The coefficient of variation (CV) was measured for each feature using the standard feature 

values of the fitted peaks, as shown in red in Figure 6. We found that the reproducibility 

could be further improved by including the information in the bumps. For each peak, the 

“Enhanced” feature value was calculated as the sum of the fitted fine structure peak am-

plitude and the intensity of the bumps spectrum at the same m/z location. The CV distri-

bution for the enhanced feature values for all peaks in the master peak list is shown in 

blue in Figure 6. 
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(a) (b) 

Figure 6. Reproducibility of feature values for a single sample over 20 preparations and acquisitions 

collected on the (a) RapifleX and (b) SimulTOF100. Histograms of CVs for standard (red) and en-

hanced (blue) feature values are shown in the main plot. The inset shows the cumulative CV distri-

bution, ���, for the standard (red, triangles) and enhanced feature values (blue, circles) (only CVs 

up to 50% are shown for clarity). 

The improvement in reproducibility is further shown by the traces in the insets of 

Figure 6 which show the cumulative CV distribution, ���, for the two methods of analy-

sis, where 

���(�) = �(�� ≤ �), (5)

and �(�� ≤ �) is the probability that the CV is less than or equal to �. The enhanced 

feature value trace shows substantially more features with CVs that were lower than the 

standard features for the entire range. For example, for the RapifleX spectra, using en-

hanced feature values, there are 1000 feature with CV < 15.26%. However, while using 

standard feature values, there are only 594 features. In the following analysis, we restrict 

ourselves to the feature values calculated using the enhanced approach. 

To compare the reproducibility of our processing to that of a commonly used soft-

ware package, we analyzed our Deep MALDI spectra using the MALDIquant software 

package [24]. To maintain consistency with our method of creating a master peak list, we 

utilized the built-in functionality of MALDIquant to bin peaks over the identical 220 spec-

trum set to generate its own master peak list. The total number of peaks to fit was deter-

mined using the median absolute deviation (MAD) method with a SNR cutoff of 2 [22]. 

We intentionally chose a low SNR to select as many features as possible. Due to slight 

variations in peak positions not being numerically identical, we binned the peaks with a 

0.002 Da tolerance, which resulted in 635 features for the RapifleX acquisition and 947 

features for the SimulTOF100. CVs were calculated for the 20 replicate measurements of 

the reference sample and the comparison with the results from our processing methods, 

as shown in Figure 7. 
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(a) (b) 

Figure 7. Comparison of reproducibility of our approach to a published method, MALDIquant. Cu-

mulative CV distribution, ��� , for the same Deep MALDI spectra analyzed with the presented 

methods using enhanced feature values (blue, circles) and with MALDIquant processing (green, 

triangles) for: (a) RapifleX and (b) SimulTOF100 acquisitions. Only CVs up to 50% are shown for 

clarity. 

2.4. Association with Biological Processes 

It is important that the features represented here not only present reproducible data, 

but also are also biologically relevant. We calculated the association of each feature with 

23 biological processes using protein set enrichment analysis (PSEA) [6,29]. This com-

monly used bioinformatics tool determines the association between a measured quantity, 

and, in our case, a mass spectral feature and a biological process by assessing the correla-

tion between the measured quantity and the abundances of a set of known proteins related 

to the biological process. Table 2 shows the total number of features that were determined 

to be associated with each biological process with p-value of association < 0.01 and a false 

discovery rate (FDR) of < 5%. 

Table 2. Number of features associated with each biological process with FDR of < 5% and a p-value 

of association < 0.01 for 400,000 shot spectra collected on the RapifleX and SimulTOF100 mass spec-

trometers using the processing and feature definitions presented in this paper. A comparison is 

made with the number of associated features obtained with the same 400,000 shot spectra collected 

on the SimulTOF100 mass spectrometer using an alternative processing and feature definition 

method [6]. The percentages show the proportion of all analyzed features that show an association 

with the biological process. Note the substantial increase in the number of associated features iden-

tified when the new processing feature definition method is used. 

