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Abstract: The urgent need to increase the sustainability of crop production has pushed the agricultural
sector towards the use of biostimulants based on natural products. The current work aimed to
determine whether the preharvest application of two commercial formulations, based on a Fabaceae
enzymatic hydrolysate or a blend of nitrogen sources including fulvic acids, and two lab-made
aqueous extracts from Moringa oleifera leaves (MLEs), could improve yield, quality, and storability of
lettuce grown in a hydroponic system, as compared to an untreated control. Lettuce plants treated
with the MLEs showed significantly improved quality parameters (leaf number, area, and color), total
phenolic content and antioxidant activity, and resistance against the fungal pathogen Botrytis cinerea,
comparable to that obtained with commercial formulates, particularly those based on the protein
hydrolysate. A difference between the M. oleifera extracts was observed, probably due to the different
compositions. Although further large-scale trials are needed, the tested MLEs seem a promising safe
and effective preharvest means to improve lettuce agronomic and quality parameters and decrease
susceptibility to rots.

Keywords: Moringa oleifera; protein hydrolysates; biostimulants; lettuce; hydroponic system

1. Introduction

Ready-to-eat products have shown the most rapid expansion in production among
vegetable products, even in developing countries [1]. Among the most widely cultivated
vegetables are lettuce (Lactuca sativa L.) and chicory, accounting for over 27 million tons
harvested worldwide in 2020 [2]. The reasons for this are the quick and year-round
production, as well as the beneficial phytochemical and bioactive contents (vitamins,
carotenoid, polyunsaturated fatty acids, antioxidants, etc.) [3]. Lettuce is one of the most
cultivated leafy green vegetables in Italy, comprising, together with chicory, a production of
963.280 tons in 2021 [2]. Moreover, due to the conversion of many farms to the production
and sale of ready-to-eat and fresh-cut salad mixes, lettuce cultivation has gained substantial
economic importance in recent years owing to constant varietal and technical progress [4].

However, vegetable production is under pressure to raise yields due to the predicted
increase in world population from 8 to 9.6 billion around 2050 [5], of which 70% will
live in urban centers. Another major challenge posing a significant risk to the stability of
production is climate change [6], which will stress the food supply chain by increasing
chemical inputs [7]. Consequently, the demand for raw or minimally processed vegetables
is rising, and food industries have been urged to utilize new cultivation systems and
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techniques to produce enough high-quality and safe food without detrimental effects to
the environment or losses after processing or during cold storage. Food industries are also
interested in increasing yield or growth rate to reduce costs and drive competitive pricing.

Nevertheless, the reliance on chemical inputs to increase production is also an issue
due to the possible adverse effects on human and animal health and the environment due to
inappropriate use, e.g., the nitrification of waterways [7]. In addition, the rising awareness
of consumers on the importance of consuming sustainable, safe, and healthy foods [8] could
be met by improving the quality of leafy vegetables with the use of natural biostimulants.
According to the European Biostimulant Industry Council [9], plant biostimulants contain
substance(s) and/or micro-organisms, which, in contact with the plants or the rhizosphere
stimulate natural processes to enhance nutrient uptake, nutrient efficiency, tolerance to
stresses, and crop quality. There are various sources of natural biostimulant products
now available, including: (i) seaweed extracts, which boost plant germination, growth,
and yield, while also enhancing biotic and abiotic stress tolerance [10]; (ii) microbial
antagonists, which might consist of arbuscular mycorrhizal fungi and rhizobacteria [11];
(iii) protein hydrolysates (PHs), which are composed of peptides and amino acids derived
from various animal or plant matrices [12]; and (iv) humic and fulvic acids [13]. Their
action also includes an increase in carbon metabolism [14], and hormone activity [15],
as well as physiological, biochemical, and anatomical changes such as the production of
antioxidant enzymes, pigments, and secondary metabolites [16]. However, the beneficial
plant effects may vary depending on plant species, cultivars, climatic circumstances, dosage,
provenance, and timing of treatment [17]. In recent years, natural biostimulants have been
increasingly integrated in a sustainable manner into high-value production systems (e.g.,
greenhouse production), improving productivity and quality, particularly under low input
conditions [18]. Plant biostimulants provide a good fit with soilless systems since their
purpose consists of improving nutrient use efficiency, tolerance to abiotic stress, quality
traits and the availability of confined nutrients in soil or rhizosphere (EU Regulation
2019/1009). Indeed, soilless systems might respond to concerns about excessive land use,
misuse of fertilizers and soil-borne diseases associated with intensive agriculture [19], as
well as contributing to urban farming in an environmentally friendly and energy-efficient
way [20].

