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Abstract: Photodetectors based on organic materials are attractive due to their tunable spectral
response and biocompatibility, meaning that they are a promising platform for an artificial human
eye. To mimic the photoelectric response of the human eye, narrowband spectrally-selective or-
ganic photodetectors are in great demand, and single-component organic photodetectors based on
donor-acceptor conjugated molecules are a noteworthy candidate. In this work, we present single-
component selective full-color organic photodetectors based on donor-acceptor conjugated molecules
synthetized to mimic the spectral response of the cones and rods of a human eye. The photodetectors
demonstrated a high responsivity (up to 70 mA/W) with a response time of less than 1 µs, which is
three orders of magnitude faster than that of human eye photoreceptors. Our results demonstrate the
possibility of the creation of an artificial eye or photoactive eye “prostheses”.

Keywords: donor-acceptor molecules; conjugated molecules; organic synthesis; single-component
organic photodetectors; human eye

1. Introduction

Organic photodetectors have many advantages over conventional inorganic ones, as
follows: they can be made from a wide choice of materials, they can be light, thin, flexible,
or semitransparent, are easy to manufacture and compatible with printing technologies,
and they are biocompatible [1–4]. The latter is especially important for the possibility of
prosthetics of human visual organs [5,6]. An organic photodetector and a solar cell are, per
se, the same device used in different operating modes. The most efficient organic solar cells
are based on a phase-separated blend of donor and acceptor materials, the optical absorption
spectra of which differ and complement each other for the greatest overlap with the solar
spectrum [7–9]. This circumstance probably explains the greater number of publications
devoted to broadband organic photodetectors compared to narrowband ones [10,11]. The dis-
advantage of broadband photodetectors is the difficulty of color discrimination. As a result,
one has to use appropriate color filters to eliminate unwanted sensitivity. The use of color
filters complicates the design of the device, and also reduces the photodetector responsivity
because of absorption of a part of the incident light [12,13]. Therefore, the development of
narrowband photodetectors is of increased interest.

For the implementation of a filter-free narrowband photodetector, various approaches
are distinguished, as follows: the development of new narrowband absorbers (both donor
and acceptor), the use of nearly transparent donor or acceptor materials, and modification
of the architecture of the device to optimize its spectral response [14]. Following the first
path, a single donor-acceptor material with a narrow absorption spectrum and effective
charge photogeneration seems to be feasible. Recently, much attention has been paid to
single-component solar cells based on donor-acceptor materials [15,16]. At the same time,
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single-component organic photodetectors have far less studied, as follows from articles [17–24].
Single-component organic photodetectors benefit primarily from their simplicity, which
is especially important for biological applications. It is also worth noting that single-
component photodetectors are more stable compared to photodetectors based on donor-
acceptor blends, since the morphology of the latter may change during the device operation
due to thermodynamic instability [25].

Conjugated polymers and small molecules are used as materials for single-component
photodetectors. The latter combine the advantages of a well-defined chemical structure,
ease of purification, and reproducibility, which provides almost identical characteristics of
the devices from batch to batch, as compared with the polymers [26]. The donor-acceptor
concept in the molecular design of the π-conjugated system opens wide possibilities for
tuning their key properties, such as absorption spectra, charge-carrier mobilities, charge
photogeneration efficiency, and stability [26,27]. Changing the donor or/and acceptor group,
as well as the type and the length of the conjugated π-spacer between them, allows for
adjusting the frontier orbitals energies, absorption and luminescence spectra, phase behavior,
photophysics, and charge separation [23,24,28]. Various donor-acceptor conjugated molecules
of a linear and star-shaped structure were synthesized, and their physicochemical and
photovoltaic properties were investigated [23,24,28–30]. If the molecular absorption spectra
are close to the photosensitive response of eye photoreceptors (blue cones, rods, green
cones, red cones), they can be used to create full-color retinal prostheses [6].

In this work, oriented on a natural optical device—the human eye—we found several
small π-conjugated donor-acceptor molecules with different optical properties, aiming to
reproduce as accurately as possible the absorption spectra of rods and cones of the human
eye retina (Figure 1). Prototypes of single-component organic photodetectors based on
the most promising materials were fabricated and characterized. Full-color spectrally-
selective single-component organic photodetectors that completely mimic human vision
are presented for the first time.
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Figure 1. The absorbance spectra of the four classes of human photoreceptors, as follows: rods (R),
blue-sensitive cones (S), green-sensitive cones (M), and red-sensitive cones (L). Graphical image made
by the authors using data from [31].

