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Abstract: Extending the range of use of the heterologous fibrin biopolymer, this pre-clinical study
showed a new proportionality of its components directed to the formation of scaffold with a lower
density of the resulting mesh to facilitate the infiltration of bone cells, and combined with therapy by
laser photobiomodulation, in order to accelerate the repair process and decrease the morphofunctional
recovery time. Thus, a transoperative protocol of laser photobiomodulation (L) was evaluated in
critical bone defects filled with deproteinized bovine bone particles (P) associated with heterologous
fibrin biopolymer (HF). The groups were: BCL (blood clot + laser); HF; HFL; PHF (P+HF); PHFL

(P+HF+L). Microtomographically, bone volume (BV) at 14 days, was higher in the PHF and PHFL

groups (10.45 ± 3.31 mm3 and 9.94 ± 1.51 mm3), significantly increasing in the BCL, HFL and
PHFL groups. Histologically, in all experimental groups, the defects were not reestablished either
in the external cortical bone or in the epidural, occurring only in partial bone repair. At 42 days,
the bone area (BA) increased in all groups, being significantly higher in the laser-treated groups.
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The quantification of bone collagen fibers showed that the percentage of collagen fibers in the bone
tissue was similar between the groups for each experimental period, but significantly higher at
42 days (35.71 ± 6.89%) compared to 14 days (18.94 ± 6.86%). It can be concluded that the results
of the present study denote potential effects of laser radiation capable of inducing functional bone
regeneration, through the synergistic combination of biomaterials and the new ratio of heterologous
fibrin biopolymer components (1:1:1) was able to make the resulting fibrin mesh less dense and
susceptible to cellular permeability. Thus, the best fibrinogen concentration should be evaluated to
find the ideal heterologous fibrin scaffold.

Keywords: biocompatible materials; bone regeneration; low-level laser therapy; photobiomodulation;
bone substitutes; fibrin sealant; biopolymers; xenografts

1. Introduction

The management of large bone defects has still been a challenging problem for medical
and dental specialties due to the complexity of available treatments, significant morbidity
and the high incidence of late complications [1]. Combined with an increasing prevalence of
trauma, congenital anomalies, and degenerative diseases that can compromise the restora-
tion of bone architecture, tissue engineering and regenerative medicine seek to develop
reconstructive therapies in order to regenerate lost bone and restore its function [2,3].

In recent decades, bone substitutes have been the subject of intense investigation,
with the aim of overcoming the limitations resulting from graft harvesting or using bone
banks, and thus assisting and accelerating the regenerative process, repairing the lesion
with new tissue with native morphofunctional characteristics [4]. Given the great diversity
of commercially available biomaterials, previous studies have presented scientific evidence
and predictability of clinical success in the use of xenografts of bovine origin [5].

Among the tissue engineering constructions for bone repair, the association of three-
dimensional scaffolding is based on the attempt to mimic the native bone microstructure,
facilitating the recruitment of osteogenic cells, in situ growth factors and promoting the
synthesis of new mineralized bone matrix [6,7].

It is in this context that natural biopolymers such as fibrin derivatives have become
the ideal candidate for combined employment with particulate bone grafts [8,9]. This
allows for the fabrication of multifunctional scaffolds that stop bleeding by homeostatic
mechanisms, increases the resistance to shear stress, and the stability of the graft in the
surgical bed, which is a preponderant factor in the prevention of micromotion, and provides
a longer time of cellular support during the whole process of bone repair, increasing the
graft success rate [10,11].

Most of the preparations are made up of plasma blood components, which allows
them to be classified according to the fibrinogen obtained, in autologous or homologous
fibrin sealants. However, autologous formulations become unfeasible in severely injured
patients or in unforeseen emergencies, and homologous formulations with high added
value and risk of viral transmission [12].

The identification of these methodological limits spurred the team of researchers from
the Center for the Study of Venoms and Venomous Animals at UNESP (CEVAP), to develop
a modified version of these preparations, as an effective, safe, and affordable alternative.
Thus, human fibrinogen was replaced by plasma fibrinogen from large animals, Bubalus
bubalis, and thrombin by serine protease, extracted from the venom, Crotalus durissus
terrificus [13].