Biological Process 
Associated Features 

RapifleX SimulTOF Ref. [6] 

Acute phase response 655 (43.2%) 460 (40.6%) 122 (40.9%) 

Complement activation 619 (40.8%) 383 (33.7%) 70 (23.5%) 

Acute inflammatory response 434 (28.6%) 317 (27.9%) 109 (36.6%) 

IFN γ signaling/response 266 (17.5%) 147 (12.9%) 25 (8.4%) 

Immune tolerance and suppression 227 (15.0%) 189 (16.6%) 31 (10.4%) 

Wound healing 202 (13.3%) 160 (14.1%) 100 (33.6%) 

IFN type 1 signaling/response 195 (12.9%) 82 (7.2%) 33 (11.1%) 

Type 17 immune response 73 (4.8%) 82 (7.2%) 2 (0.7%) 

Angiogenesis 54 (3.6%) 28 (2.5%) 2 (0.7%) 

Response to hypoxia 42 (2.8%) 54 (4.7%) 7 (2.3%) 

Cellular component morphogenesis 27 (1.8%) 6 (0.5%) 4 (1.3%) 
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Cytokine production involved in immune 

response 
21 (1.4%) 31 (2.7%) 3 (1.0%) 

Glycolysis 21 (1.4%) 36 (3.2%) 2 (0.7%) 

Chronic inflammatory response 19 (1.3%) 23 (2.0%) 2 (0.7%) 

Innate immune response 18 (1.2%) 30 (2.6%) 8 (2.7%) 

Extracellular matrix organization 16 (1.1%) 4 (0.4%) 0 (0.0%) 

Behavior 7 (0.5%) 2 (0.2%) 8 (2.7%) 

Epithelial-mesenchymal transition 6 (0.4%) 4 (0.4%) 0 (0.0%) 

NK cell mediated immunity 4 (0.3%) 11 (1.0%) N/A* 

T-cell mediated immunity 4 (0.3%) 5 (0.4%) N/A* 

Type 2 immune response 2 (0.1%) 11 (1.0%) N/A* 

B-cell mediated immunity 2 (0.1%) 6 (0.5%) N/A* 

Type 1 immune response 1 (0.1%) 1 (0.1%) N/A* 

*N/A indicates the number of features associated with the biological process was not published in 

Ref. [6]. 

3. Discussion 

The goal of our processing methods is to better characterize complex MALDI-TOF 

spectra by improving peak detection and quantification. Because common peak detection 

approaches often perform poorly for clustered peaks [27,28], we utilized the method of 

spectral convolution to select peaks. Quantitation of peak intensity is also difficult to ac-

curately determine when the peak of interest is part of a clusters of peaks. One cannot 

simply take the maximum intensity at the peak location because the tails of adjacent and 

overlapping peaks will add to the overall intensity at that location. Due to this complica-

tion, previous work would define the entire cluster as a single feature that spanned a spec-

tral range instead of decomposing the cluster into individual peaks [6,12]. By accurately 

fitting the clusters, each individual peak intensity can be accurately determined without 

the influence of adjacent peaks. By implementing these ideas and utilizing the often-ne-

glected information in the component of the spectra that varies more slowly with m/z (the 

bumps), we can detect more peaks with improved reproducibility than the traditional 

processing method tested [24]. The improved characterization can also lead to a better 

understanding of the direct biological implications of different features in our spectra. 

3.1. MALDI Peak Shape Analysis 

The m/z dependence on the peak shape is due to inherent protein properties (isotopic 

distribution) and the instrument response function (IRF). For any individual protein, the 

peak shape that we observe in a spectrum is a convolution of the isotopic distribution of 

the protein with the instrument response function. As proteins get larger, we expect to see 

a wider isotopic distribution [33]. An estimation of the peak width change with mass is 

shown in the Supplementary Materials, Figure S5, based on proteins composed of the fic-

tional amino acid known as averagine [33]. Similarly, the mass spectrometer is known to 

have a variable IRF over wide mass ranges that results in wider features further from the 

optimal (tuned) mass range [28,34,35]. The change in trend from linear to quadratic shown 

in Figure 3b is likely due to a change in the IRF. 

