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Abstract: Some of the diverse agro-industrial waste generated in primary or secondary stages
have proved to be promising biomaterials for treating aqueous effluents contaminated, in this case,
with heavy metals. Therefore, it is necessary to know their optimal operating conditions and the
regeneration or reusability of the solid by-product, an aspect related to desorption. Considering the
above, this article presents the findings of a preliminary study related to the desorption process of
coffee pulp without physicochemical modification (Castilla variety), an agricultural waste used as a
sorbent of Cr(III and VI) ions in synthetic wastewater. The desorption efficiency of four eluting agents
at defined concentrations (0.10M)—HC1, HNO3, H2SO4, and EDTA—was evaluated in a time interval
of 1 to 9 days. Likewise, the proposals for the sorption and/or desorption mechanisms proposed
and reported in the literature with respect to the use of biosorbents derived from the coffee crop are
presented. With respect to the results, the coffee pulp used in previous studies of the adsorption
of chromium species mentioned (optimal conditions in synthetic water of particle size 180 µm,
dose 20 g·L−1, agitation 100 RPM, room temperature, time of 90 to 105 min) showed efficiencies
in the removal of Cr(III) and Cr(VI) of 93.26% and 74.80%, respectively. Regarding the extracting
substances used, H2SO4 0.10 M was the one that presented the highest desorption percentage in
both chromic species, with a desorption of 45.75% Cr(VI) and 66.84% Cr(III) in periods of 5 and
9 days, respectively, with agitation of 100 RPM and room temperature. Finally, the dissemination
of preliminary results on the desorption of coffee pulp contaminated with chromic species without
physicochemical modification is novel in this study, as similar work with this specific material has
not yet been reported in the literature. On the other hand, the limitations of the study and future
research are related to the evaluation at different concentrations and of other extractor solutions that
allow improving the efficiency of desorption of these chemical species in a shorter time from the
coffee pulp (with and without modification) as well as the reuse cycles. As a result, the desorption of
coffee pulp used as an adsorbent material in real water could help researchers identify the possible
interfering factors that affect the process (foreign anions and cations, organic matter, environmental
conditions, among others).

Keywords: chromium; coffee pulp; desorption; preliminary study; synthetic wastewater

1. Introduction

Water is one of the natural resources that is used in the processes of the diverse
industrial activities in which it is required. This is due to the increasing industrialization
that different countries in the world are going through. In order to safeguard public and
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environmental health, the aim is to ensure that these aqueous matrices are purified before
their final disposal due to the significant negative effects they could have on the ecosystem
in the short, medium, and long term [1,2].

Heavy metals (also known as environmentally priority pollutants, Potentially Toxic
Elements (PTE), Persistent Bio-accumulative Toxics (PBT), and Unitary Potentially Toxic
Residues (UPTR)) [3–5], are among the pollutants, produced by industrial wastewater,
particularly those of an inorganic nature. These pollutants are not removed in conventional
wastewater treatment plants (pretreatment, primary, secondary, and tertiary treatment
stages) [6]. However, these substances can be mitigated through the use of advanced
methodologies, which involve ion exchange, membrane filtration (microfiltration, nanofil-
tration, ultrafiltration, and reverse osmosis), electrodialysis, photocatalysis, flotation, and
electrocoagulation, among others [7]. There are also conventional methods such as chemical
precipitation and adsorption using activated carbon (AC) as a “universal adsorbent” and
carbon nanotubes (CNTs) (since they are adsorbents that have high efficiency for both
organic and inorganic pollutants removal) [3]. Although the advantages of these technolo-
gies refer to their high removal efficiency, generation of moderate amounts of sludge, and
economy (exclusively the chemical precipitation); the disadvantages concern their high
cost in implementation, requirements for energy, maintenance, and high cost of production,
especially those of adsorption methods (AC) that prevent their use in countries with scarce
resources [8–10].

In view of the above, over the years, research on so-called non-conventional technolo-
gies (also known as clean technologies or green methodologies) has gained considerable
attention and importance. These include the use of biosorption, bioremediation, phytore-
mediation, hydrogels, and fly ash. This is mainly characterized by: (a) the use of live and
dead biomasses, lignocellulosic materials, in order to revalue the various solid by-products
generated in human activities susceptible to being reused in issues such as water treatment,
and (2) being easy to acquire, highly efficient, environmentally friendly, high adsorption
capacity, does not generate sludge and is economical [8–11].

Particularly for the biosorption method, important findings have been reported in
the literature regarding the use of sorbents derived from agro-industrial by-products
(coffee bagasse, coffee pulp, agave, maguey, sugar cane, organic waste from fruits and
vegetables) [2,5,12]; solid materials from tannery industrial activities (chrome shavings,
leather trimmings, fly ash, and hair) [13,14]; by-products of the incineration of municipal
sewage sludge, such as fly ash and slag (chitosan, waste-to-energy power plant, sunflower
wood, pine nut shells) [15–18]. Additionally, fruit and vegetable waste from the processing
of the food industry, as well as the use of γ-polyglutamic acid, elderberries, pine biomass,
and mushroom biomass [19–22]. These are proposed as possible alternatives to address the
environmental challenges caused by various metal ionic species in aqueous effluents, such
as Cr(III and VI), Ni(II), Zn(II), Pb(II), Cd(II), Mn(II), Cu(II), etc.