Initially, protein concentrations of serine protease and heterologous cryoprecipitate
were designed for the treatment of chronic venous ulcers, peripheral nerve repair, and
an alternative to conventional sutures, with satisfactory preclinical and clinical results [14,15].
In fact, the excellent biocompatibility, controllable biodegradability, intrinsic bioactivity, and
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many other unique characteristics make this therapeutic formulation viable and attractive
for other areas such as tissue bioengineering and regenerative medicine [13].

Thus, the improvement in research and the use of new technologies have directed
the applicability of heterologous fibrin biopolymer as a three-dimensional scaffold in
bone reconstruction, delivery system of biologically active molecules and support for
mesenchymal stem cells [16–18].

In the search for improvement in the results of reconstructive surgical interventions
that require tissue repair, several extra operative therapeutic modalities have been re-
searched [19]. Among non-invasive treatments, laser photobiomodulation has been widely
used in several clinical conditions in order to accelerate tissue regeneration and modulate
inflammatory processes in cells with functional deficit [20–22].

Our team of researchers has used a laser photobiomodulation protocol in the bone
defects repair process, which has achieved satisfactory and promising results [23–28].
However, a new approach to treatment frequency has been required for future research
due to greater convenience, and to the need to be financially viable, allowing for the
use of this technique in clinical practice. Allied to this, the scientific literature together
with our previous results have pointed out the need to change the proportionality of the
fibrinogen component of the heterologous fibrin biopolymer, in order to achieve a less
dense three-dimensional mesh, as it is believed that this way provides a microenvironment
more conducive to cell migration [21,29–31].

In view of these issues, this study was justified because it presented a change in
the proportionality of fibrinogen in the fibrin biopolymer, with the aim of achieving the
ideal characteristics of fibrin as a scaffold, providing agglutination of the particulate graft
and preventing the invagination of surrounding soft tissues. Furthermore, we tested
the possibility of promoting guided tissue regeneration without the use of biological
barriers, such as membranes, and evaluated the use of an intraoperative protocol of laser
photobiomodulation in a single session, which allows prospective clinical treatments.

Therefore, we aimed to evaluate the transoperative protocol of laser photobiomod-
ulation in critical bone defects in the calvaria of rats, filled with deproteinized bovine
bone particles associated with the new proportionality of the heterologous fibrin biopoly-
mer components.

2. Results
2.1. X-ray Computed Microtomography (µ-CT)

The one-dimensional radiographic images and 2D and 3D reconstructed by micro
computed tomography reveal the directly proportional relationship between the radiopacity
of the remaining bone structures and the level of mineral present (Figure 1). Thus, the more
radiopaque tones in the gray scale, closer to white, give the evaluated structures a greater
degree of mineralization.

Descriptive analysis of the radiopacity of newly formed bone structures was performed
in 1D, 3D (top view) and 2D (transaxial and coronal sections) planes, in order to analyze
the evolution of the bone repair process in different planes and in periods of 14 and
42 days, thus verify the performance and maintenance of the biomaterial and newly formed
bone architecture.

Qualitatively, in the initial period, the images of all experimental groups showed
a slight increase in radiopacity contrast at the edges of the surgical wound, confirmed by
their irregularities. In addition, the PHF and PHFL groups showed focal areas with tiny
radiopaque figures intertwining the biomaterial particles.

At 42 days, reossification was caused by the extension of bone border growths, occu-
pying part of the defect in BCL, HF and HFL and the spaces between particles in the PHF
and PHFL groups, but the calvarial defects were not completely restored. The trabecular
architecture in the BCL, HFL and PHFL groups revealed more expressive formation on the
dura mater and/or intimately in contact with the particles.
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laser photobiomodulation therapy; HF: defect filled by heterologous fibrin biopolymer; HFL defect 
filled by heterologous fibrin biopolymer and laser photobiomodulation therapy; PHF: defect filled 
by deproteinized bovine bone particles incorporated into heterologous fibrin biopolymer; PHFL: 
defect filled by deproteinized bovine bone particles incorporated into heterologous fibrin 
biopolymer and laser photobiomodulation therapy. At 14 days, in BCL, HF and HFL, note discrete 
radiopacity of the defect margins vs. remaining bone suggesting moderate formation of bone tissue 
(blue arrow) and small bone islands in the dura mater region. In PHF and PHFL, the defects present 
a large amount of biomaterial particles and formation of centripetal bone tissue (blue arrow), which 
tapers towards its central region. At 42 days, bone defects were not completely restored in any 
experimental group. In BCL, HF and HFL, bone formation at the edge of the defect is denser and 
more mature, but unable to occupy the more central regions. In PHF and PHFL, defects with the 
maintenance of biomaterial particles and increased bone formation around the particles, mainly in 
the dura mater region, compared to the previous period. µ-CT -all scaled image size 3 mm. 