The IRF is a difficult parameter to determine [28,34–36]; thus, for this work, we opted 

to use an empirical fit. We note that, if the IRF could be carefully measured, it would be 

possible to get higher-resolution spectra by deconvoluting the observed spectra with the 

IRF and the isotope distribution [28]. Such information could be useful in better determin-

ing component parts of the bumps or perhaps eliminate the bumps altogether. 
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3.2. Peak Detection and Feature Value Determination 

Traditional fitting methods often rely on simply removing the broad structures 

(bumps) during background subtraction, resulting in only sharp features (fine structure) 

[37,38]. These broad features originate from real biological content that is unresolved (see 

Figure 2) and, thus, potentially valuable information is lost when the bumps are over-

looked during background estimation and subtraction. During the spectral analysis pre-

sented here, an individual spectrum was decomposed into three separate components: the 

background, the fine structure, and the bumps. By maintaining a slowly varying back-

ground, we are able to extract and analyze the bumps spectrum which was shown to im-

prove quantitative reproducibility. 

Although our methods show improved quantification of highly reproducible 

features, we do note that our method of processing is computationally slower (~ 3 

min/spectrum) than the MALDIquant software (several seconds/spectrum) [24]. This is, 

in part, due to the high level MATLAB language, which could be sped up with a faster 

language, but it is also due to the differences in our peak detection algorithms. In the 

present work, we enhance our peak detection by convoluting the spectrum with the 

asymmetric peak shape that we defined for each instrument. Although this is a 

computationally intensive task, the convolution sharpens features and effectively filters 

the noise, which allows for more accurate detection of low intensity peaks. The MAD peak 

detection algorithm that we utilized in the MALDIquant analysis is one of the most 

commonly used peak-finding algorithms [22–24]. It simply finds local maxima and only 

selects those that are above the SNR cutoff. Because of the convolution we used, for the 

RapifleX data, we were able to find a total of 1657 peaks while using a SNR cutoff of 10, 

while the traditional MAD method used in the MALDIquant processing only found 635 

features with a SNR of 2. 

To further evaluate our algorithms, we processed an additional 220 sample 

preparations on another mass spectrometer (SimulTOF100). The spectra acquired on the 

SimulTOF100 were processed using the presented methods, and we found 1256 unique 

features (see Supplementary Materials Figure S3 and Table S1 for peak shape analysis on 

the SimulTOF100). The Deep MALDI spectra collected on the SimulTOF100 were also 

analyzed using MALDIquant, which found 947 features. Although the MALDIquant 

processing appeared to do better with this instrument, we still find that our processing 

methods produce a greater number of highly reproducible features. 

3.3. Reproducibility 

Our methods show an improvement over current traditional processing techniques, 

as tested by the MALDIquant software package [24]. For both sample sets run on the 

RapifleX and SimulTOF100 instruments, we defined and characterized a greater number 

of features (with enhanced feature values) with smaller CVs with the presented processing 

than with the MALDIquant software package. Because the spectral processing methods 

presented here show improvements across multiple instruments, we expect a similar 

performance using alternative sample preparation methods, such as utilizing depletion 

methods to improve the detection of low-abundance proteins [39,40]. 

Due to the large number of highly reproducible features, diagnostic tests could be 

created to stratify and classify patients into different groups to predict patient outcome 

based on this processing method. Multiple tests are currently being developed using the 

methods presented here which we believe will provide useful and actionable results for 

physicians and patients. 

3.4. PSEA 

Gene set enrichment analysis (GSEA) is a commonly used tool in bioinformatics that 

associates a measured quantity (for example, gene expression) with a biological process 

by finding patterns of association across a set of genes known to be related to that process 
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[41]. Using a similar approach, we can associate our Deep MALDI features with biological 

processes in a protein set enrichment analysis [29,42]. 