2. Results and Discussion
2.1. Synthesis of the Materials

Figure 2 shows the chemical structures of the molecules investigated. These materials
were chosen because the maxima of their absorption spectra in thin films correspond well
to the maxima of the sensitivity of the human eye photoreceptors (Figure 1). Synthesis and
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investigation of the properties of molecules II and IV were described previously [32–34].
Synthesis and characterization of I and III are described below (Scheme 1).
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The novel TPA-based star-shaped molecules I and III were prepared similar to the
previously developed synthetic approach based on preparation of the star-shaped triketones
or trialdehydes followed by a Knövenagel condensation [35].

Synthesis of I was carried out via Knövenagel condensation reaction of compound
1 and excess of 2-(1-oxopropoxy)acetonitrile in pyridine (Scheme 1a) to give I in 72 %
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yield. The detailed synthetic procedures and characterization data can be found in the
Supporting Information.

Synthesis of III consisted of three consecutive reaction stages. First, the preparation of
ketone precursor 3 by the acylation reaction of 4-bromo-7-(2-thienyl)-2,1,3-benzothiadiazole
2 and heptanoyl chloride using tin tetrachloride as a catalyst in 82 % yield was carried
out. The second stage included the synthesis of the star-shaped compound 5, which was
prepared through a Suzuki cross-coupling reaction between 4,4′,4”-tris(4,4,5,5-tetramethyl-
1,3,2-dioxaborolan-2-yl)triphenylamine 4 and ketone precursor 3 in 65 % yield. Finally, III
was obtained by Knövenagel condensation of compound 5 with the excess of malononitrile
in pyridine using a microwave heating to give the product in 53% yield.

Here, 1H- and 13C-NMR spectroscopy, elemental analysis, and MALDI-TOF were
used to characterize the molecular structure and purity of these molecules (see Supporting
Information, Figures S1–S10). All target molecules were readily soluble in common organic
solvents, such as THF, chloroform, dichloromethane, etc.

2.2. Optical Properties of the Materials

Figure 3 shows the normalized absorption spectra of compounds I–IV in thin films
(normalized absorption spectra in THF solution are presented in the Supporting Infor-
mation, Figure S11). The spectra of all compounds in thin films show good overlap with
those of eye photoreceptors, as the differences in spectral maxima positions do not exceed
10 nm (25 nm for blue cones). At the same time, it is worth noting that the positions of the
sensitivity maxima of rods and cones of different people vary within ±10 nm [36].
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Figure 3. UV-vis normalized absorption spectra of materials I–IV studied in thin films cast from THF
solution.

2.3. Charge Transport

Since the photoactive layer of spectrally-selective photodetectors usually consists of
just one donor-acceptor material, its hole and electron mobilities should be large enough and
comparable to ensure fast, effective, and balanced charge transport of the photogenerated
charges to the device electrodes. The high and close values of the hole and electron mobilities
should be beneficial for photodetectors to avoid space charge effects and increase the operation
speed. The hole and electron mobilities in films of molecules I–IV was measured by the space
charge limited current (SCLC) technique (for details see the Materials and Methods section),
and are presented in Table 1 (J-V characteristics of the hole and electron only devices
are presented in Figures S12–S19). Materials I–IV demonstrated a sufficiently balanced
charge transport, and the charge mobility values are able to provide a response time for
photodetectors with the photoactive layer thickness of ~50 nm in the sub-microsecond range.
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Table 1. Hole (µh) and electron (µe) mobilities.

Material µh·10−5, cm2V−1s−1 µe·10−5, cm2V−1s−1 µh/µe

I 7.0 ± 1.1 1.5 ± 0.3 4.7
II 15 ± 4 1.15 ± 0.12 13
III 9.2 ± 1.4 5.4 ± 0.8 1.7

IV+PC71BM (10%) 15.5 ± 2.7 19 ± 4 0.82

2.4. Responsivity Spectra

Single-component photodetectors based on the donor-acceptor materials studied were
fabricated (experimental details are described in the Materials and Methods section), and
their main characteristics [1,2,11] were measured (the measurement details are described in
the Materials and Methods section), such as the responsivity (R) spectra, response speed,
dark current, and specific detectivity. The corresponding J-V curves, photovoltaic parame-
ters, and external quantum efficiency (EQE) spectra were also measured and presented in
the Supporting Information (Figures S20 and S21, Tables S1 and S2).