Among natural biostimulants, moringa (Moringa oleifera Lam) leaf extracts (MLEs)
attained massive attention due to their notable effect on plant productivity [21–23]. MLE ap-
plications proved to increase vegetative growth and nutrient uptake in several horticultural
crops, increasing yield and economic profits to growers [24]. Some authors recommended
the use of MLEs as an alternative source for inorganic fertilizers [25]. MLEs were also re-
ported to increase these crucial characteristics under abiotic stress conditions, enabling the
plant to maintain growth potential [26,27]. Aqueous MLEs are easy to obtain, inexpensive,
and eco-friendly. Leaves are generally abundant in protein, vital amino acids, antioxidants
such as ascorbic acid, flavonoids, carotenoids, vitamins A and C, phenolics and macro- and
micronutrients [28]. Of course, the composition may vary according to geographic origin
and cultivation system. M. oleifera is a tree typical of the arid and warm areas of tropical
and equatorial regions, but recently started to be cultivated even in Italy in open fields in
southern regions with a warm/hot climate or in greenhouses.

This study aimed to evaluate the effect on lettuce plants grown in a hydroponic
cultivation system of aqueous extracts of moringa leaves from plants grown in Apulia
as compared to two commercial biostimulants with regard to marketable yield, quality,
and storability.

2. Results and Discussion
2.1. Qualitative and Quantitative Characterization of MLEs

Bioactive compounds from the aqueous extracts of M. oleifera leaves obtained from
plants cultivated in an open field in the Barletta area (MLEB) and in a greenhouse in Lecce
province (MLES), respectively, were tentatively identified through their MS spectra. Only
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compounds whose deprotonated ion mass differed from their corresponding calculated
mass by <5 ppm and displaying fragmentation patterns in agreement with the literature
were included in Tables 1 and 2. Neochlorogenic acid, quercetin 3-O-β-D-glucopyranoside,
and two typical Moringa secondary metabolites, namely glucomoringin and its acetyl
derivative [29], were identified in both tested extracts (Figure 1).

Table 1. Tentative compounds identified in water extract of M. oleifera leaves from Barletta (MLEB)
by HRMS under negative ([M − H]–) ionization.

Compound Experimental
Mass

Calculated
Mass

Key Fragments
(m/z) Error (ppm) a Molecular

Formula Reference

Neochlorogenic acid 353.0895 353.0878
135.0449 (100),
179.0346 (27.0),
191.0557 (80.9)

3.4 C16H18O9 [30,31]

Quercetin 3-O-β-D-
glucopyranoside 463.0886 463.0880

271.0249 (22.3),
300.0300 (100),
301.0354 (52.5)

1.3 C21H20O12 [30,31]

Kaempferol
acetylglucoside 489.1046 489.1037 284.0336 (100),

285.0356 (78.6) 1.8 C23H22O12 [30]

Quercetin
acetylglucoside 505.100 505.0988

271.0260 (21.9),
300.0294 (100),
301.0358 (55.6)

2.4 C23H22O13 [30,31]

Quercetin
malonylglucoside 549.0905 549.0886 300.0271 (100),

301.0335 (56.7) 3.5 C24H22O15 [30]

Glucomoringin 570.0972 570.0957
96.9612 (100),
259.0144 (6.8),
328.0879 (7.1)

2.6 C20H29NO14S2 [30–32]

Acetyl
glucomoringin 612.1075 612.1062 96.9612 (100),

259.0144 (9.59) 2.1 C22H31NO15S2 [31]

a calculated at the site https://warwick.ac.uk/fac/sci/chemistry/research/barrow/barrowgroup/calculators/
mass_errors/ through the mass, m/z, and error calculator of the Barrow group, Department of Chemistry,
University of Warwick.

