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Abstract: Single crystals of pseudorotaxanes, [(FcCH2NH2CH2Ar)(DB24C8)][PF6] (DB24C8 = dibenzo
[24]crown-8, Fc = Fe(C5H4)(C5H5), Ar = -C6H3-3,4-Cl2 , -C6H3-3,4-F2 , -C6H4-4-F, -C6H4-4-Cl,
-C6H4-4-Br, -C6H3-3-F-4-Me, -C6H4-4-I) and [(FcCH2NH2CH2C6H4-4-Me)(DB24C8)][Ni(dmit)2]
(dmit = 1,3-dithiole-2,4,5-dithiolate), were obtained from solutions containing DB24C8 and ferrocenyl-
methyl(arylmethyl)ammonium. X-ray crystallographic analyses of the pseudorotaxanes revealed
that the aryl ring of the axle moiety and the catechol ring of the macrocyclic component were at
close centroid distances and parallel or tilted orientation. The structures with parallel aromatic rings
showed correlation of the distances between the centroids to Hammett substituent constants of the
aryl groups.

Keywords: pseudorotaxane; aromatic interaction; crystal structure; Hammett constants

1. Introduction

Rotaxanes and pseudorotaxanes have been investigated as supramolecules with
unique structures, having macrocyclic molecules threaded by axle molecules [1–9]. Their
stimulus–response behavior has been applied to molecular shuttles [10–18] and molec-
ular elevators [19] in solutions and molecular muscles in both the solid state and in
solution [20–23]. Further applications of the rotaxanes include catalysis [24–28], functional
polymeric materials [29–32], amphiphilic materials [33–36], and nanometal precursors [37].
Pseudorotaxanes have an axle component whose end groups are smaller than the size of the
central hole of the macrocyclic component. Intermolecular interaction, such as hydrogen
bonding and aromatic interaction, stabilizes the interlocked structure of the pseudoro-
taxanes. Dibenzo-24-crown-8 (DB24C8) forms various pseudorotaxanes and rotaxanes
with dialkyl- or diarylammonium because they are bound by multiple N-H· · ·O hydrogen
bonds between the NH2

+ group and the oxygen atoms. X-ray crystallographic studies of
the pseudorotaxane of DB24C8 and dibenzylammonium, [((PhCH2)2NH2)(DB24C8)][PF6],
revealed interaction between the macrocyclic and axle components [38,39]. The pseu-
dorotaxane contained multiple N-H· · ·O hydrogen bonds between the NH groups of the
axle component and O atoms of the macrocycle. One of the two crystallographically in-
dependent pseudorotaxanes was stabilized not only by the hydrogen bonds but also by
π–π interaction between a Ph group of the axle component and a catechol group of the
macrocycle. The two aromatic groups had parallel orientation and close positions with a
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centroid distance of 3.79 Å. Such double stabilization was observed in many rotaxanes and
pseudorotaxanes of DB24C8 and bis(arylmethyl)ammonium [40–43].

In the last few decades, we have investigated structures and properties of the
crystalline pseudorotaxanes of DB24C8 and ferrocenylmethyl(arylmethyl)ammonium,
[(FcCH2NH2CH2C6H4-4-Me)(DB24C8)][EF6] (E = P, As) [44–50]. The pseudorotaxanes
caused the crystalline phase transition upon heating and photo-irradiation. Related crys-
talline supramolecules were reported to exhibit new stimulus–response behavior [51–54].
Scheme 1 shows two structures of the pseudorotaxane of DB24C8 with ferrocenylmethyl(4-
methylphenylmethyl)ammonium in the crystals. The pseudorotaxane with the PF6

−

counter anion was supported by multiple N-H· · ·O hydrogen bonds, π–π interaction
between the 4-methylphenyl group and a catechol group, and C(Cp)–H· · ·π interaction
between the ferrocenyl group and the other catechol group (Scheme 1a, α–form). The
distance and angle of the catechol ring and p-methylphenyl ring was determined to be
3.71 Å and 6.2◦, respectively. The pseudorotaxane with AsF6

− anion preferred the struc-
ture with C· · ·H–π interaction between the 4-methylphenyl group of the axle component
and a catechol group (Scheme 1b, β–form). Heating crystals of [(FcCH2NH2CH2C6H4-4-
Me)(DB24C8)]PF6 above 128 ◦C caused thermal crystalline phase transition from α–form
to β–form. Recent studies revealed that the crystalline phase transition temperature of the
crystals was influenced largely by size of the counter anions [47,50].
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Scheme 1. Typical structures of pseudorotaxane of DB24C8 and (ferrocenylmethyl)-(4-methylphenymethyl)
ammonium.