Biosorption is a physical method in which the adsorbates, pollutants in ionic state
present in the liquid phase (wastewater), interact with the adsorbent (biological material)
the solid phase in which the sorbates accumulate [23]. In this process, the physisorption
and/or chemisorption processes are immersed; for the first, the types of binding forces
are Van der Waals, with relatively low sorption heat (10 kJ·mol−1–40 kJ·mol−1), very low
activation energy, and is fully reversible (desorption of the adsorbate occurs due to the
decrease in the activity of the adsorbent on the fluid surrounding the surface). With respect
to the second, the type of binding force is similar to chemical bonding, with high sorption
heat (20 kJ·mol−1–400 kJ·mol−1), high activation energy, where the process is irreversible
(the “desorbed compounds” are different from the adsorbed ones) [24].

Likewise, it is important to highlight that the opposite phenomenon of biosorption is
desorption; in this process, the aim is to separate and/or recover the organic and inorganic
pollutants that have interacted with the solid phase—biosorbent—with the purpose of
reincorporating the substances into the industrial production processes, as well as the reuse
of the sorbent material [25]. Publications on this topic have proposed the use of various
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extracting solutions or eluting agents, such as chelating agents (EDTA), acid substances
(HCl, H2SO4), alkaline substances (NaOH), inorganic and organic salts (NaNO3, Ca(NO3)2,
sodium citrate, etc.) or tests such as that reported by Ahalya et al. (2010) [26] that involve
physisorption (physical bonding) and/or chemisorption (chemical bonding), exposing that
if the physisorption process is present, the weakly bound metal ion can be easily desorbed
with distilled water in most cases, but if the process is chemisorption or ion exchange or
combination of the two, desorption can occur by stronger desorbing agents such as acidic
or alkaline solutions, thus when using distilled water (pH 6.90) to desorb Cr(VI) from
coffee husk, chemisorption was observed, since it was not desorbed with this type of water.
Thus, the use of these substances will depend on variables such as: the type of sorbent, the
metal ionic species present in the aqueous solution, pH, the concentration of the extractant
solutions, contact time, temperature, ionic strength, agitation [8,25].

It is important to emphasize that desorption allows the recovery of the biomass free of
contaminants to be reused in the biosorption process, thus allowing its regeneration. This
is favorable because, in this way, it will be more accessible to users who implement this
technology and with it, the maximum number of cycles in which the biosorbent can be
reused is established. On the other hand, it is relevant to say that if organic and inorganic
contaminants remain in solution, they can be reincorporated into the production cycle or
life cycle of industrial processes, allowing companies to incorporate a circular economy
and at the same time being sustainable, since they will favor environmental, economic, and
social factors [2,5,7,26].

On the other hand, Cr(III) is one of the most stable chromium species found in high
abundance in the environment [27,28] and it is considered an essential trace element for
humans, causing the body to metabolize carbohydrates, proteins, and fats. Cr(VI) is
also 1000 times more toxic than Cr(III), it causes allergies and skin ulcers, irritations on
respiratory and gastrointestinal tract surfaces, fibrosis, alteration of genetic material, and
immune system weakness. At the same time, renal and hepatic lesions have been observed
in the long term after inhalation exposure. This has been linked to lung cancer according to
the International Agency for Research on Cancer (IARC), the United States Environmental
Protection Agency (USEPA), and as a probable carcinogen, based on epidemiological
studies [29–31].

It is important to note tha the World Health Organization (WHO), ranks this heavy
metal as one of the 13 with the greatest impact on public health and the environment [32]
and that the United States Environmental Protection Agency (USEPA) ranks Cr(VI) as one
of the 129 most critical pollutants [26]. Furthermore, chromium is used in the electroplating
industry, tannery industry, dyes, electroplating, and other industries [33,34]. Some conven-
tional methods for the treatment of chemical species such as Cr(VI) include reduction to
Cr(III), then precipitation; additionally, electrolytic techniques, ion exchange, and other
techniques are also used. [8]. Some of the maximum permissible limits for the two ionic
species of chromium (III and VI) and total chromium in wastewater discharges in some
countries reported in mg·L−1 are as follows: Colombia, México (Cr III and VI/ no apply),
Cr Total 1.0–1.5; Venezuela ((Cr III/ no apply), Cr(VI) 0.5 and Cr Total 2.0) [28].

Regarding the evaluation of agro-industrial by-products in the context of industrial
wastewater treatment, which incorporates pollutants such as the aforementioned, coffee
pulp (CP) has been investigated in previous studies [2,5,27]. This lignocellulosic material
generated from the pulping process represents 29% dry-weight of the coffee fruit; 2 tons of
this residue are generated for each ton of coffee [35]. Every year, 21 billion kilograms of
CP waste are produced worldwide, obtained as a by-product of the processing operations
to obtain coffee beans [36]. Pulping and transportation of pulp with water, in addition
to its disposal in uncovered or open pits, are considered to be responsible for 74% of the
polluting potential represented by coffee by-products [37].