In our previous work on the development of Deep MALDI [6], we demonstrated an 

improvement in the number of features associated with biological processes with ab in-

creasing number of laser shots. The direct comparison (using the same number of laser 

shots generated by the Deep MALDI spectra, as well as the same p-value cutoff and FDR) 

to the previous work is shown in Table 2. The work by Tsypin et al. [6] was run on a 

SimulTOF100, so we can see a clear improvement in the number of associated features 

with our processing. The methods and procedures presented here show a substantial in-

crease in the number of associated features in nearly all the biological processes investi-

gated. 

4. Materials and Methods 

4.1. Serum Samples 

A total of 40 serum samples (“qualification set”), derived from the blood of lung can-

cer and colorectal cancer patients, were purchased from Discovery Life Sciences, Inc. 

(Huntsville, AL, USA). A reference sample was created by pooling equal volumes of se-

rum obtained from ten healthy individuals, also purchased from Discovery Life Sciences, 

Inc. The 100 serum samples collected from patients with non-small cell lung cancer used 

for association with biological processes via protein set enrichment analysis (“PSEA set”) 

were purchased from Oncology Metrics, LLC (Fort Worth, TX, USA) and Discovery Life 

Sciences Inc (Huntsville, AL, USA). All samples were collected under ethics-approved 

protocols, according to the requirements of Discovery Life Sciences Inc and Oncology 

Metrics LLC, and were stored at −80 °C. 

4.2. Sample Preparation 

Serum samples were thawed and 3-μL aliquots of each sample were spotted onto a 

serum card (GE HealthCare, Chicago, IL, USA). The spots were allowed to dry for 1 h at 

ambient temperature after which the whole serum spot was punched out from the under-

side with a 6-mm skin biopsy punch (Acuderm, Fort Lauderdale, FL, USA). Each punch 

was placed in a centrifugal filter with a 0.45-μm nylon membrane (VWR, Randor, PA, 

USA). In cases where the serum spots had spread outside the 6-mm diameter, the section 

where serum was visible was excised and added to the tube containing the 6-mm punch. 

To the centrifugal filter containing the punch, 100 μL of HPLC grade water ( VWR, Ran-

dor, PA, USA was added. The punches were vortexed gently for 10 min and then spun 

down at 14,000 rcf for two minutes. The flow-through was removed and transferred back 

on to the punch for a second round of extraction consisting of vortexing gently for three 

minutes and spinning down at 14,000 rcf for two minutes. Finally, 20 μL of the filtrate 

from each sample was then transferred to a 0.5-mL Eppendorf tube. All subsequent sam-

ple preparation steps were carried out in a custom designed humidity and temperature 

control chamber (Coy Laboratory). The temperature was set to 30 °C and the relative hu-

midity at 10%. 

An equal volume of freshly prepared matrix (25 mg of sinapinic acid per 1 mL of 50% 

acetonitrile mixed with 50% water plus 0.1% TFA) was added to each 20-μL serum extract 

and the mix was vortexed for 30 s. The first three aliquots (3 × 2 μL, for SimulTOF100) or 

five aliquots (5 × 2 μL, for Rapiflex) of sample–matrix mix were discarded into the tube 

cap. Eight aliquots of 2-μL sample–matrix mix were then spotted onto a stainless steel 

MALDI target plate (Bruker, Billerica, MA, USA and SimulTOF Systems, Marlborough, 

MA, USA for spectra acquisition on the RapifleX and SimulTOF 100, respectively). The 

MALDI plate was allowed to dry in the chamber before placement in the MALDI mass 

spectrometer. 

For the work on generating a master peak list and reproducibility a total of five rep-

licate batches of the qualification set (40 serum samples) were analyzed for each mass 
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spectrometer. Each batch consisted of the 40 serum samples with an additional four prep-

arations of reference sample used as controls, with two preparations spotted at the start 

and two at the end of the batch. This resulted in a total of 220 spectra per mass spectrom-

eter (5 × 40 samples in the qualification set and 20x of the reference sample). 