In solution, the pseudorotaxanes of DB24C8 and benzyl(arylmethyl)ammonium,
[(ArCH2(PhCH2)NH2)(DB24C8)][PF6] have been reported to show different stabilities,
depending on the substituents on the aromatic groups of the axle component [55]. How-
ever, there have been no reports on relevance of the crystalline structures of such (pseudo)
rotaxanes to the substituents of the aromatic group of the arylmethylammonium axle com-
ponent. Here we report the crystal structures of pseudorotaxanes composed of DB24C8
and ferrocenylmethyl(arylmethyl)ammonium and show the effect of the aryl group on the
molecular structures of the pseudorotaxanes. This study focuses on relative positions and
orientation of the neighbouring aromatic groups of the axle and cyclic components in the
α–form pseudorotaxane crystals.

2. Results and Discussion

Mixing DB24C8 with ferrocenylmethyl(arylmethyl)ammonium in solution caused crys-
tal growth of the corresponding pseudorotaxanes. Their structures were determined by X-
ray crystallography (vide infra). The reaction of DB24C8 with ferrocenylmethyl(arylmethyl)
ammonium formed the corresponding pseudorotaxanes, 1a–1g, as crystals, as shown in
Equation (1). Similar pseudorotaxanes with Ph, C6H4-4-Me, and C6H4-4-OMe groups in
the axle component, 1h–1i, were reported previously [46–48]. Counter anion exchange of
[(FcCH2NH2CH2C6H4-4-Me)][PF6] by [Ni(dmit)2]– (dmit = 1,3-dithiole-2-4,5-dithiolate)
and subsequent addition of DB24C8 formed [(FcCH2NH2CH2C6H4-4-Me)(DB24C8)][Ni(dmit)2]
(1i-Ni). X-ray crystallographic study showed the pseudorotaxane structure with [Ni(dmit)2]
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counter anion, although IR measurement and elemental analyses of the crystalline product
were unsuccessful.
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Figure 1a shows structure of pseudorotaxane 1d with a chlorophenyl group in the axle
component. The ammonium hydrogens, H1 and H2, are at close positions to the oxygen
atoms of DB24C8 (N1–H1· · ·O2: 2.216 Å, N1–H1· · ·O3: 2.240 Å, N1–H2· · ·O1: 2.537 Å,
N1–H2· · ·O8: 2.368 Å), suggesting N–H· · ·O hydrogen bonds. The cyclopentadienyl
ligand forms a C–H· · ·π interaction (3.09 Å) with a C6H4 ring of DB24C8. The distance
between the centroid of phenylene ring A of the axle component and that of the catechol
ring B of DB24C8 (d, Å) and the angle formed by the aromatic planes (θ, ◦) are 3.70 Å and
5.26◦, respectively. Thus, the structure of pseudorotaxane 1d belongs to the α–form of
Scheme 1.
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Figure 1. X-ray structures of pseudorotaxanes. (a) 1d, (b) 1c, and (c) 1i-Ni. The atoms are shown
with 50% probabilities. Atoms of the anion and hydrogen atoms are omitted for simplicity.

Pseudorotaxane 1c has two aromatic groups A and B with the orientation close to
orthogonal, suggesting C-H· · ·π interaction between the aromatic groups A and B, as
shown in Figure 1b. The structure is similar to 1i above the crystalline phase transition
temperature and belongs to β–form in Scheme 1. Pseudorotaxane 1i-Ni contains the 4-
methylphenyl group of the axle component and a phenylene group of a catechol group
in parallel fashion, as shown in Figure 1c. Previous crystallographic studies of 1h, 1i,
and 1j showed that multiple C–H· · · F interactions between DB24C8 and PF6

− impart
the relative stability of α– to the β–form [46,47,50]. Figure 2 depicts interaction of the
cationic pseudorotaxane with [Ni(dmit)2]− anion of 1i-Ni, which differs largely from that
of pseudorotaxane 1i with PF6