Morphometric data of the 3D microtomographic images of the volume obtained in 
the CTan program are shown in Figure 2. The microtomographic images showed, in the 
period of 14 days, that the total volume of the region of interest (TV) was greater in the 
groups filled or treated with the biomaterial + biopolymer with or without laser 
(PHF/PHFL, mean of 94.9 ± 12.22 mm3) in comparison to those filled with clot or 

Figure 1. Radiographic (one-dimensional images) and computed microtomographic images (two-dim-
ensional—top view and three-dimensional in coronal and transaxial sections) of rat calvaria bone
defects at 14 and 42 days after osteotomy. (n = 12/group): BCL: defect filled by blood clot and laser
photobiomodulation therapy; HF: defect filled by heterologous fibrin biopolymer; HFL defect filled
by heterologous fibrin biopolymer and laser photobiomodulation therapy; PHF: defect filled by
deproteinized bovine bone particles incorporated into heterologous fibrin biopolymer; PHFL: defect
filled by deproteinized bovine bone particles incorporated into heterologous fibrin biopolymer and
laser photobiomodulation therapy. At 14 days, in BCL, HF and HFL, note discrete radiopacity of
the defect margins vs. remaining bone suggesting moderate formation of bone tissue (blue arrow)
and small bone islands in the dura mater region. In PHF and PHFL, the defects present a large
amount of biomaterial particles and formation of centripetal bone tissue (blue arrow), which tapers
towards its central region. At 42 days, bone defects were not completely restored in any experimental
group. In BCL, HF and HFL, bone formation at the edge of the defect is denser and more mature,
but unable to occupy the more central regions. In PHF and PHFL, defects with the maintenance of
biomaterial particles and increased bone formation around the particles, mainly in the dura mater
region, compared to the previous period. µ-CT -all scaled image size 3 mm.

Morphometric data of the 3D microtomographic images of the volume obtained in the
CTan program are shown in Figure 2. The microtomographic images showed, in the period
of 14 days, that the total volume of the region of interest (TV) was greater in the groups
filled or treated with the biomaterial + biopolymer with or without laser (PHF/PHFL, mean
of 94.9± 12.22 mm3) in comparison to those filled with clot or biopolymer with and without
laser (BCL/HF/HFL, mean of 51.45± 6.01 mm3), remaining constant at 42 days (p < 0.05).

Regarding the bone volume (BV), at 14 days it was significantly higher (p < 0.05) in
the groups filled with biomaterial + biopolymer (PHF, 10.45 ± 3.31 mm3) and biomaterial
+ biopolymer and laser (PHFL, 9.94 ± 1.51 mm3) and lower in the groups filled with clot or
biopolymer with or without laser (BCL/HF/HFL, mean 4.51± 1.25 mm3). In the percentage
data at 14 days, PHF had 126% greater bone volume compared to BCL/HF/HFL groups.
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Figure 2. (A) Microtomographic evaluation: Mean and standard deviation graphs of the total volume
evaluated, TV, (A1); bone volume, BV, (A2); soft tissue volume, STV, (A3) and the volume of BMV
biomaterial particles, (A4). n = 12/group/period. Different uppercase (14 days, A 6= B 6= C) and
lowercase (42 days, a 6= b 6= c) letters, difference between groups/period (Kolmogorov–Smirnov
normality test, unpaired Student “t” test). Asterisk (** or ***) = significant difference between
period/group; (one-way ANOVA and Tukey, p < 0.05).