Table 2. Tentative compounds identified in water extract of M. oleifera leaves from Salento (MLES) by
HRMS under negative ([M − H]–) ionization.

Compound Experimental
mass

Calculated
mass

Key fragments
(m/z) Error (ppm) a Molecular

formula Reference

Neochlorogenic
acid 353.089 353.0878

135.0465 (100),
179.0379 (27.57),
191.0578 (91.93)

3.4 C16H18O9 [30,31]

Quercetin
3-O-β-D-

glucopyranoside
463.0870 463.0880

271.0244 (18.02),
300.0266 (100),
301.0330 (50.7),

–2.2 C21H20O12 [30,31]

Glucomoringin 570.0955 570.0957
96.9604 (100),

259.0140 (10.33),
328.0866 (8.49

–0.3 C20H29NO14S2 [30–32]

Acetyl
glucomoringin 612.1068 612.1062 96.9606 (100),

259.0118 (7.73) 1.0 C22H31NO15S2 [31]

a calculated at the site https://warwick.ac.uk/fac/sci/chemistry/research/barrow/barrowgroup/calculators/
mass_errors/ through the mass, m/z, and error calculator of the Barrow group, Department of Chemistry,
University of Warwick.

https://warwick.ac.uk/fac/sci/chemistry/research/barrow/barrowgroup/calculators/mass_errors/
https://warwick.ac.uk/fac/sci/chemistry/research/barrow/barrowgroup/calculators/mass_errors/
https://warwick.ac.uk/fac/sci/chemistry/research/barrow/barrowgroup/calculators/mass_errors/
https://warwick.ac.uk/fac/sci/chemistry/research/barrow/barrowgroup/calculators/mass_errors/
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Figure 1. Structures of bioactive compounds tentatively identified in the aqueous extracts of M.
oleifera leaves (Tables 1 and 2).

The presence of neochlorogenic acid and quercetin 3-O-β-D-glucopyranoside were
also confirmed by high-performance thin-layer chromatography (HPTLC) analysis using
reference standards (Figure 2). HPTLC analysis was also useful to confirm the exact na-
ture of the chlorogenic acid isomer extracted. In fact, chlorogenic and neochlorogenic
acids are classical diastereomers that differ in the stereochemistry at positions 1 and 4
of their sugar-like moieties, their corresponding overall stereochemistry notations being
(1S,3R,4R,5R) and (1R,3R,4S,5R), respectively. They share the same molecular weight value
and, although having quite different mass fragmentation patterns, an accurate and un-
questionable identification is advisable. To the contrary, kaempferol acetylglucoside and
quercetin acetylglucoside were identified only in MLEB (Table 1). Besides these compounds,
MS analysis also revealed the presence in MLEB of the amino alcohol valinol; the organic
acids quinic, malic, and gluconic acids; the phenylpropanoids caffeic, coumaroylquinic,
and 3-feruloylquinic acids; the flavonoids vitexin, astragalin, quercetin malonylglucoside,
kaempferol malonylglucoside, and quercetin 3-[6”-(3-hydroxy-3-methylglutaryl)glucoside].
Valinol, quinic, caffeic, and coumaroylquinic acids, and astragalin were also detected in
MLES, with this latter containing additionally apigenin glucoside and kaempferol digluco-
side (Table 2). Flavonol and flavone glycosides occur in common vegetables, mainly as the
quercetin or kaempferol glycosides and less frequently as the luteolin or apigenin glyco-
sides [33]. Their formation normally depends on light, so they are mainly concentrated in
the outer tissues of the free-standing leaves. Quercetin’s ability to induce resistance phe-
nomena in plant tissues has been reported [34], and the induction of the phenylpropanoid
pathway is considered to be involved in resistance mechanisms to stresses [35]. Gluco-
moringin and its acetyl derivative were reported to play an antioxidant and antimicrobial
role [29].
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Figure 2. HPTLC profile of both M. oleifera leaf water extracts obtained by microwave irradiation
(each seeded twice) and three reference standards sprayed with NP/PEG reagent; MLEB: M. oleifera
Barletta; MLES: M. oleifera Salento; CA: chlorogenic acid; NCA: neochlorogenic acid; QGP: quercetin 3-
O-β-D-glucopyranoside; solvent: ethyl acetate:formic acid:acetic acid:water (100:11:11:26); λ: 366 nm.