− anions.
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Table 1 summarizes synthesis and structures of the ferrocene-containing pseudoro-
taxanes, [(FcCH2NH2CH2Ar)(DB24C8)][PF6] (1a–1j) and [(FcCH2NH2CH2Ar)(DB24C8)]
[Ni(dmit)2] (1i-Ni). The IR peaks of the symmetric and asymmetric vibration of ammo-
nium N–H bonds of 1a–1d, 1f, 1g (3065–3080, 3166–3195 cm−1) were observed at lower
wavenumbers than those of starting ammonium, 2a–2g (3233–3236 and 3262–3268 cm−1),
due to the hydrogen bonding between the ammonium and oxygen atoms of DB24C8.

Table 1. Crystal synthesis of pseudorotaxanes, 1a–1j.

Pseudorotaxane
End Group of Axle Component

(Hammett Const.) Yield(%) Structure
N· · ·O distance/Å ν(N–H)/cm−1 a

N1–O2 N1–O3 νs νas

1a -C6H3-3,4-Cl2 (0.60) 10% α 3.058 3.011 3060 (3233) 3185 (3262)
1b -C6H3-3,4-F2 (0.40) 57% β 2.975 2.840 3066 (3233) 3163 (3262)
1c -C6H4-4-F (0.34) 49% β 2.966 2.873 3077 (3236) 3165 (3262)
1d -C6H4-4-Cl (0.23) 74% α 3.088 2.949 3069 (3235) 3187 (3266)
1e -C6H4-4-Br (0.23) 85% α 3.092 2.943 3069 (3233) 3187 (3265)
1f -C6H3-3-F-4-Me (0.17) 41% α 3.062 3.006 3067 (3233) 3166 (3266)
1g -C6H4-4-I (0.18) 69% α 3.070 2.984 3065 (3235) 3195 (3268)

1h b -Ph (0.00) β 2.941 2.857 3065 (3236) 3156 (3262)
1i c -C6H4-4-Me (−0.17) α 3.159 3.074 3067 (3250) 3171 (3225)

1i-Ni -C6H4-4-Me (−0.17) α 3.114 3.021 − −
1j d -C6H4-4-OMe (−0.27) α 2.995 2.997 3065 3195

a Wavenumber of the axle molecule is shown in parenthesis. b Ref. [47]. c Refs. [44,45]. d Ref. [55].

The pseudorotaxane crystals of 1i in α–form and in β–form were reported to have
different conformation of the axle molecule and co-conformation of the axle and macrocyclic
molecules (orientation of the axle molecule within the pseudorotaxane framework) [50].
The rotaxanes in α–form (1a, 1d–1i) and those in β–form (1b, 1c, 1h) in Table 1 showed
different wavenumbers of the IR peaks due to νas vibrations of the NH2 group, 3184 cm−1

on average for 1a and 1d–1i and 3161 cm−1 on average for 1b, 1c, and 1h. The distances
between N1 and O2 atoms of 1a and 1d–1i, 3.079 Å on average, were longer than those of
1b, 1c, and 1h (2.960 Å on average). Thus, these spectroscopic and structural parameters
relating to the N–H· · ·O hydrogen bonds differ clearly between the crystals of α–form and
those of β–form. Table 2 summarizes relative positions and orientations of two aromatic
planes A and B of the pseudorotaxanes in the crystalline state. The two aromatic planes of
α–form were almost parallel in the structures with tilt angles, in the range of 3.65–7.94◦.
Distances between centroids of aromatic planes A and B, are in the range of 3.573–3.779 Å.
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Both values are much smaller than the corresponding values of pseudorotaxanes in β–form,
1b, 1c, and 1h.

Table 2. Centroid distance and dihedral angles between the two aromatic groups in the axle and
cyclic components.

Pseudorotaxane A Ring Structure
Relative Positions of Two Aromatic Groups

Centroid
Distance, d/Å

Dihedral
Angle, θ/◦

Face-to-Face
Dimension/Å

1a -C6H3-3,4-Cl2 α 3.553 3.65 3.376
1b -C6H3-3,4-F2 β 4.850 122.01 –
1c -C6H4-4-F β 5.140 121.78 –
1d -C6H4-4-Cl α 3.702 5.26 3.416
1e -C6H4-4-Br α 3.694 5.00 3.394
1f -C6H3-3-F-4-Me α 3.640 6.59 3.413
1g -C6H4-4-I α 3.710 6.71 3.435

1h a -Ph β 5.128 57.61 –
1i a -C6H4-4-Me α 3.710 6.20 3.430

1i-Ni -C6H4-4-Me α 3.665 4.59 3.398
1j a -C6H4-4-OMe α 3.779 7.94 3.529

a Data were taken from the results in refs. [44–47,50].