At 42 days, BV significantly increased in the groups that received BCL (10.78 ± 3.27 mm3),
HFL (8.44 ± 1.68 mm3) and PHFL (15.35 ± 2.09 mm3) laser application and did not show
significant differences in the HF groups (4.83 ± 1.17 mm3) and PHF (13.32 ± 2.33 mm3).
Percentagewise, the PHFL group showed 23% greater than BCL and 57% greater than HFL.

Regarding soft tissue volume (STV), at 14 days, the presence of biomaterials in the PHF
and PHFL groups gave a higher mean (71.58 ± 7.68 mm3, p < 0.05) in relation to the BCL,
HF and HFL groups (mean of 46.93 ± 6.09 mm3), persisting until the end of the experiment.

In the groups treated with biomaterial with and without laser, the volume of bio-
material (BMV) was similar, with a mean of 14.25 ± 3.22 mm3, and with no changes at
42 days.

2.2. Histomorphological Analysis

All experimental groups presented centripetal bone deposition throughout the course,
that is, the new bone tissue was made from the surgical edges and the dura mater surface
towards the center of the defect. However, this growth was not regular along the entire
circumference (Figure 3).

At 14 days, in the BCL, HF and HFL groups, neoformation of primary bone tissue was
observed, with bone beams randomly distributed and richly cellularized by newly trapped
osteocytes and covered on their surfaces by osteoblasts. There was abundant granulation
tissue, containing diffuse collagen fibers, macrophages, vascular neoformation, fibroblasts
and little extracellular matrix filling the central region of the wound.

Since, in the PHF and PHFL groups, the defects were filled by the biomaterial particles
of different sizes, and reactive connective tissue, which are prominent in PHF. Compara-
tively, bone formation on the dura was more expressive in PHFL and fine bone trabeculae
permeating the particles, with richly cellularized connective tissue also being observed.
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Figure 3. Panoramic histological view of cranial defects created in animals at 14 and 42 days.
(n = 12/group): BCL, HF, HFL, PHF and PHFL groups. Panoramic aspects of the calvaria showing
height and conformation compromising the type of treatment. At 14 days, in BCL, HF and HFL, areas
of defects filled predominantly by connective tissue (red arrow), were observed mainly in BCL, with
areas of neoformed bone tissue (blue arrow) on the edges of the defect, and by rich connective tissue
in cells and vascularized in the most central region. In the PHF and PHFL groups, centripetal bone
growth at the margins of the surgical area, presence of connective tissue permeating the biomaterial
particles (red arrow). At 42 days, bone growth remained restricted to the margins of the defect,
and wound closure was predominantly by connective scar tissue and/or biomaterial. (HE original
magnification 4×; bar = 2 mm).

At 42 days, an increase in bone repair was observed in all experimental groups, but
none of the defects fully restored the lost bone structure, being occupied by scar connective
tissue and/or biomaterial particles.

Defects in the BCL group showed integument collapse into the defect, compromising
the restoration of local bone thickness of approximately 1 mm of native bone plate. However,
in the HF and HFL groups, the area of the surgical cavity remained without the presence of
epithelial tissue (Figure 3).

Areas of bone formation and renewal were observed in BCL and HFL, demonstrated
by the presence of young bone, trabecular arrangement, unorganized bone structure,
and compact, lamellar, and dense bone (see Figure 3), unlike the HF group which is
predominantly with osteoid matrix.

In the other groups, PHF and PHFL, the new bone tissue formed remained restricted
to the margins of the receptor bed, and the ossification locus with dense and lamellar
arrangement, intimately adsorbed to the biomaterial particles were observed, mainly in
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PHFL and surrounded by collagen fibers and resorptive cells in depressions of the excavated
matrix. Although there were no significant changes in the amount of biomaterial in the
two cases, some areas of discontinuity were exhibited and filled by connective scar tissue.

Staining with Masson’s trichrome (MT) in the BCL and HF groups showed a central
area of the defects connected by a thin layer of light blue tissue corresponding to fibrous
connective tissue throughout the experimental period (Figure 4).
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HFL, PHF and PHFL groups. Panoramic aspects of the calvaria showing height and conformation
compromising the type of treatment. Blue arrow (new bone tissue formed) and red arrow (fibrous
connective tissue and/or biomaterial particles), (MT original magnification 4×; bar = 2 mm).