2.2. Yield, Morphological Parameter Measurements and Quality Analysis Samplings

Results showed that the application of the commercial formulate based on Fabaceae
enzymatic hydrolysate AgricostanD (AgriD) increased the marketable yield, head weight,
and leaf area of lettuce plants by 38, 37 and 22% (Table 3, Figure 3), respectively, as compared
to the untreated control.

Table 3. Effect of biostimulant application on marketable yield and morphological parameters of
lettuce.

Treatments Marketable
Yield (g/m)

Head Fresh
Weight (g)

Leaf Area
(cm2) Leaf Number Water Content

(%)
Dry Matter

(%)

Control 799.52 53.30 ± 26.07 b 130.44 ± 40.15 c 21.40 ± 2.19 b 90.63 ± 0.37 ab 9.37 ± 0.37 ab
N12 818.79 54.59 ± 28.73 b 150.73 ± 44.49 ab 20.80 ± 2.05 b 89.35 ± 0.48 b 10.65 ± 0.48 a

AgriD 1280.18 85.30 ± 46.80 a 168.21 ± 32.92 a 23.40 ± 1.14 ab 91.78 ± 1.31 a 8.22 ± 1.31 b
MLEB 1144.91 76.30 ± 43.10 ab 151.60 ± 33.08 ab 22.40 ± 1.82 b 92.20 ± 0.44 a 7.80 ± 0.44 b
MLES 999.90 66.66 ± 24.19 ab 134.59 ± 26.47 bc 25.40 ± 2.70 a 90.78 ± 1.82 ab 9.22 ± 1.82 ab

Data represent means ± standard deviation. Values followed by different letters within each column indicate
significant differences according to Fisher’s test (p ≤ 0.05).

Similar results were obtained using PHs on spinach [36], tomatoes [37], and wine
grapes [38]. In addition, the tested MLEs even improved some agronomic parameters
as compared to the control; in particular, the marketable lettuce yield and leaf area were
increased by 30 and 14%, respectively, in MLEB-treated samples and the leaf number by 16%
in the presence of MLES (Table 3). Other studies also reported that lettuce treated by MLEs
showed increased plant growth parameters such as the number of leaves per plant, leaf
area and yield [21,39]. Finally, Organor N12 (N12) increased leaf area by 13% as compared
to the control, with an effect comparable to MLEB. Whereas, concerning the evaluation
of the leaf water content (WC) and the dry matter (DM), no significant differences were
observed in treated plants as compared to the control (Table 3). The presence of bioactive
peptides/compounds triggering signaling pathways involving phytohormone biosynthesis
may explain the positive effects of the tested biostimulants on plant growth and yield [18].
Enhanced growth might also be ascribed to the presence of sugars in the biostimulants,
which might represent a source of energy and stimulate nitrogen assimilation [21]. Further-
more, the addition of exogenous amino acids present in PHs might have an energy-saving
role, so that the plant can better diverge this energy towards other biological functions [40].
In addition, flavonoids, among the main MLE constituents, have long been known to be
responsible for many biological functions, including seedling growth and development [41].
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As such, applications of MLEs could contribute to increased vegetative growth as well as
nutrient uptake in different horticultural crops, ultimately increasing crop productivity and
nutritional values and consequently attracting consumers’ attention [25].
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2.3. Leaf Color, SPAD Index, and Pigment Contents