Figure 3 shows Hammett plots of structural parameters of crystalline pseudorotax-
anes with α–form, 1a, 1d–1g and 1i–1j. The distances between centroids (Figure 3a) and
dihedral angles (Figure 3b) of aromatic groups A and B were plotted against the Hammett
constants, σ, of A [56]. Hammett constants of disubstituted aromatic group in 1a and 1f
were calculated by assuming additivity of Hammett constants [57,58]. Linear relationships
were observed for d and θ values to Hammett constants, and σ-values were calculated as
−0.21 and −4.1, respectively. Thus, aromatic group A with a larger σ-value was positioned
at a closer position to aromatic group B with a smaller dihedral angle. Coefficients of
determination of the plots in Figure 3a,b were similar (R2 = 0.76 and 0.73), suggesting that
parameters d and θ were correlated with each other. Attempts to plot averaged distances
between aromatic planes of A and B to Hammett constants resulted in lower correlation
than that between d and θ. The two aromatic planes were almost parallel in the structures
but had slight differences in the structural parameters. The d and θ values of pseudorotax-
anes were increased by electron-donating substituents (negative σ values) of the terminal
aryl group of the axle component.
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Centroid distances of the pseudorotaxanes with monosubstituted aromatic groups A,
such as 1d, 1e, 1g, 1i, and 1j, were plotted against R+ constants in order to estimate the
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contribution of the resonance effect for the Hammett plots in Figure 3. Centroid distance of
pseudorotaxane 1j with OMe group at the 4-position of A (3.779 Å) is much longer than
other pseudorotaxanes with Cl, Br, I, and Me groups. The coefficient of determination
obtained from the plots of the five pseudorotaxanes is high (R2 = 0.95). This indicates
that resonance effect of the aromatic group A is significant among the mono-substituted
aromatic groups. These results indicate that the pseudorotaxanes bearing mono- and
disubstituted aromatic group A showed that the electronic nature of A influenced the
relative positions and orientations of the aryl groups A and B.

The centroid distance (d) and dihedral angle (θ) of 1i-Ni (3.665 Å and 4.59◦) were
smaller than those of 1i with PF6 anion (3.710 Å and 6.20◦). Such effects of the counter anion
on the structure of cationic pseudorotaxane are ascribed to the different co-conformation of
the pseudorotaxanes caused by the counter anions (vide supra) [50].

Theoretical studies compared three possible geometries for the aromatic interac-
tions, slipped-parallel, parallel, and perpendicular ones (Scheme 2). Tsuzuki et al. cal-
culated stabilities of the benzene dimers as the function of distance (d) and angles (θ)
between them and reported the optimized position for slipped paralleled conformation
(d = 3.5 Å, ∆G◦ = −2.48 kcal mol−1 (at the CCSD(T) level)) which is more stable than
the parallel type interaction (∆G◦ = −1.48 kJ mol−1) and similar to C-H· · ·π interaction
(∆G◦ = −2.46 kJ mol−1) [59–62]. Thus, the energy differences among the possible inter-
acted structures are small. Recently, parallel stacking of the aromatic rings (Scheme 2b)
was found in the crystals of polyhedral oligomeric silsesquioxane (POSS) derivatives, al-
though it was considered to be less stable than the others [63]. The combination of two
aromatic rings at close positions was known to influence stability of their π–π stacking. As
a further important factor, donor–acceptor interaction was known to stabilize the aromatic
interaction significantly.
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Figure 4 depicts partial X-ray structures of 1a and 1j, showing the relative positions of
their A and B rings. Both A and B rings of 1a and 1j show slipped-parallel type stacking
(Scheme 2a). The overlapping of π electrons between A and B rings of 1a looks larger
than that of 1i. The d and θ values of 1a (3.553 Å and 3.65◦) and of 1j (3.779 Å and 7.94◦)
indicate that the C6H3-3,4-Cl2 ring of 1a and the catechol ring of DB24C8 is closer and less
tilted than those of the C6H3-4-OMe ring of 1i and the catechol ring of DB24C8 because of
stronger donor–acceptor interaction in the former system.