The most relevant coffee species on the planet is Arabica coffee, which constitutes 60%
of world production due to its high quality [38]. Colombia is the third world producer
after Brazil and Vietnam, with an approximate production of 14.30 million bags of 65 kg
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of coffee, while Brazil had a production of 63.40 million bags of 65 kg of coffee in 2020.
Therefore, Brazil represents approximately 40% of world coffee production [39]. Regarding
the almond coffee that Colombia exports in a year, approximately 162.900 tons of pulp
residues are generated for every million 60 kg bags, which represents about 43.58% of
the weight of the fresh fruit. If such tons of waste are not adequately treated, pollutants
equivalent to the feces and urine of a population of approximately 868.736 inhabitants
could be produced [36].

In terms of chemical composition, CP is composed of cellulose (18.65–65.50%), hemicel-
lulose (0.98–3.30%), and lignin (12.20–19.70%) [35]. These compounds mainly have in their
chemical structure aldehyde, methoxyl, phenol, ether, alcohol, aromatic rings, and carbonyl
groups, which will be present in the various chemical interactions that may occur in the
adsorption/desorption mechanisms between the sorbate and the adsorbent—depending
on the conditions of the biosorption process (pH, temperature, dosage, etc.). In addition, CP
has been given applications in animal feed, composting, biofuel production, production of
energy drinks, production of coffee honey, vermicomposting, and larvicomposting [40,41].

Given the above, the present article shows the results of a preliminary study related
to the desorption process of CP without physicochemical modification, with the material
being used as a sorbent of ionic Cr(III and VI) species in synthetic wastewater. The use
of four eluting agents (0.10M), HCl, HNO3, H2SO4, and EDTA was evaluated to desorb
Cr species from CP. Likewise, the adsorption and desorption mechanisms proposed and
reported in the research related to the use of sorbents derived from coffee cultivation and
processing are presented. Finally, the authors present the limitations of the study and future
research from this perspective.

This research arises due to the low research related to this aspect, and that in publica-
tions related to agro-industry by-products, particularly derived from coffee cultivation, it
has been raised as a future research and/or limitations, especially with this agricultural
waste [5,27,42]. After a survey on sources of information from 2000 to 2021 using as a
starting point the metadata of the Scopus database, a bibliometric map was made (see
Figure 1) based on the co-occurrence of terms related to desorption, coffee pulp, and heavy
metals. The above, with the use of the VOSviewer 1.6.18 software (free version), allowed
the observation of a general panorama in terms of the research related to the aspect that is
the subject of this article.

Figure 1 shows the co-occurrence of terms referring to the most mentioned words by
the researchers and the relationships between them (e.g., adsorption, desorption, coffee
beans, coffee leaves, heavy metals—copper, lead, chromium, cadmium, arsenic). This
provides a first approach to the current research related to the desorption of lignocellulosic
materials derived from the process of cultivation and processing of coffee fruit [5], except
for CP contaminated with ionic Cr species.
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2. Materials and Methods
2.1. Collection and Physical Treatment of CP

CP used was of the Castilla variety, collected from a coffee farm in the Maracas, Que-
brada Negra, municipality of Neira, Department of Caldas (Colombia) with the coordinates
5.140579◦ N–75.484538◦ W. The sampling of the material was performed in zigzag, collect-
ing a sample size of 10 kg that was dried for 7 to 15 days in solar parabolic dryers. This
was to partially dehydrate the residue—the percentage of moisture obtained in this drying
process was 8.20%. Subsequently, it was placed in an oven at 60 ◦C until it obtained a
constant mass. Once the sample was dry, it was mechanically triturated in a mill to obtain
a particle size of 180 µm [27,43].

2.2. Quantification of Cr(III and VI)

The Cr(III and VI) solutions were prepared using analytical reagents KCr(SO4)2 99%
and K2Cr2O7 99.5%, which were diluted in deionized water at room temperature, from
which stock solutions of 1000 mg·L−1 and diluted (1,5,10,15) mg·L−1 were prepared. The
respective instrumental calibration was performed by the Atomic Absorption Spectropho-
tometry (AAS) method in a VARIAN AA 140 equipment; the method used was 3111 B of
the Standard Methods using flame (air-acetylene).
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2.3. Adsorption and Desorption Procedures

In previous studies, optimal biosorption conditions were found for each metal ionic
species in volumes of 25 mL of synthetic wastewater (indicating that this water is prepared
at a specific concentration) [44]. These corresponded to a mass of 0.50 g of CP, temperature
of 20 ◦C, agitation of 100 RPM, and contact time of 90 and 105 min for Cr(III and VI),
respectively. Furthermore, the pH values were 2.0 for Cr(VI) and 5.0 for Cr(III).

Subsequently, the CP contaminated with Cr(III and VI) ionic species was retained
using Whatman grade 4 qualitative filter paper with a pore size of 20 µm–25 µm. Afterward,
0.10 g of the contaminated dry residue was immersed in a volume of eluting agent of 50mL
each of HCl, HNO3, H2SO4, EDTA; all of concentration 0.10 M. The sorbent–eluent system
was left under constant agitation at 100 RPM for 9 days at room temperature [12,45].