On the other hand, the other groups showed transition from light blue to dense blue
areas, interconnected with immature extracellular matrix locus, central and/or adjacent
to the edges of the defect, densely stained with red, and in PHF and PHFL, permeating
the particles of the biomaterial. The dense blue color has high specificity with collagen
staining; thus, the descriptive results show that the HFL group has a greater expressiveness
of collagen within the defect area compared to the others.

As observed in the volumetric evaluations by micro-CT, the total area, TA, at 14 days
was higher in defects filled with the biomaterial, PHF and PHFL (mean grafted area of
44.31 ± 5.33 × 105 pixels) in relation to those without BCL biomaterial, HF and HFL (bone
defect area, mean of 29.7 ± 1.7 × 105 pixels) and remained similar at 42 days (Figure 5A).
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Figure 5. Histomorphometric evaluation: Graphs of the mean and standard deviation of the
total area—TA (pixels), (A); bone area (pixels)—BA, (B); bone area/total area—BA/TA (%) (C);
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Regarding BA, at 14 days, it was significantly higher in the BCL, PHF and PHFL groups
(mean of 4.77± 0.65× 105 pixels) compared to HF and HFL (mean of 3.17 ± 0.83 × 105 pixels).
At 42 days, BA increased significantly in all groups except HF and was significantly higher
in laser-treated groups. The evaluation of the percentage of newly formed bone tissue in
the defect, (BA%, showed that bone formation was small until 42 days, not exceeding 30%
of the defect or grafted area (Figure 5B).

In TA, it was higher in the groups treated with biomaterial, the percentage values
within the evaluated area show variations in relation to those obtained for the BA. At
14 days, the BA/TA in the BCL group (15.83± 2.34%) was similar to the HFL (12.48 ± 4.35%)
and significantly higher compared to the other HF groups (9.14± 5.01%), PHF (10.63 ± 2.73)
and PHFL (9.44 ± 3.65%). At 42 days, BA/TA increased significantly in the BCL laser-
treated groups (26.78 ± 6.80%), PHFL (25.71 ± 2.79%), HFL (19.3 ± 1.92%), followed
by PHF (18.13 ± 1.95%). The lowest BA/TA values were observed in the HF group
(13.18 ± 4.65%) (Figure 5C).

2.3. Birefringence Analysis of Collagen Fibers in Bone Neoformation

Figures 6 and 7 show a representation of the images generated in polarization mi-
croscopy. Through qualitative analysis, it is possible to observe the variation in brightness,
according to the distribution pattern of collagen fibers and to estimate the level of bone
maturation of the newly formed bone in the selected periods.

After light polarization, the primary bone tissue was recognized by its random and
disorganized fibrillar pattern, usually with polarization colors ranging from green/yellow
and the lamellar-compact bone has a red–orange colour depending on the fiber width. In
the initial period (14 days) of bone deposition, in all experimental groups, yellow–green
fibers were predominantly detected filling the entire length of the receptor bed connecting
the surgical edges. However, the HFL group presented yellow–green birefringence locus in
central areas (see Figure 6).
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Figure 6. Images of Picrosirius-red stained sections observed by polarized light microscopy after
14 days. n = 12/group): BCL, HF, HFL, PHF and PHFL groups. (A) Polarized image showing the
deposition of birefringent collagen (arrows); (B) Regions marked in red; (C) Regions marked in
yellow corresponding to polarizing collagen deposition; (D) Regions marked in green. The yellowish–
green birefringence of collagen fibers corresponds to thin bundles with diverse and disorganized
arrangements, and reddish corresponds to dense and organized bundles, Picrosirius-red under
polarization, 40× objective. Bars = 500 µm.

At 42 days, all groups remained with a reddish birefringence domain, transitioning
slightly to yellowish–greenish birefringence. However, it was noted that there is qualitative
evidence in the appearance of the organization of collagen fibers, indicating that the groups
treated with lasers are in better conditions of structural organization (see Figure 7).