Consumer preference is mainly determined by product appearance, which is linked
particularly to color [42]. In the current study, all biostimulant treatments, except for MLEB,
influenced the leaf hue angle (h◦), which corresponded to the common distinction of green
among the colors (Table 4). The highest h◦ value, as compared to the control, was obtained
from samples treated with N12, followed by MLES and AgriD. The increase in hue angle
gave lettuce leaves the appearance of a warm green color (Figure 2) that might be attractive
to consumers. Concerning the chroma value (C*), indicating the saturation of the color,
only MLEB caused a 3% increase (Table 4). In contrast, none of the treatments increased the
leaf lightness (L*).

Table 4. Effect of biostimulant application on leaf colour, SPAD index and pigment contents of lettuce.

Treatments L*
(lightness)

C*
(Chroma Value)

h◦

(Hue Angle) SPAD Index Tot Chlorophyll
(a + b) (µg/g FW)

Carotenoid
Contents
(µg/g FW)

Control 57.91 ± 3.42 ab 35.74 ± 2.64 b 178.77 ± 0.03 b 28.58 ± 0.63 b 19.21 ± 0.18 d 4.29 ± 0.06 c
N12 57.21 ± 2.61 c 31.99 ± 2.69 d 178.79 ± 0.02 a 31.76 ± 1.96 a 20.45 ± 0.06 c 4.87 ± 0.02 b

AgriD 56.34 ± 2.20 b 34.51 ± 1.94 c 178.78 ± 0.01 a 29.84 ± 1.40 ab 22.51 ± 0.04 a 5.13 ± 0.03 a
MLEB 56.09 ± 1.94 b 34.68 ± 2.22 bc 178.78 ± 0.01 a 30.00 ± 1.84 ab 21.40 ± 0.10 b 4.83 ± 0.01 b
MLES 53.30 ± 2.50 a 36.96 ± 2.31 a 178.76 ± 0.02 b 30.32 ± 1.01 ab 12.64 ± 0.14 e 3.24 ± 0.17 d

The presented values are non-transformed means. Data represent means ± standard deviation. Values followed
by different letters within each column indicate significant differences according to Fisher’s test (p ≤ 0.05).

Finally, the Soil Plant Analysis Development (SPAD) index, a non-destructive indi-
cator of N leaf content, showed a 10% increase in samples treated with N12 (Table 4), a
finding which was not surprising given its high N content. Additionally, biostimulant
application induced a significant increase in lettuce leaf pigments (Table 4), particularly
total chlorophyll and carotenoid contents, reaching the highest increase with AgriD (15 and
16%, respectively), followed by MLES (10 and 11%, respectively). This ability to increase
pigment content is in line with other reports on plant-based biostimulants, whose applica-
tion may lead to the up-regulation of photosynthesis and improved nitrogen and carbon
metabolism by enhancing N uptake efficiency and limiting chlorophyll degradation and
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leaf senescence [43]. Chlorophyll content and photosynthesis rate in plants are known to
determine growth and yield. The application of PHs and MLEs are reported to enhance
both these vital traits under normal and stress conditions. For instance, the application of
MLEs on rocket was reported to increase photosynthetic pigments, photosynthetic rate,
and stomatal conductance as compared to untreated plants [21]. In another study, snap
bean (Phaseolus vulgaris) sprayed with MLE under normal growing conditions showed
increased chlorophyll pigments compared to unsprayed plants [26]. The same findings
were also reported in the foliar application of PHs in baby rocket leaves and lettuce [43,44],
tomato [37], and corn [12].