The extractive solutions were prepared from analytical grade reagents whose purities
were HCl 37%, HNO3 65%, H2SO4 98%, EDTA 99%. In relation to the treatment of the
data, the accumulated desorption percentage for each ionic species was plotted against the
monitored time; additionally, the desorption capacity (Qdes.) was calculated by applying
the following expression [30]:

Qdes. (mg·g−1) = (Cdes·V)/M

Cdes: desorption concentration of the pollutant (mg·L−1).
V: volume (L) of the eluting agent.
M: mass (g) of the adsorbent.
Additionally:

%desorption = (Cdes/Cads.) × 100

Cdes.: desorption concentration in the extractant solution (mg·L−1).
Cads.: sorption concentration of the biosorbent (mg·L−1).

2.4. Statistical Treatment

The Excel program’s ANOVA was used to perform the statistical analysis based on
the comparison of desorption percentages and Cr(III and VI) ionic species with different
extractant solutions.

3. Results and Discussion
3.1. Desorption Assays of Cr(III and VI) from CP

According to the preliminary adsorption studies, under the optimum conditions of
pH, particle size, agitation, temperature, and adsorbent dosage, CP was used to remove
Cr(III and VI) in synthetic wastewater. The optimum pH variables for Cr(III and VI) were
2.0 and 5.0 pH units, an initial concentration of 100 mg·L−1, a particle size of 180 µm, a
temperature of 20 ◦C, and an adsorbent dose of 0.50 g with 25 mL of the synthetic solution
for the two ionic species.

Regarding Cr(III) desorption, it was performed using H2SO4, HCl, and HNO3 extrac-
tive solutions at the concentrations mentioned in the methodological section. The results
are shown in Table 1 and Figure 2:

Table 1. Percentage desorption of Cr(III) and Qdes. with different acidic extractant solutions.

Time
(days)

%Desorption
HCl

HCl Qdes.
(mg·g−1)

%Desorption
H2SO4

H2SO4 Qdes.
(mg·g−1)

%Desorption
HNO3

HNO3 Qdes.
(mg·g−1)

1 3.16 0.23 24.43 1.77 14.94 4.72

3 9.97 0.72 40.89 2.97 27.32 8.62

4 12.72 0.92 48.49 3.52 24.40 7.70

5 13.61 0.99 56.72 4.12 29.06 9.17

9 15.88 1.15 66.84 4.85 37.80 11.93
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According to the results shown in Table 1 and Figure 2 H2SO4 0.10 M demonstrated the
highest Cr(III) desorption efficiency of 66.84% in a time of 9 days; similarly, the desorption
capacities ranged for HCl at (0.23 mg·g−1–15.88 mg·g−1), H2SO4 (1.77 mg·g−1–4.85 mg·g−1),
and HNO3 (4.72 mg·g−1–11.93 mg·g−1).

With the results, researchers used an ANOVA (p < 0.05) to specify if there were signifi-
cant differences between the extractant solutions at the same concentration, temperature,
agitation, and biosorbent material (see Table 2).

Table 2. Analysis of variance between extractant solutions for Cr(III).

%Desorption
HCl

%Desorption
H2SO4

%Desorption
HNO3

F
Calculated

F
Critical
p < 0.05

3.16 24.43 14.94

29.98 4.26

9.97 40.89 27.32

12.72 48.49 24.40

13.61 56.72 29.06

15.88 66.84 37.80

Table 2 shows a comparison of the desorption percentages for Cr(III) between the
extractant solutions (HCl, H2SO4, and HNO3), showing that there are significant differences
at 95% probability, given that the F calculated value is higher than the F critical value. Thus,
it could be inferred that the desorption processes are different for each acid.

On the other hand, Cr(VI) desorption was performed using H2SO4, HCl, and EDTA
extracting solutions at the concentrations mentioned in the methodological section. The
results are shown in Table 3 and Figure 3:

Table 3. Percentage desorption of Cr(VI) and Qdes. with different extractant solutions.

Time
(days)

%Desorption
H2SO4

H2SO4 Qdes.
(mg·g−1)

%Desorption
HCl

HCl Qdes.
(mg·g−1)

%Desorption
EDTA

EDTA Qdes.
(mg·g−1)

1 30.56 2.08 21.17 1.44 7.39 1.21

2 37.24 2.53 18.87 1.28 19.21 1.48

3 35.42 2.41 18.87 1.28 13.21 1.41

5 45.75 3.11 24.91 1.69 29.58 1.82
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According to the results in Table 3 and Figure 2, it was found that of the three
eluting agents evaluated, H2SO4 0.10 M had the highest Cr(VI) desorption efficiency
of 45.75% in a time of 5 days; similarly, the desorption capacities range for HCl was
(1.44 mg·g−1–1.69 mg·g−1), for H2SO4 (2.08 mg·g−1–3.11 mg·g−1), and EDTA (1.21 mg·g−1–
1.82 mg·g−1).

Having the results, researchers used an ANOVA (p < 0.05) to specify if there were sig-
nificant differences between the extractant solutions at the same concentration, temperature,
agitation, and biosorbent material (see Table 4).

Table 4. Analysis of variance between extractant solutions for Cr(VI).

%Desorption
H2SO4

%Desorption
HCl

%Desorption
EDTA

F
Calculated

F
Critical
p < 0.05

30.56 21.17 7.39

9.43 5.14
37.24 18.87 19.21

35.42 18.87 13.21

45.75 24.91 29.58

Table 4 shows a comparison of the desorption percentages for Cr(VI) between the
extractant solutions (H2SO4, HCl, EDTA); it can be observed that there are significant
differences at 95% probability since the F calculated value is higher than the F critical value.
Thus, it could be inferred that the desorption processes are different for each substance.