Samples for the PSEA set were run in batches of up to 44 samples with an additional 

four preparations of the reference sample used as controls, with two preparations spotted 

at the start and two at the end of the batch for each mass spectrometer. 

4.3. Mass Spectra Acquisition 

4.3.1. RapifleX 

MALDI spectra were obtained using a RapifleX MALDI-TOF mass spectrometer 

(Bruker, Billerica, MA, USA). The instrument was operated in a positive ion mode, with 

ions generated using a frequency-tripled Nd:YAG laser emitting at 355 nm with a laser 

repetition rate of 5 kHz. Spectra were acquired in the 3 kDa to 30 kDa m/z range with a 

sampling rate of 0.63 Gs/s. External calibration was performed using the following peaks 

in the spectra generated from the reference samples included on every target plate (or 

batch): m/z = 3320, 4158.7338, 6636.7971, 9429.302, 13890.4398, 15877.5801, and 28093.951. 

From each spot, 100 raster spectra were collected, totaling 800 raster spectra per sample. 

A raster spectrum is an average over 800 laser shots measured across a single spot. 

4.3.2. SimulTOF100 

MALDI spectra obtained using a SimulTOF100 MALDI-TOF mass spectrometer 

(SimulTOF Systems, Marlborough, MA, USA). The instrument operated in the positive 

ion mode with ions generated using a 349-nm, diode-pumped, frequency-tripled Nd:YLF 

laser operated at a laser repetition rate of 0.5 kHz. Raster spectra were acquired in the 3 to 

75 kDa m/z range (only the range from 3 to 30 kDa was used in this analysis) and were 

‘hardware averaged’ to contain 800 laser shots as the laser fires continuously across the 

spot while the stage is moving at a speed of 0.25 mm/s. External calibration was performed 

using the following peaks generated in the reference sample included on every target 

plate: m/z =3320, 4158.7338, 6636.7971, 9429.302, 13890.4398, 15877.5801, and 28093.951. 

4.4. Spectral Analysis 

The spectral analysis workflow is shown in Scheme 1 for processing of raw data 

through generation of a feature table or matrix (a list of feature values for each feature for 

each sample). Post-processing, such as normalization or corrections, can be performed on 

the table of feature values. 

 

Scheme 1. Spectral analysis workflow for mass spectrometer data using presented preprocessing 

methods. 

4.4.1. Raster Averaging for Deep MALDI Spectra 

To increase the number of observable peaks and to improve the SNR in the MALDI-

TOF spectra, we employed the Deep MALDI raster averaging technique. For a complete 
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description of this technique, we refer the reader to Tsypin et al. [6]. Briefly, each raster 

spectrum of 800 shots was processed through an alignment workflow to align peaks to a 

set of internal alignment points (Tables S2, S3). Peaks were detected in each raster spec-

trum with a SNR cut-off > 3.0. The identified peaks for a raster spectrum were then used 

together with the set of predefined alignment peak positions to establish the coefficients 

in a second-order polynomial (in m/z) that was used to transform the m/z values of this 

raster spectrum. For successful alignment, we required a minimum of 20 detected peaks, 

with at least 13 peaks useable for alignment, i.e., an un-aligned peak position within a 

fixed alignment tolerance (1500 ppm) of the alignment peak. A maximum shift of 15 Da 

was allowed at the lowest m/z alignment point. 

Averages were created from the pool of aligned raster spectra that satisfied the align-

ment quality criteria. A random selection of 500 raster spectra, without replacement, were 

averaged to create a final analysis spectrum of 400,000 shots for each sample. 

4.4.2. Background Estimation 

The spectrum background was calculated using a stiff Eilers’ estimation (λ� = 10��, 

λ� = 10�, � = 0.001) [31,32]. Briefly, the Eilers’ estimation is an asymmetric least squares 

fitting that penalizes positive and negative deviations separately, allowing for accurate 

estimation of the background. 