2.4. Total Phenolic Compounds and Antioxidant Activities

The importance of antioxidant activity as a functional quality parameter of food
is related to the beneficial effects of antioxidant molecules (hydrophilic and lipophilic)
on human health due to their role in delaying or inhibiting oxidative damage, hence
evading a broad range of diseases [25]. Leafy vegetables are considered important sources
of antioxidant molecules, whose content might be conveniently enriched. In this study,
biostimulant application significantly influenced the results from the antioxidant activity
evaluation performed by DPPH and ABTS (Figure 4); the highest values were registered in
samples treated with MLES, producing a 72 and 53% increase in DPPH and ABTS values,
respectively, followed by N12 (68 and 51%), and MLEB (43 and 26%). In contrast, AgriD
elicited positive values only for ABTS antioxidant activity. Furthermore, total phenolic
compounds (TPC) increased notably, by 34%, in samples treated with MLES as compared
to untreated plants (Figure 5).

In this regard, the application of plant biostimulants, including MLEs, can modify
both primary and secondary metabolism, resulting in an increased concentration of an-
tioxidant compounds. For instance, spinach plants supplemented with PHs showed an
increase in the concentration of phenolic antioxidants, total soluble proteins, and other
bioactive compounds [36]. Selected plant leaf extracts (mulberry, brassica, sorghum and
moringa) significantly enhanced the radical scavenging capacity of radish as compared to
the control [45]. Finally, MLE alone and in combination with K and Zn improved quality
parameters, such as soluble solid contents, vitamin C, sugars, total antioxidant and phenolic
contents, and the activities of superoxide dismutase and catalase enzymes in ‘Kinnow’
mandarin fruit [24]. It has been proposed that biostimulants might mimic a stressing event
with the consequent induction of the plant responding system, including the antioxidant
system, leading to an increase in antioxidant molecule production in plants [38,43].
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2.5. Resistance to Postharvest Grey Mold

In our investigation, we also tested the resistance of treated plants to the economically
dangerous fungal pathogen Botrytis cinerea, which can compromise yield and quality both
during cultivation and after harvest. The lettuce leaves treated with MLEB and AgriD
during the growth phase proved to be more resistant to the fungal infection, showing
a reduced disease severity by 32 and 46%, respectively, as compared to control leaves
(Figure 6). This finding is not surprising as soybean PHs proved to be effective against grey
mold and downy mildew [40,46] on grapevines and green mold on citrus fruit [47]. The
effect could be related to the induction of defense responses [46], including the closing of
stomata [38]. A similar behavior might be supposed for MLEs, and particularly the MLEB,
also given the inclusion of molecules such as quercetin and apigenin glucosides that might
contribute to resistance to stresses [34,48,49].
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3. Materials and Methods
3.1. Lettuce Growth Conditions, Experimental Design, and Treatments

The study was carried out in a greenhouse at the CIHEAM Bari (Valenzano, Apulia,
Italy) in the period March–May 2022. Seeds of lettuce [Lactuca sativa L. cv. ABAGO
RZ (43-72), Rijk Zwaan, Italy] were sown into seed cells (0.0014 holes/m2) filled with a
commercial substrate (Brill®3 Special, Agrochimica, Bolzano, Italy). After 10 days, when
lettuce seedlings had fully expanded cotyledons, they were transplanted to individual pots
with perlite medium for hydroponic systems. The pots were randomly distributed in 5 rows;
each row included 15 pots and was subjected to one treatment. Lettuce seedlings were
fertigated using a drip system with a nutrient solution of FloraGrow/Micro and FloraBloom
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used according to the manufacturer’s instructions (General Hydroponics, Portland, USA).
The irrigation frequency was 5 times daily for a total of 1.25 L water/day/plant.

Four treatments were applied: once at the transplanting by root immersion, and then
three times at 10-day intervals during the growth period by foliar spray until dripping,
using a steel spray bottle. The applied treatments were two commercial plant biostimulants
based on blended nitrogen sources (Organor N12, ICAS International, Milan, Italy, 4 mL/L)
and a Fabaceae enzymatic hydrolysate (AgricostanD, Costantino Srl, Favria, TO, Italy,
2.5 mL/L) and two aqueous extracts, namely MLES and MLEB, from leaves of M. oleifera
plants cultivated in a greenhouse in Lecce province (South Apulia, Italy) and open field
in Barletta area (North Apulia, Italy), respectively. Plants treated with water were used as
a control.