In the two desorption methods using CP as a sorbent, it was observed that a higher
percentage of desorption occurred using acidic solutions since it is possible that the protons
from the dissociation of the latter replace the metal (ion exchange) that is bound through
electrostatic interactions to the functional groups on the surface of the adsorbent, for
example, hydroxyls and carboxyls [25].

3.2. Reports on Mechanisms of Adsorption and Desorption of Agricultural Waste Derived from the
Cultivation and Processing of Coffee

Table 5 shows the statements found and reported on the adsorption and desorption
conditions using various by-products derived from coffee cultivation:
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Table 5. Sorption and desorption processes and conditions with various by-products derived from
coffee crops.

Ref.

By-Product of Coffee
Cultivation and
Desorbed Ionic

Adsorbate

Adsorption Process and
Conditions Desorption Process

Conclusion of Desorption
and/or Extractant/Eluent

Solution Process,
%Desorption

[11]

Coffee waste: “Greek
coffee” drinks
(Untreated and chemically
treated—2%
formaldehyde-)

Cr(VI)

(a) Synthetic waters.
(b) Volume of water: 50 mL.
(c) Sorbent dosage: 1 g·L−1.
(d) pH: 5.0.
(e) Particle size: 475 µm–525 µm.
(f) Agitation: 140 RPM.
(g) Pollutant concentration:
50 mg/L.
(h) Temperature: 25 ◦C.
(i) Optimum time: 24 h.
(j) Maximum sorption capacity:
38.68 mg·g−1–43.75 mg·g−1.
(k) %Efficiency: 60–62.

(a) Synthetic waters.
(b) Volume of water: 50 mL.
(c) pH adjustment: 2.0–12.0 units.
(d) Extraction solution:
NaOH 0.10 M and HCl 0.10 M.
(e) Volume of eluting agent:
Not reported.
(f) Particle size: 475 µm–525 µm.
(g) Sorbent dosage:
1 g·L−1.
(h) Agitation: 140 RPM.
(i) Temperature: 25 ◦C.
(j) Desorption time: 1440 min.

Acidic conditions favored
desorption (optimum
desorption pH 2.0);
(%desorption: 84–95).

[26]
Coffee husk

Cr(VI)

(a) Synthetic water.
(b) Volume of water: 100 mL.
(c) Sorbent dosage: 1 g·L−1.
(d) pH: 2.0.
(e) Particle size: Not reported.
(f) Agitation: Not reported.
(g) Pollutant concentration:
10 mg·L−1–100 mg·L−1.
(h) Temperature: 25 ◦C.
(i) Optimum time: 24 h.
(j) Maximum sorption capacity:
43.75 mg·g−1.
(k) %Efficiency: 60–62.

(a) Synthetic water.
(b) Volume of water: 100 mL.
(c) pH adjustment: Not reported.
(d) Extraction solution:
NaOH 0.02 M
(e) Volume of eluting agent:
Not reported.
(f) Particle size: Not reported.
(g) Sorbent dosage:
1 g·L−1.
(h) Agitation: Not reported.
(i) Temperature: 25 ◦C.
(j) Desorption time: 180 min.

Desorption with NaOH
0.02 M; (%desorption: 60).

[8]

Exhausted ground coffee
wastes

Cr(VI)

(a) Synthetic waters.
(b) Volume of water: 100 mL.
(c) Sorbent dosage:
6.67 g·L−1.
(d) pH: 3.0.
(e) Particle size: 0.75 mm–1.50 mm.
(f) Agitation: 30 RPM.
(g) Pollutant concentration:
50 mg/L.
(h) Temperature:
20 ◦C ± 2 ◦C.
(i) Optimum time: 120 min.
(j) Maximum sorption capacity:
10.17 mg·g−1.
(k) %Efficiency: Not reported.

(a) Synthetic water.
(b) Volume of water: Not reported.
(c) pH adjustment: Not reported.
(d) Extraction solution: NaOH and
HCl (in the range of 0.01 M to 1 M).
(e) Volume of eluting agent: 0.1 g of
sorbent in 15 mL.
(f) Particle size: Not reported.
(g) Sorbent dosage: Metal loaded on
biosorbent (10 mg Cr/g sorbent dry)
(h) Agitation: Not reported.
(i) Temperature: 25 ◦C.
(j) Desorption time: 24 h.

Solution NaOH 1 M better
for desorbing total Cr from
the sorbent (Cr III and VI
species); (%desorption: 47).

[30]
Coffee ground

Cr(VI)

(a) Synthetic waters.
(b) Volume of water: 25 mL.
(c) Sorbent dosage: 2 g·L−1.
(d) pH: 2.0.
(e) Particle size: Not reported.
(f) Agitation: 250 RPM.
(g) Pollutant concentration: 10
mg·L−1–30 mg·L−1.
(h) Temperature: 30 ◦C.
(i) Optimum time: 180 min.
(j) Maximum sorption capacity:
87.72 mg·g−1.
(k) %Efficiency: Not reported.