4.4.3. Fine Structure and Bumps Determination 

The stiff background does not overfit the spectra and subtraction from the spectra 

results in sharp features that still are sitting on top of broad features, as seen in Figures 2 

and 4. Both the bumps and the sharp peaks may contain useful information as to total 

protein content in the sample but need to be treated separately to ensure accurate estima-

tion of feature values. 

A second, aggressive background was calculated to fit both the background and 

bumps with Eilers’ parameters λ� = 10� , λ� = 10� , and � = 0.001. The difference be-

tween the spectrum and the aggressive background results in the fine structure, which 

contains the information of the sharp peaks on a flat background. The bumps were de-

fined as the difference between the aggressive background and the stiff background. 

4.4.4. Peak Detection 

Peak candidates to be fit were estimated using a peak finding algorithm based on the 

convolution of the fine structure with the peak-shape defined in Section 2.1. Peak candi-

date locations were estimated using the MATLAB function islocalmin on the second deriv-

ative of the fine structure, with a prominence window equal to the width of the FWHM 

of a peak and a minimum separation of peaks equal to 1/4 of the peak FWHM at the m/z 

location. These candidates were only fit as peaks if the SNR was greater than 10 and if the 

candidate was not being influenced by adjacent peak candidates. The signal was simply 

the intensity of the signal at the m/z point, while the noise was measured as the deviation 

in the signal from the average, as estimated by a Gaussian-smoothing window the size of 

the peak width. 

A given peak was determined to be influenced by an adjacent peak if the peak centers 

were within half a peak width of each other or if either peak intersected the other at more 

than 10% of the maximum amplitude. Peak candidates with SNR > 10, which were not 

found to be influenced by an adjacent peak, were fitted to a single asymmetric Gaussian 

to get precise peak position and amplitude. Peak candidates with SNR > 10, but which 

were determined to be influenced by adjacent peak candidates, were assigned to be part 

of a cluster. The multiplicity of a cluster, N, is defined as the number of peak candidates 

that are influenced by at least one other member of the cluster. Clusters were fitted sim-

ultaneously by N asymmetric Gaussians (i.e., a doublet would be fit to N = 2 asymmetric 

Gaussians and a triplet would be fit to N = 3 asymmetric Gaussians). This method of fitting 
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allows for accurate determination of the m/z position as well as peak intensity of all N 

peaks in the cluster. Peaks with a SNR < 10 were not considered for alignment purposes 

or merging into the master list. 

A list of all peak locations for each sample was later merged into a master list of all 

measurable peaks from a wide range of multiple samples, as described in Section 4.6 be-

low. 

4.4.5. Spectral Alignment 

Spectra were aligned to a common m/z axis to ensure accurate feature (peak) inten-

sities across samples. Alignment was performed by minimizing the variation in peak po-

sitions (m/z value from the peak fitting) for the sample with respect to the pre-specified 

alignment points (Tables S4 and S5). The m/z axis was rescaled using a second-order pol-

ynomial in m/z. Only peaks in the 80th percentile of SNR were used for alignment and 

were weighted inversely to their location in m/z, to account for the greater weights a sim-

ple linear regression gives to instances at higher m/z. A peak was determined to be aligna-

ble if its spectral position was within half of a peak width (as defined at the m/z position) 

of the nearest alignment point. To account for variations over the large range in m/z, we 

split the alignment range into four sub-ranges, as shown in Table S6. 

To ensure the high-quality data we require, only fits with at least five alignable fea-

tures in each region were used. Spectra that failed to align were not used in further deter-

mination. 

4.4.6. Feature Value Determination 

The fine structure was fitted to 1657 (1256) asymmetric Gaussians at the specified m/z 

positions (see Section 4.6) to extract the peak intensity for the RapifleX (SimulTOF100). 