Stoddart, Williams, and their co-workers investigated a full series of pseudorotaxanes
composed of DB24C8 and bis(arylmethyl)ammonium in the solid state and in solution. They
observed a clear relationship between the stability constants for the pseudorotaxane and
the electron donating ability of the substituents of the aryl groups of the axle components
in CDCl3 and CD3CN-CDCl3 [55]. Higher stability of pseudorotaxanes possessing aryl
groups with electron-withdrawing groups, such as NO2 and COOH groups, at the para
position can be attributed to the aromatic interaction between the axle and macrocyclic
components. Although direct estimation of the aromatic interaction was difficult in the
solutions, the results in the solid of this study state are related to the relative stability of the
pseudorotaxanes in the solution.
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3. Materials and Methods
3.1. General

1H NMR spectra were acquired on a MERCURY300 (Varian, Tokyo, Japan), EX-400
(JEOL, Tokyo, Japan) and a AV-400M (Bruker, Yokohama, Japan). The chemical shifts were
referenced with respect to CHCl3 (δ 7.26), CD2HCN (δ 1.93) for 1H, and CDCl3 (δ 77.0),
CD3CN (δ 1.30) for 13C as internal standards. Elemental analysis was carried out with
a CHNS-932 (LECO, Tokyo, Japan) or MT-5 CHN (Yanaco, Tokyo, Japan) autorecorder.
IR spectra were measured with a FTIR-8100A (Shimadzu, Kyoto, Japan) and FT/IR-4100
(JASCO, Tokyo, Japan). H2NCH2Ar (Ar = -C6H4-4-Br, -C6H3-3-F-4-Me) was prepared
by reaction of LiAlH4 and NCAr in THF under reflux condition. Other chemicals are
commercially available and used without further purification.

3.2. Crystal Synthesis of [(FcCH2NH2CH2C6H3-3,4-Cl2)(DB24C8)]PF6 (1a)

Yellow crystals of pseudorotaxane 1a were obtained by slow evaporation of CH2Cl2/
Et2O solution of 2a (52 mg, 0.10 mmol) and DB24C8 (46 mg, 0.10 mmol). 1a was ob-
tained with 10% yield. Synthesis details and spectroscopic results of the precursors of
pseudorotaxanes and cif files are in Supplementary Materials.

Elemental analysis: calcd (%) for C42H50NO8FeF6Cl2P: C, 52.08; H, 5.20; N, 1.45; Cl,
7.32; found: C, 51.58; H, 4.93; N, 1.45; Cl, 7.38.

3.3. Crystal Synthesis of [(FcCH2NH2CH2C6H3-3,4-F2)(DB24C8)]PF6 (1b)

Yellow crystals of pseudorotaxane 1b were obtained by slow evaporation of ace-
tone/hexane solution of 2b (46 mg, 0.093 mmol) and DB24C8 (49 mg, 0.11 mmol). 1b was
obtained with 57% yield.

Elemental analysis: calcd (%) for C42H50NO8FeF8P: C, 53.91; H, 5.39; N, 1.50; found:
C, 53.81; H, 5.39; N, 1.52.

3.4. Crystal Synthesis of [(FcCH2NH2CH2C6H4-4-F)(DB24C8)]PF6 (1c)

Yellow crystals of pseudorotaxane 1c were obtained by slow evaporation of ace-
tone/hexane solution of 2c (47 mg, 0.10 mmol) and DB24C8 (44 mg, 0.099 mmol). 1c was
obtained with 49% yield.
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Elemental analysis: calcd (%) for C42H51NO8FeF7P: C, 54.97; H, 5.60; N, 1.53; found:
C, 54.92; H, 5.65; N, 1.89.

3.5. Crystal Synthesis of [(FcCH2NH2CH2C6H4-4-Cl)(DB24C8)]PF6 (1d)

Yellow crystals of pseudorotaxane 1d were obtained by slow evaporation of ace-
tone/hexane solution of 2d (48 mg, 0.10 mmol) and DB24C8 (45 mg, 0.10 mmol). 1d was
obtained with 74% yield.

Elemental analysis: calcd (%) for C42H51NClF6FeO8P: C, 54.00; H, 5.50; N, 1.50; found:
C, 53.69; H, 5.45; N, 1.48.