(a) Synthetic waters.
(b) Volume of water: Not reported.
(c) pH adjustment: 10.0
(d) Extraction solution: NaOH 0.1 M
(e) Volume of eluting agent:
Not reported.
(f) Particle size: Not reported.
(g) Sorbent dosage: Not reported.
(h) Agitation: 150 RPM.
(i) Temperature: 25 ◦C.
(j) Desorption time: 60 min.

NaOH 0.1 M (pH: 10);
(%desorption: 10-15).
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Table 5. Cont.

Ref.

By-Product of Coffee
Cultivation and
Desorbed Ionic

Adsorbate

Adsorption Process and
Conditions Desorption Process

Conclusion of Desorption
and/or Extractant/Eluent

Solution Process,
%Desorption

[29]
Coffee husk Ash

Cr(VI)

(a) Synthetic water.
(b) Volume of water: 100 mL.
(c) Sorbent dosage: 1.5 g·L−1.
(d) pH: 2.0.
(e) Particle size: Not reported.
(f) Agitation: 100 RPM.
(g) Pollutant concentration:
0.5 mg/L.
(h) Temperature: 22 ◦C ± 2 ◦C.
(i) Optimum time: 40 min.
(j) Maximum sorption capacity:
15.53 mg·g−1.
(k) %Efficiency: >90%.

(a) Synthetic water.
(b) Volume of water: Not reported.
(c) pH adjustment: Not reported.
(d) Extraction solution: NaOH
(range 0.01 M to 0.5 M).
(e) Volume of eluting agent: 100 mL.
(f) Particle size: Not reported.
(g) Sorbent dosage: Not reported.
(h) Agitation: Not reported.
(i) Temperature: 25 ◦C.
(j) Desorption time: Not reported.

NaOH (range 0.01 M to
0.5 M; (%desorption: 77.33).

[46]

Coffee leaves
Variety Castillo

Cr(VI)

(a) Synthetic water.
(b) Volume of water: 50 mL.
(c) Sorbent dosage: 2 g·L−1.
(d) pH: 4.0.
(e) Particle size: 0.149 mm
(f) Agitation: 0 RPM.
(g) Pollutant concentration:
1000 mg·L−1.
(h) Temperature: 25 ◦C.
(i) Optimum time: 60 min.
(j) Maximum sorption capacity:
Not reported.
(k) %Efficiency: 82.

(a) Synthetic water.
(b) Volume of water: Not reported.
(c) pH adjustment: Not reported.
(d) Extraction solution: HCl 0.1 M
and H2SO4 0.1 M.
(e) Volume of eluting agent: 10 mL.
(f) Particle size: Not reported.
(g) Sorbent dosage: Not reported.
(h) Agitation: without agitation.
(i) Temperature: 25 ◦C.
(j) Desorption time: 60 min.

The strong acids used were
not very effective in
desorbing the metal ionic
species; however, 0.1 M HCl
showed a higher desorption
grade of 25% in a volume of
10 mL.

[27]
Coffee pulp

Cr(VI)

(a) Synthetic waters.
(b) Volume of water: 50 mL.
(c) Sorbent dosage: 20 g·L−1.
(d) pH: 2.0.
(e) Particle size: 0.18 mm.
(f) Agitation: 100 RPM.
(g) Pollutant concentration:
20 mg·L−1–500 mg·L−1.
(h) Temperature: 25 ◦C.
(i) Optimum time: 105 min.
(j) Maximum sorption capacity:
13.48 mg·g−1.
(k) %Efficiency: 74.80.

Conditions found in this study
about desorption.
(a) Synthetic waters.
(b) Volume of water: Does not apply.
(c) pH adjustment: Does not apply.
(d) Extraction solution: HCl 0.1 M,
H2SO4 0.1 M, EDTA 0.1 M.
(e) Volume of eluting agent: 50 mL.
(f) Particle size: 0.18 mm.
(g) Sorbent dosage:
0.1 g/50 mL.
(h) Agitation: 100 RPM.
(i) Temperature: 20 ◦C.
(j) Desorption time: 5 days.

The desorption percentage
was 45.75% in a time of
5 days using H2SO4
0.1 M in this study.

This
study

Coffee pulp

Cr(III)

(a) Synthetic waters.
(b) Volume of water: 50mL.
(c) Sorbent dosage: 20 g·L−1.
(d) pH: 5.0.
(e) Particle size: 0.18 mm
(f) Agitation: 100 RPM.
(g) Pollutant concentration:
20 mg·L−1–500 mg·L−1.
(h) Temperature: 25 ◦C.
(i) Optimum time: 90 min.
(j) Maximum sorption capacity:
7.41 mg·g−1.
(k) %Efficiency: 93.26.

(a) Synthetic waters.
(b) Volume of water: Does not apply.
(c) pH adjustment: Does not apply.
(d) Extraction solution: HCl 0.1 M,
H2SO4 0.1 M, HNO3 0.1 M.
(e) Volume of eluting agent: 50 mL.
(f) Particle size: 0.18 mm.
(g) Sorbent dosage: 0.1 g/50 mL.
(h) Agitation: 100 RPM
(i) Temperature: 20 ◦C.
(j) Desorption time: 9 days.

The desorption percentage
was 66.84% in a time of
9 days using H2SO4 0.1 M.