Isolated peaks were simply fitted to a single asymmetric Gaussian, while peaks that were 

part of a cluster were simultaneously fitted to N asymmetric Gaussians, where N is the 

multiplicity of the cluster. By fitting the entire cluster simultaneously, we ensured accu-

rate peak amplitude measurements for peaks with significant overlap. A subtle, yet im-

portant, point to note is that we only fitted the intensity of each peak while keeping the 

m/z position and width parameters fixed (unlike in Section 4.4.5 above, where the m/z 

position was also fitted). Because the spectra were aligned in the previous step, we did 

not need to fit the m/z position and we could fit all features, even including those whose 

SNR was under 10. This results in our ability to accurately fit peaks whose intensity ranges 

over 3.8 orders of magnitude. A preliminary “Standard” feature value, characterizing the 

magnitude of a peak, was defined as the fitted peak amplitude. The preliminary feature 

value was further modified by adding the bump intensity at the m/z location to determine 

the “Enhanced” feature value. Mathematically, 

���(�) = ���(�) + �����(�), (6)

where � is the m/z location, ���(�) for � = �, � is the feature value for “Standard” or 

“Enhanced”, respectively, and �����(�) is defined above in Equation (3). 

4.4.7. MALDIquant Analysis 

The same set of 220 Deep MALDI spectra (as described for the qualification set in 

Section 4.2 above), used to determine our master peak list (see Section 4.6), were analyzed 

using the MALDIquant mass spectra analysis software as a methods comparison [24]. 

Deep MALDI spectra were transformed using the square root transformation method to 

minimize any variance from the mean. Spectra were then smoothed with the Savitzky-

Golay-Filter (halfWindowSize = 10) [43] and the baseline was corrected with the Statistics-

sensitive Non-linear Iterative Peak-clipping (SNIP) algorithm (iterations = 100) [44]. 

Spectra were total ion current (TIC) normalized and spectra were aligned using the 

“lowess” warping method (halfWindowSize = 20, SNR = 2, and tolerance = 0.002) [45]. 
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Peaks were determined using the MAD method (halfWindowSize = 20, SNR = 20) [22] and 

similar peaks were binned with a tolerance of 0.002. Feature values and CVs were 

calculated using the 635 unique peaks determined by this method for RapifleX Deep 

MALDI spectra and 947 unique peaks for the SimulTOF100 Deep MALDI spectra. 

4.5. Peak Shape Fitting 

A total of 19 isolated peaks were fitted to asymmetric gaussians (Equation (1)). The 

peaks were selected as isolated peaks that spanned the m/z range (3 to 30 kDa). Only the 

top 75% intensity was fitted for peak width determination. The trends of the left- and 

right-HWHM were then fit to a linear trend in the low mass region (3 to 17 kDa) and a 

quadratic fit for the high-mass region (13 to 30 kDa), as described by Equation (2). The 

linear and quadratic fits were intentionally made to overlap to accurately determine the 

intersection of the two curves (����). The average peak shape trend parameters came from 

the average of 12 different preparations of the same reference serum sample measured 

over three batches. 

To ensure there were no discontinuities while fitting the entire spectra the final ���� 

for FWHM, σ�  and σ� were calculated solely from the FWHM trend. 

4.6. Merge Peak Lists 

Two-hundred and twenty peak lists, determined in Section 4.4.4, were generated for 

five batches of the qualification set as described in Section 4.2. All the peaks were merged 

into a single list resulting in 1657 unique peaks for the RapifleX and 1256 unique peaks 

for the SimulTOF100 (Supplementary Materials Tables S7 and S8). The merged peak list 

was created by iteratively comparing the merged peak list (initially empty) with an un-

merged list. Peaks from the un-merged list that had a peak center greater than 0.5x peak 

width away from adjacent peak centers in the merge list were added. Peaks with centers 

less than 0.5x peak width away from adjacent peaks in the merge list had their location 

averaged with the existing merge peak. 

4.7. Reproducibility Analysis 

A total of 20 replicate measurements, including sample preparation and spectra ac-

quisition, of the reference sample were collected over five batches. Spectra were processed 

as described above and standard and enhanced feature values were calculated for each 

replicate. Feature values were normalized to the total feature value intensity for the sam-

ple. For each feature, the average feature value (�̅), standard deviation (σ�), and coefficient 

of variation (�� = σ�/�̅) were calculated. 