Since the intrinsic charge photogeneration in material IV is not very efficient, a small
amount of an acceptor (PC71BM, no more than 10%) was added to it. In this case, there is a
significant improvement in the device characteristics (maximum R and EQE) with virtually
no change in the shape of the R and EQE spectra. The measured and normalized R spectra
are presented in Figure 4, and the spectral sensitivity maxima are summarized in Table 2.
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Figure 4. Responsivity (a) and normalized responsivity (b) spectra of photodetectors. Arrows with
numbers indicate the maxima and their positions.

Table 2. Maximum responsivity values, positions of peak sensitivity, and response time of the
photodetectors.

Photoactive Material R, mA/W λR
max, nm τ*, µs

I 37 525 0.85 ± 0.10
II 52 555 0.74 ± 0.05
III 53 590 0.60 ± 0.08

IV+PC71BM (10%) 2.6 425 0.74 ± 0.08
Note: * Averaged time (three photodetectors were measured, each of them three times).

All responsivity spectra of the photodetectors (with the exception of the blue ones)
show a slight redshift for the peak wavelengths compared to the absorption spectra of the
same films (Figure 3), which is most likely due to the effects of optical resonator in the
device. Nevertheless, the responsivity spectra correspond well to the spectral response
of human cones and rods (Figure 1). All the photodetectors demonstrated a difference in
peak wavelength within 25 nm as compared to the photoresponse spectra of cones and
rods. At the same time, it is worth noting that positions of the sensitivity maxima of rods
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and cones of different people vary within ±10 nm [36]. This means that an exact match
between the photodetectors photoresponse and the absorption of human cones and rods
may not be necessary. The green and red photodetectors showed the highest responsivity
values, while the blue photodetectors showed a lower responsivity as compared to the
others. Such characteristics of photodetectors fabricated somewhat resemble the behavior
of human photoreceptors, where the highest response is observed for green cones, and for
blue cones it is lower.

2.5. Time-Resolved Response

Figure 5 shows the time-resolved response of the photodetectors to a rectangular
optical pulse (the measurement details are described in the Materials and Methods section).
The rise-times of the photodetector responses are summarized in Table 2, as follows: they
are shorter than 1 µs, which is three orders of magnitude faster than the response time of
human eye photoreceptors. The main factors that have a decisive influence on the rise-time
are the following: the charge mobility values, exciton dynamics, charge generation rate,
applied voltage, and RC time constant [37]. The exciton lifetime in a film of II is significantly
lower than 1 ns [24]. Therefore, the delayed charge generation at a sub-microsecond time
scale is unlikely to have a significant impact on the response time. The RC time constant is
also in the nanosecond time range (see the Materials and Methods section) and should have
no effect on the response time. We believe that the main factor determining the response
time is the charge carrier mobility. Indeed, the time (τ) of flight of a charge carrier through
the thickness (d) of the active layer is estimated as τ = d/(µF), where F is the internal electric
field. As a result, the time of flight is in the sub-microsecond range (0.15–0.3 µs).
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2.6. Photodetectors Specific Detectivity

Table 3 presents the results on the dark current density (Jdark) and specific detectivity
(D*) of reverse biased photodetectors. The specific detectivity values in the generally
accepted assumption of the dominance of shot noise under reverse bias conditions [38,39]
were calculated using the following Equation (1):

D∗ =
R√

2qJdark
(1)
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Table 3. Maximum responsivity, the lowest dark current density, and specific detectivity under bias
V = −0.1 V.

Photoactive Material Rbias, mA/W Jdark, nA/cm2 D*·1011,
cm·Hz1/2W−1

I 32 1200 0.52
II 68 81 4.2
III 50 500 1.3

IV+PC71BM (10%) 3.0 46 0.25

Relatively large dark currents of 50–1200 nA/cm2 are a consequence of a small thick-
ness of the photoactive layer. As a result, the specific detectivity values were reduced
because of the large dark currents. The thickness of the single-component photodetectors
(see the Materials and Methods section) is optimal in terms of the highest R and EQE values.
The thickness of the photoactive layer is limited by the relatively low values of the charge
carrier mobility (Table 1) of the organic semiconductor materials used. Therefore, a popular
approach is to reduce the dark current by increasing the photoactive layer thickness to
achieve a higher shunt resistance, although this faces a trade-off between high values of
EQE, R, response speed, D*, and low Jdark values. Although the specific detectivity values
turned out to be small, they are not inferior, and sometimes even superior to those for other
recently published single-component photodetectors [17–20].