When analyzing Table 5 in relation to the variables (particle size, contact time, adsor-
bent dosage, and temperature) used in the desorption process using coffee wastes (leaves,
beans, and pulp), it was observed that the extracting solutions used were inorganic acids
(HCl, H2SO4), as well as basic solutions such as NaOH in concentrations ranging from
0.02 M to 1 M. Furthermore, it can be established that the basic solutions have been one
of the most used eluting agents, where their desorption percentages have ranged from
10% to 77.3%, while with the acids, the most efficient has been HCl 0.1 M, where the
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desorption percentages ranged from 25% to 95% given that the contact times were between
60 and 1440 min, indicating that the longer the time, the higher the desorption percentage.
In relation to the reports found and shown in the table above, it is observed that the ionic
species that has been adsorbed and desorbed with the coffee residues has been only Cr(VI)
and the matrix used was synthetic wastewater.

The results obtained in the present study establish adsorption/desorption data with
two ionic species, Cr(III) and Cr(VI), where the acidic extractive solutions (HNO3 0.1 M and
H2SO4 0.1 M) were more efficient in the desorption of the two species with CP. Additionally,
the Qdes. of each species were reported, which were 11.93 mg·g−1 and 3.11 mg·g−1 for
Cr(III) and Cr(VI) with extractive solutions such as HNO3 and H2SO4, respectively.

In addition to the above, Table 6, Figures 4 and 5 show and illustrate the statements
reported in the literature related to the mechanisms of adsorption and desorption when
using the residues from coffee cultivation and processing.

Table 6. Statements reported on possible adsorption and desorption mechanisms using coffee by-
products as sorbents.

Ref. By-Product of Coffee Cultivation Explanation of the Adsorption and/or Desorption Mechanism

[11]
Coffee waste: “Greek coffee” drinks

(Untreated and chemically
treated—2% formaldehyde)

Since the optimum pH (5.0) found in the study was higher than the pHzcp (3.4), it
was established that the surface of the biosorbent is negative. In the case of the
Cu(II) species, it is favorable from the point of view of the electrostatic interactions
that could occur (dissociation of the COOH group, which predominates in the
material, followed by the phenolic and lactonic groups). However, in the case of the
Cr(VI) species, being anionic species such as (Cr2O7)2−, (CrO4)2−, (HCrO4)−, they
could bind to the basic functional groups present (since in the sorbent there is
coexistence with the acid groups). Likewise, the OH group coming from the lignin
and cellulose compounds could be positively charged, forming the oxonium ion
(due to the high concentration and high mobility of H+), favoring the interactions
with the anionic species of chromium, which are related to the desorption process
involving the use of acid (ion exchange).

[26] Coffee
husk

It is established that the predominant functional groups in the material are COOH
and OH. Due to the acidic conditions of the system, the Cr(VI) species present are
(Cr2O7)2−, (CrO4)2−, (HCrO4)− ions; likewise, it is established that under acidic
conditions, the surface of the sorbent begins to protonate and attract these anionic
species, an assumption that is related to the formation of the oxonium ion,
originating from electrostatic interactions.
In relation to the alkaline desorption of metallic ionic species, the process of
chemisorption or ion exchange is proposed. It is established that at high pH, the OH
ions would release the chromic ions from the sorbent following an ion
exchange mechanism.

[8] Exhausted ground
coffee wastes

Since the optimum pH (3.0) found in the study was lower than the pHzcp (3.90), it
was established that the surface of the biosorbent is positive; the chromic ionic
species present at the pH worked (1.0–9.0) were (CrO4)2−, (HCrO4)− and Cr. Given
this, electrostatic interactions could be present there.
On the other hand, it was established that according to the literature, at acid pH
Cr(VI) can probably be reduced to Cr(III) after contact with the lignocellulosic waste;
this is because the reduction of the Cr(VI) species “consumes” protons from the
medium, which is favored at low pH, establishing that the coffee beans would have
the “ability” to reduce Cr6+ to Cr3+ (favored at pH: 1.0).
As a result, the Cr(III) species released into the aqueous medium would be present
as Cr3+ and Cr(OH)2+ cations, which could not be attracted by the positive charges
on the adsorbent surface. Given this, the present mechanism involves
oxidation–reduction reactions (involving the H+ present in the medium, the
probable conversion of some alcohol groups of the sorbent into carboxylic
functions), and electrostatic interactions.
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Table 6. Cont.

Ref. By-Product of Coffee Cultivation Explanation of the Adsorption and/or Desorption Mechanism

[30] Coffee ground

It is expressed that the functional groups that mainly compose the material are the
OH, NH, and CH groups coming from the compounds of lignin, cellulose,
hemicellulose, and protein. At strongly acidic pH, the (HCrO4)− species
predominates, and it is easily bound to the positive charges of the biosorbent
through electrostatic interactions. However, at higher pH a competition of (CrO4)2−

and OH ionic species is generated, interfering with the binding sites on the sorbent.
Thus, desorption is a reversible process and occurs by the action of the eluting
agent NaOH.