4.8. Association with Biological Processes 

We followed the procedure outlined in Grigorieva et al. [29] to determine the 

association of the identified mass spectral features with 23 biological processes using 

protein set enrichment analysis. The biological processes investigated included both those 

expected to be assessable in circulation of patients with cancer (e.g., acute phase response, 

acute inflammatory response, wound healing) and some processes designed as controls 

(behavior, cellular components of morphogenesis). Briefly, protein abundance for 1305 

known proteins was obtained for the PSEA set of 100 serum samples using the aptamer-

based 1.3k SOMAscan assay (SomaLogic, Boulder, CO) [46,47]. The subsets of the 1305 

proteins known to be associated with each of the 23 biological processes were identified 

using database searches, as has been previously described in detail [29]. Deep MALDI 

spectra were acquired from the PSEA set using both the RapifleX and the SimulTOF100 

mass spectrometers using the methods of sections 4.2–4.3. The spectra were processed, 

and the feature values for each sample are described in sections 4.4–4.6. The Spearman 

correlation was calculated between each feature and each of the 1305 proteins across the 

100 different samples. An enrichment score was generated for each of the 23 biological 
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processes for each mass spectral feature using the method of Roder et al. [42] with 25 splits 

of the sample set to provide increased power to detect association with biological 

processes compared with the standard GSEA enrichment score [41]. We calculated the p-

values of association between each feature and the biological processes by comparing the 

enrichment score to a null distribution generated by a random permutation of feature 

values across the sample set. Features with a p-value of association < 0.01 and a false 

discovery rate of 5% or less, as estimated by the method of Benjamini-Hochberg [48] for 

multiple comparisons across the 23 biological processes, were determined to be associated 

with a given biological process. A subset of 1516 features were used from the Rapiflex 

processing and 1138 features for the SimulTOF100. For comparison, Ref [6] used 298 

features. These reduced feature sets were determined by removing features that are 

known to depend strongly on sample collection and processing details, i.e., features that 

are related to hemoglobin (and its multiply charged analogs) or to fibrinogen (whose 

spectral intensity often vary). 

5. Conclusions 

Here, we developed a novel method for analyzing MALDI-TOF spectra over a wide 

spectral range. We used our method to analyze spectra from multiple samples to find 1657 

unique peaks with over 3.5 orders of magnitude intensity, compared to only 635 for the 

traditional processing methods [24]. Our use of a well-defined peak shape function for 

our instrumentation allows us to accurately detect a greater number of peaks, particularly 

among overlapping peaks. The use of peak shape also allows for accurate fitting of over-

lapping peaks for accurate peak amplitude measurements. When compared to a tradi-

tional processing method, we found a substantial increase in the number of highly repro-

ducible features with low CVs. We further validated our processing by performing the 

same analysis on spectra collected on a mass spectrometer from a different manufacturer 

and showing improved detection and reproducibility. Finally, we analyzed a set of 100 

samples with known protein variation to determine the number of features associated 

with biological processes. We found an increase in the number of features associated with 

biological processes compared to analysis of the same sample set with a different spectral 

processing method [6]. 

Supplementary Materials: The following are available online, Figure S1: Representative, high-res-

olution unprocessed and processed RapifleX spectrum, Figure S2: SimulTOF100 Deep MALDI com-

parison, Figure S3: SimulTOF100 peak shape fitting, Table S1: SimulTOF100 peak shape parameters, 

Figure S4: Peak shape parameter stability, Figure S5: Isotopic contribution to peak shape broaden-

ing, Table S2: Raster alignment peaks for RapifleX, Table S3: Raster alignment peaks for Sim-

ulTOF100, Table S4: Deep MALDI Alignment points for RapifleX, Table S5: Deep MALDI Align-

ment points for SimulTOF100, Table S6: Spectral alignment ranges, Table S7: Peak list for RapifleX, 

and Table S8: Peak list for SimulTOF100. A .csv file of an example spectrum measured on the Rapif-
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