3. Materials and Methods
3.1. Photodetectors Fabrication and Characterization

The structure of the photodetectors with normal architecture was ITO/PEDOT:PSS/
photoactive layer/Ca/Al. The samples of photodetectors were prepared in the following
way. First, glass substrates coated with a patterned indium-tin oxide (ITO) layer (Xin Yan
Technology Limited, Kwun Tong, Kowloon, China) were cleaned in an ultrasonic bath with
a surfactant and then exposed to an ultraviolet lamp (Photo Surface Processor PL16-110,
15 mW/cm2 isopropanol (Bandelin sonorex digitec, BANDELIN electronic GmbH & Co.
KG, Berlin, Germany), and were, 254 nm) (Sen Lights Corporation, Osaka, Japan). Then
a 50 nm-thick layer of poly(ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS,
CLEVIOS P VP AI 4083, Heraeus GmbH, Leverkusen, Germany) was deposited on the
ITO by spin-coating at 3000 rpm and annealing at 140 ◦C for 15 min. The photoactive
layer was deposited on the PEDOT:PSS layer by doctor blading from chloroform solution
with a concentration of 10 g/L (substrate temperature 50 ◦C, blade speed 15 mm/s); the
resulting thickness was 50± 5 nm. On top of the photoactive layer, a Ca (20 nm)/Al (80 nm)
electrode was evaporated under pressure less than 5·10−6 mbar with the use of a vacuum
evaporator (Univex 300, Leybold, Köln, Germany) integrated in a glove box with an Ar
atmosphere (H2O < 0.1 ppm, O2 < 5 ppm). Eight devices with the active area of each device
being 3 mm2 were formed on substrates by using a shadow mask.

Inverted architecture of photodetectors was chosen for response time measurements
due to the higher current. The structure of the photodetectors with inverted architecture
was ITO/ZnO/photoactive layer/MoO3/Ag. The samples of inverted photodetectors
were prepared similar to normal photodetectors. The ZnO layer was deposited on the
ITO layer in the following way. A total of 100 mg of zinc acetate dihydrate (Merck KGaA,
Darmstadt, Germany) was dissolved in a mixture of 1 mL of 2-methoxyethanol (Merck
KGaA, Darmstadt, Germany) and 27 µL of monoethanolamine (Merck KGaA, Darmstadt,
Germany). Then, this solution was bladed on the ITO layer and annealed at 140 ◦C for
25 min, resulting in a 40 nm ZnO layer. The MoO3 (10 nm)/Ag (100 nm) electrode was
deposited on the photoactive layer with the use of a vacuum evaporator (Univex 300,
Leybold, Köln, Germany). Eight devices with inverted architecture and a 3 mm2 active area
for each device were formed on substrates by using a shadow mask.

The J-V characteristics of photodetectors were measured using a source-meter (SourceMe-
ter 2400, Keithley, Tektronix, Inc., Beaverton, OR, USA). Responsivity (R) and external quan-
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tum efficiency (EQE) spectra were measured with the use of a laser-driven light source (LDLS
EQ-99X, Energetiq Technology, Inc., Woburn, MA, USA) equipped with a monochromator
(CS130-USB-3-MC, Newport, Irvine, CA, USA), a power sensor (S120UV, Thorlabs, New
Jersey, NJ, USA), and a source-meter (SourceMeter 2400, Keithley, Tektronix, Inc., Beaver-
ton, OR, USA). To avoid higher diffraction orders, additional filters KG3, GG400, and
OG550 (Newport, Irvine, CA, USA) were used for the 380–500, 480–620 and 600–800 nm
spectral ranges, respectively. All the measurements were performed in a glove box with Ar
atmosphere (H2O < 0.1 ppm, O2 < 5 ppm).