[29] Coffee husk Ash

Given the strongly acidic conditions (pH: 2.0), it is established that redox reactions
could occur, in which the Cr(VI) species is reduced to Cr(III), through the
mechanisms illustrated by the chemical equations below:
(Cr2O7)2−

(ac) + 14H+
(ac) + 6e− →2Cr3+

(ac) + 7H2O(ac)
(HCrO4)−(ac) + 7H+

(ac) + 3e− → Cr3+
(ac) + 4H2O(ac)

Likewise, it is stated that the diffusion of (Cr2O7)2− and (HCrO4)− ions neutralize
the negative ionic charges due to the high mobility and concentration of H+ ions.
The decrease of the chromate sorption process with the increase of the pH of the
solution could be due to the negative surface charge of the biosorbent and the
surface adjustment with OH ions that could cause repulsions between the OH ions
and the chromate ion. Therefore, the pH value must be decreased because doing so
would increase the positive charge on the coffee husk ash due to the
protonation process.

[46]
Coffee leaves

Variety
Castillo

The total chromium biosorption process was favored under highly acidic conditions,
which could be explained by the chemical equilibrium presented between the
chromate–dichromate species, as shown by the chemical equation:
2(CrO4)2−

(ac) + 2H+
(ac) 
 (Cr2O7)2−

(ac) + H2O(ac)
It is noted that decreasing the pH would generate an increase in the concentration of
H+ ions. This would produce a displacement of the equilibrium towards the
formation of the (Cr2O7)2− species (a more stable species in the aqueous medium).

[27] Coffee
pulp

It was established that the sorbent presents a predominance in the composition of
lignin and cellulose, compounds that are quite important given that the functional
groups that compose them interact under optimal conditions in terms of Cr(VI)
biosorption; in relation to the functional groups, -OH and -COOH are highlighted.
On the other hand, the optimum pH found in the study (2.0) for Cr(VI) was lower
than the pHzcp (3.95), indicating that the sorbent surface is positively charged. In
addition, it was found that the total active sites of acidic character predominate over
the basic ones, while for Cr(III) the optimum pH was 5.0, in this case, the adsorbent
surface is negative.
The possible sorption mechanism that occurs between the sorbent and the ionic
sorbate in the aqueous solution (chromic species (HCrO4)−, (Cr2O7)2−, (CrO4)2−) is
related to electrostatic interactions. This is because the OH groups coming from the
lignin and cellulose structures are protonated, forming the oxonium ion (this is due
to the highly acidic conditions of the system).
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3.3. Limitations and Future Research

According to the preliminary study and the findings presented in this article, it is
important to mention that:

(a) Subsequent studies are required to evaluate additional extracting solutions, in ad-
dition, to those evaluated here, in order to improve the percentage desorption of
CP without physicochemical modification. Furthermore, it is relevant to analyze the
effects of the eluting agents’ concentrations.
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(b) It is necessary to carry out adsorption and desorption processes (reuse cycles) in
order to analyze and evaluate the number of times that CP can be used under the
same conditions.

(c) Studies related to the application of the sorbent in real water and/or multimetallic
aqueous systems are still lacking, which would allow analyzing the effect of other pol-
lutants present as well as atmospheric conditions that could intervene in the sorption
and desorption of CP being used as a sorbent for Cr ions. Likewise, physicochemical
modification of the biosorbent is necessary in order to observe the increase and/or
decrease in sorption tests in the future.

(d) Analyses focused on the environmental impact and techno-economic studies related to
the adsorption and desorption of lignocellulosic materials such as CP are required in
order to analyze the short, medium, and long term effects of scaling up the technology
in small, medium, or large-scale treatment systems, which involve environmental,
economic, and social aspects.

(e) It is recommended to carry out a triplicate for each concentration used in the extractive
solutions, in order to make a statistical treatment based on the repeatability and
reproducibility of the desorption method to be used on a pilot and/or industrial scale
with real water.

4. Conclusions

In previous studies, it was established that coffee pulp, without physicochemical
modification, had Cr(III) and Cr(VI) removal efficiencies in synthetic wastewater of 93.26%
and 74.80%, respectively. The above, under optimum conditions of 20g/L dosage, pH 5.0
and 2.0, time of 90 min and 105 min, respectively, and particle size of 180 µm.

Four extractive solutions were evaluated to desorb chromium ionic species (Cr III
and VI) from coffee pulp without physicochemical modification (Castilla variety); these
corresponded to HCl, HNO3, H2SO4, and EDTA, all at concentrations of 0.10 M. It was
established that sulfuric acid was the best agent to elute these sorbates under agitation
conditions of 100 RPM, room temperature, for periods of 5 and 9 days, with desorption
percentages of 45.75% and 66.84%, respectively. Additionally, the Qdes. of each species were
reported, which were 11.93 mg·g−1 and 3.11 mg·g−1 for Cr(III) and Cr(VI) with extracting
solutions such as HNO3 and H2SO4, respectively.

In addition, according to the review of the literature, there are few studies related to
the desorption of materials derived from coffee cultivation, some of which are related to
coffee waste, coffee husks, and coffee grounds. Regarding the mechanisms of adsorption
and desorption, they are mainly related to electrostatic interactions, oxidation–reduction
reactions, and ionic exchange. This is related to the physicochemical composition of the
materials, where the OH and COOH groups of compounds such as lignin, cellulose, and
hemicellulose predominate.

Since no reports related to CP desorption have yet been published in the literature,
these preliminary findings will be used as starting points for future studies wishing to
investigate the use of CP as a heavy metal sorbent in real wastewater at the pilot and/or
industrial scale.
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