3.2. Moringa Leaves Extract Preparation and Characterization

Based on our previous experience of microwave-assisted extraction of bioactive com-
pounds from different plant matrices [50–53], the extraction was carried out under mi-
crowave irradiation. The fresh moringa leaves were dried before undergoing microwave-
assisted extraction. Briefly, in a microwave tube, 200 mg of leaf powder was briefly
suspended in 2 mL of bi-distilled water and extracted for 5 min at 80 ◦C. After filtration, the
sample was centrifuged for 10 min at 8000× g, and the supernatant was lyophilized and
resuspended in 500 mL of bi-distilled water. The extracts were qualitatively characterized
using a High-Resolution Mass Spectrometry (HRMS) approach. Analyses were performed
using a microTOF QII mass spectrometer (Bruker Daltonics, Bremen, Germany) equipped
with ESI operating in both positive and negative ion modes. Bioactive compounds were
tentatively identified through their MS spectra in comparison to literature data.

For HPTLC analysis, a mobile phase consisting of ethyl acetate:formic acid:acetic
acid:water (100:11:11:26) was used. The application of standards and samples was per-
formed using a semimicro applicator (Cellogel Electrophoresis Company, Milan, Italy).
Approximately 1.5 µL of extract sample and 1.5 µL of 1 mg/mL solution of chlorogenic
acid (CA), neochlorogenic acid (NCA), and quercetin 3-O-β-D-glucopyranoside (QGP)
standards were separately applied in the form of bands (1.5 µL × 8 mm) at 1 cm from the
bottom using TLC Silica gel 60 F254 pre-coated plate (Merck). The plate was developed
up to the distance of 8 cm from the bottom, air dried, heated at 100 ◦C for 5 min, sprayed
with 1% (w/v) diphenylboryloxyethylamine in methanol (NP), then sprayed with 5% (w/v)
polyethylene glycol 4000 (PEG4000) in ethanol, air dried and visualized by viewing in
UV-cabinet under long wavelength (366 nm).

3.3. Yield and Agronomic Parameters

The lettuce plants were harvested at commercial maturity. The external leaves were
removed, and each head was weighted to determine marketable yield (g) per treatment
including the control. Five homogenous plants, located at the center of the row, were
selected per treatment for measuring leaf number and area. The leaf area of each plant was
estimated using the open access software ImageJ 1.53 version (U.S. National Institutes of
Health, Bethesda, MD, USA) and quantified in cm2. Samples from the abovementioned
plants were put in a forced air-drying oven at 60 ◦C until a constant weight was reached
for the successive determination of WC and DM. The WC was calculated according to the
formula (1)

WC = [(FW − DW)/FW] × 100 (1)

whereas DM was calculated following Cristofano et al. [54] according to the formula (2)

DM = (leaf dry weight/leaf fresh weight) ×100 (2)

For qualitative analysis, per treatment, fresh leaf sub-samples were frozen with liquid
N, powdered, and stored at −80 ◦C.
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3.4. Leaf Colour, SPAD Index, and Pigment Content

Colour CIELAB parameters (L*, C*, and a*, b*) were measured by a Chromameter
(CR-300, Minolta Co. Ltd., Tokyo, Japan) between the midrib and the leaf margin in
10 undamaged lettuce leaves per replicate. The L* coordinate expressed the degree of
lightness of the measured color (100 = white; 0 = black). The a* and b* values were used to
calculate the hue angle (h◦) according to the formula (3)

h◦ = tang −1 (b*/a*) (3)

The h◦ expressed the color tones in degrees: 0◦ (red color), 90◦(yellow), 180◦ (green),
and 270◦ (blue). The C* described saturation of the color: the higher the C* value, the more
saturated the color.