3.6. Crystal Synthesis of [(FcCH2NH2CH2C6H4-4-Br)(DB24C8)]PF6 (1e)

Yellow crystals of pseudorotaxane 1e were obtained by slow evaporation of CHCl3/
acetone (2.0 mL/0.5 mL) solution of 2e (53 mg, 0.10 mmol) and DB24C8 (45 mg, 0.10 mmol).
1e was obtained with 85% yield.

Elemental analysis: calcd (%) for C42H51NBrF6FeO8P(H2O)0.5: C, 51.08; H, 5.31; N,
1.42; found: C, 50.99; H, 5.35; N, 1.45.

3.7. Crystal Synthesis of [(FcCH2NH2CH2C6H3-3-F-4-Me)(DB24C8)]PF6 (1f)

Yellow crystals of pseudorotaxane 1f were obtained by slow evaporation of CH2Cl2/
Et2O solution of 2f (47 mg, 0.094 mmol) and DB24C8 (45 mg, 0.10 mmol). 1f was obtained
with 41% yield.

Elemental analysis: calcd (%) for C43H53NF7FeNO8P: C, 55.43; H, 5.73; N, 1.50; found:
C, 55.45; H, 5.29; N, 1.55.

3.8. Crystal Synthesis of [(FcCH2NH2CH2C6H4-4-I)(DB24C8)]PF6 (1g)

Yellow crystals of pseudorotaxane 1g were obtained by slow evaporation of CH2Cl2/
Et2O solution of 2g (57 mg, 0.10 mmol) and DB24C8 (45 mg, 0.10 mmol). 1g was obtained
with 69% yield.

Elemental analysis: calcd (%) for C42H51NIF6FeNO8P: C, 49.19; H, 5.01; N, 1.37; found:
C, 49.29; H, 4.98; N, 1.37.

3.9. Crystal Synthesis of [(FcCH2NH2CH2C6H4-4-Me)(DB24C8)][Ni(dmit)2] (1i-Ni)

Compound [FcCH2NH2CH2C6H4-4-Me][Ni(dmit)2] (2i-Ni) was obtained by anion
exchange of [FcCH2NH2CH2C6H4-4-Me][PF6] with Li[Ni(dmit)2]. Black crystals of pseu-
dorotaxane 1i-Ni were obtained by slow evaporation of CH2Cl2/Et2O solution of 2i-Ni
(77 mg, 0.10 mmol) and DB24C8 (45 mg, 0.10 mmol) with 43% yield. The crystals revealed
the molecular structure but did not provide satisfactory analytical results.

3.10. X-ray Crystallography

Data were collected on a Rigaku Saturn CCD diffractometer with Mo Kα radiation
(λ = 0.71073 Å). All H atoms were fixed at ideal positions. CCDC 1032569-1032577 and
2122024 contain the supplementary crystallographic data for complex 1a-1g, and 1i-Ni.
Table 2 summarizes the structural data used in Figure 3a,b.

4. Conclusions

The pseudorotaxanes of DB24C8 and ferrocenylmethyl(arylmethyl)ammonium in
this study were stabilized by three-point support in the crystals, N-H· · ·O hydrogen
bonds, C(Cp)–H· · ·π interaction between the ferrocenyl group and a catechol group, and
aromatic interaction between the aryl group of the axle component and a catechol group.
Choice of the third interaction, either π· · ·π interaction (α–form) or C-H· · ·π interaction
(β–form), was reported to depend on the counter anions, as shown for 2i in our previous
papers [46,47,50]. Crystals in α–form and those in β–form exhibit different IR peak positions
and N· · ·O distance, relating to the hydrogen bonds between the axle and macrocyclic
molecules, as shown in Table 1. This study revealed that the aryl group of the axle molecules
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influenced structural parameters around the two aromatic groups with a π· · ·π interaction.
The aryl group with electron-withdrawing substituents enhanced the aromatic interaction
and stabilized the pseudorotaxane. Findings in this study deepened full understanding of
structures of the pseudorotaxanes with a ferrocenyl group.

Supplementary Materials: The following supporting information can be downloaded online, syn-
thesis details and spectroscopic results of the precursors of pseudorotaxanes and cif files of 1b–1g
and 1i-Ni.
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