3.2. ChargeCarrier Mobility Measurements

Charge carrier mobility was determined using space charge limited current (SCLC)
measurements on unipolar thin-film devices of several thicknesses. The structure of the hole-
only devices was ITO/PEDOT:PSS/active layer/MoO3/Ag. The structure of the electron-
only devices was ITO/ZnO/active layer/Ca. Unipolar devices were made similarly to
photodetectors. The hole and electron mobilities were extracted by fitting the current-
voltage (J-V) characteristics of the corresponding devices with the simplest SCLC model.
According to the SCLC model, and taking into account the series (Rs) and shunt (Rsh)
resistances (as fitting parameters), the charge mobility was calculated by approximating
the dark J-V curves of unipolar devices using the following Equation (2):

J =
9
8

εε0µ
(V −VBI − JSRs)

2

d3 +
V − JSRs

Rsh
(2)

where ε0 = 8.85·10−12 F/m, ε is the dielectric permittivity (taken as 3), d is the active layer
thickness (measured by AFM), and VBI is the built-in voltage (fitting parameter).

3.3. Time-Resolved Response of Photodetectors

Rise-time measurements were performed using a green laser diode (505 nm, for photode-
tectors based on I–III) (Sharp GH05130C2GL, Osaka, Japan) and blue laser diode (450 nm,
for photodetectors based on IV) (Sharp GH04C01A2G, Osaka, Japan) controlled by a laser
driver (LDP-V 03-100 V4.0, PicoLAS, Würselen, Germany) equipped with a pulse generator
(PLCS-21, PicoLAS, Würselen, Germany). Rectangular optical pulses (rise-time less than
1.2 ns) with a pulse length of 10 µs and repetition rate of 1 kHz illuminated the active area of
the photodetector (without voltage bias) with an average incident power of 110 µW (green
laser) and 700 µW (blue laser). The photodetector was connected to a Tektronix TDS 1012B
oscilloscope with a 50 Ω resistor connected in parallel. The transients were obtained via
an OpenChoice program by Tektronix. The rise-time was taken as the time during which
the electrical response of the device rose from 10% to 90%. The corresponding RC-time
constant of the electronics was 2–20 ns, and did not impact on the measured rise-time.

4. Conclusions

Donor-acceptor conjugated molecules with the absorption spectra similar to that of
the human eye photoreceptors for single-component organic photodetectors were synthe-
sized. Organic single-component selective full-color photodetectors based on synthesized
molecules, mimicking the human eye, were reported for the first time. These photodetectors
demonstrated a sufficiently high responsivity at the level of 3–70 mA/W, comparable to
the responsivity of the human eye receptors. The spectral selectivity of photodetectors
is comparable to that of the corresponding cones and rods of the human eye. The pho-
todetector response time (<1 µs) is one of the fastest among organic photodetectors, as it
is three orders of magnitude faster than the response time of a human eye. The results
obtained pave the way to creating an artificial eye—a matrix of organic photodetectors with
different spectral sensitivities, or photoactive “prostheses” for an eye devoid of sensitivity
to light because of diseases. We expect that our results will stimulate the development
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of new conjugated donor-acceptor molecules and facilitate further progress in organic
single-component selective photodetectors.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28010368/s1. Figure S1. 1H NMR spectrum of target
material I, Figure S2. 13C NMR spectrum of target material I, Figure S3. 1H NMR spectrum of
compound 3, Figure S4. 13C NMR spectrum of compound 3, Figure S5. 1H NMR spectrum of
compound 5, Figure S6. 13C NMR spectrum of compound 5, Figure S7. 1H NMR spectrum of target
material III, Figure S8. 13C NMR spectrum of target material III, Figure S9. 1H NMR spectrum
of target material IV, Figure S10. 19F NMR (282 MHz, CDCl3) spectrum of target material IV,
Figure S11. UV-vis normalized absorption spectra of materials studied in THF solution, Figure S12.
J-V characteristics of I hole only devices, Figure S13. J-V characteristics of II hole only devices,
Figure S14. J-V characteristics of III hole only devices, Figure S15. J-V characteristics of IV+PC71BM
(10%) hole only devices, Figure S16. J-V characteristics of I electron only devices, Figure S17. J-V
characteristics of II electron only devices, Figure S18. J-V characteristics of III electron only devices,
Figure S19. J-V characteristics of IV+PC71BM (10%) electron only devices, Figure S20. J-V curves
of photodetectors under AM1.5G illumination (100 mW/cm2) of solar simulator, Figure S21. EQE
(a) and normalized EQE (b) spectra of photodetectors. Arrows with numbers indicate the maxima
of the spectra and their position, Table S1. The best photovoltaic parameters of single-component
photodetectors under AM1.5G illumination (100 mW/cm2), Table S2. Maximum EQE values and
positions of peaks. References [40–42] are cited in the Supporting Information.
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