Moreover, the SPAD index, indicating N leaf content, was measured in 10 fully expanded
leaves per replicate by SPAD-502Plus (Minolta) following manufacturer specifications.

Finally, pigment content of the leaves was spectrophotometrically determined [49].
From each treatment, 1 g from a pool of 5 freshly frozen powdered leaves was homogenized
with pure acetone (HPLC-UV grade, Pharmco-Aaper, Brookfield, CT, USA), incubated for
15 min on ice, centrifuged for 5 min at 14,000× g at 4 ◦C, filtered with 0.45 µm pore size
nylon syringe filters (MilliporeSigma, Bedford, MA, USA), and transferred into spectropho-
tometric cuvettes. Quantification of chlorophyll and carotenoids was performed using a
Cary 60 UV-VIS spectrophotometer (Agilent Technologies, Santa Clara, PA, USA) at three
different wavelengths: 662, 645, and 470 nm. The concentrations were calculated according
to the following formulas:

Chlorophyll a (Chla) = (11.24 × A662) − (2.04 × A645) (4)

Chlorophyll b (Chlb) = (20.13 × A645) − (4.19 × A662) (5)

The total chlorophyll was calculated as the sum of Chla and Chlb (6).

Carotenoids = (1000 × A470 − 1.9 Chla − 63.14 Chlb)/214 (6)

3.5. Total Phenolic Compounds and Antioxidant Activities

One gram of fresh powdered lettuce leaves was homogenized with 5 mL ethanol
70% and then subjected to ultrasound for 15 min, centrifuged at 9000× g and filtered
with 0.45 µm pore size nylon syringe filters. The determination of the total phenol con-
tent (TPC) was performed using the Folin–Ciocalteu method as described by Tarantino
et al. [55] The antioxidant activity was determined using a free DPPH radical (1,1-diphenyl-
2-picrylhydrazyl) and ABTS radical (2,20-azino-bis (3-ethylbenzothiazoline-6-sulfonic
acid) [56]. To measure the reduction in absorbance of the solutions a spectrophotometric
assay was carried out at 517 and 734 nm wavelengths, respectively. The antioxidative
activity of lettuce was expressed in mM Trolox Equivalents (TE) per g of fresh lettuce.

3.6. Resistance to Postharvest Grey Mold

A strain (FV52) of B. cinerea from the Culture Collection of the University of Bari Aldo
Moro (Italy) was grown on PDA at 24 ◦C with a 14 h/10 h photoperiod for 7 days. Ten
leaves per treatment (2 leaves per plant, 5 plants per treatment) were used. They were
placed in plastic boxes containing a moistened filter paper with sterile distilled water at
the bottom, this latter was topped by a plastic net to separate the leaves from the paper.
The leaves were inoculated by depositing a mycelial plug, 5 mm in diameter, from the
active growing margins of the B. cinerea colony [57]. The boxes were sealed in plastic bags
and incubated at 18 ◦C for 4 days. Finally, leaves were assessed for the infected area as
percentage (%) of leaf surface.
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3.7. Statistical Analysis

All data were subjected to a one-way analysis of variance (One-way ANOVA) using
Minitab 19 (Minitab Inc., State College, PA, USA). Means were separated utilizing Fisher,
as a post-hoc test, performed at p ≤ 0.05 significance level.

4. Conclusions

The present study provides some evidence of the positive effect of biostimulant
application on the yield, quality, and storability of greenhouse-grown lettuce. Effective
commercial products exist, but a new promising biostimulant could be introduced. M.
oleifera seems a good candidate as it is already used for human consumption, was recently
proposed as a possible candidate for replacing animal proteins and is to be included
among basic substances (i.e., active substances, not predominantly used as plant protection
products but which may be of value for plant protection and for which the economic
interest in applying for approval may be limited, EC Regulation 1107/2009). If included in
this list, MLEs could be legally used in the EU. Although further studies on a larger scale
and the mode of action are needed, the proposed data seem promising.
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