The quantification of collagen fibers stained by the Picrosirius-red technique (PRS)
showed that the percentage of collagen fibers in the bone tissue was similar between the
groups for each experimental period, but significantly higher at 42 days (35.71 ± 6.89%)
than at 14 days (18.94 ± 6.86%) (Figure 8).
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The quantification of collagen fibers stained by the Picrosirius-red technique (PRS) 
showed that the percentage of collagen fibers in the bone tissue was similar between the 
groups for each experimental period, but significantly higher at 42 days (35.71 ± 6.89%) 
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Figure 7. Images of Picrosirius-red stained sections observed by polarized light microscopy after
42 days. n = 12/group): BCL, HF, HFL, PHF and PHFL groups. (A) Polarized image showing the
deposition of birefringent collagen (arrows); (B) Regions marked in red; (C) Regions marked in
yellow corresponding to polarizing collagen deposition; (D) Regions marked in green. The yellowish–
green birefringence of collagen fibers corresponds to thin bundles with diverse and disorganized
arrangements, and reddish corresponds to dense and organized bundles, Picrosirius-red under
polarization, 40× objective. Bars = 500 µm.
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Figure 8. Graphs of the mean and standard deviation of the total percentage of birefringence of
collagen fibers (A); green birefringence of collagen fibers (B); yellow birefringence of collagen fibers (C);
red birefringence of collagen fibers (D). n = 12 group/period. Different uppercase (14 days, A 6= B)
and lowercase (42 days, a 6= b 6= c) letters, difference between groups/period (Kolmogorov–Smirnov
normality test, unpaired Student “t” test). Asterisk (* or ** or ***) = significant difference between
period/group; (one-way ANOVA and Tukey, p < 0.05).
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Regarding the thickness of collagen fibers both at 14 and 42 days, the percentage
of red/thicker fibers (mean of 85.03 ± 5.54%), followed by green/less thick (mean of
12.57 ± 4.78%) and yellow fibers (mean of 2.4 ± 1.45%). At 42 days, the highest percentage
of green fibers was observed in the HFL groups (25.59 ± 4.59%) in relation to the other
groups, resulting in the lowest percentage of red fibers (71.11 ± 4.3%).

3. Discussion

The bone’s capacity for self-renewal and remodeling in response to pathophysiological
changes the imposition of biomechanical stress and in situations of fractures is remarkable,
which allows the tissue to return to its native state without leaving a scar [32]. However,
this specificity of bone repair becomes limited in conditions of extensive tissue involvement,
requiring clinical and surgical interventions to realign the repair process [33].

In view of the importance of bone reconstructions in order to restore local microarchi-
tecture, as well as molecular mechanisms, in a way that facilitates the cellular infiltration
necessary in bone repair; in addition, advances in tissue engineering approaches have
driven the search for the association of materials, that is, of tissue construction, that provide
a permissive environment for bone healing to occur [34,35]. Therefore, the present study
focused on the development of a new tissue construction and proposed a unique protocol
of laser photobiomodulation therapy, in order to radically reduce application sessions, and
generate perspectives in the expansion of translational use.

A brief description of the dosimetric parameters used in this study are described
in Table 1:

Table 1. Selection of laser processing parameters that allow their correlation with desired characteristics.

Laser Processing Parameters Measurement/Unit Explanation of Parameter Selection

Continuous mode Avoids 6% energy loss by reflection compared to off contact
mode [36]

Infrared spectrum Depth of penetration, >absorptivity by cytochrome C
oxidase—bone [37]

GaAlAs 37% intensity loss after crossing 2 mm depth. Precalvarial
tissue thickness in the rat 0.56 mm. minimum loss [38]

Beam área 0.028 cm2

Wavelength 808 nm
High wavelengths are more resistant to dispersion than lower

ones; penetrate deeply into tissue; low water chromophore
interference [39]

Output power 100 mW Energy without microthermal tissue damage (>500 mW) [40]

Target irradiance (I) 3.57 W/cm2

Calculated as: I = potency (W)/beam area (cm2). Biphasic
response: “Arndt-Schulz Law”—weak stimuli accelerate

slightly, stronger stimuli increase even more until it reaches
a peak; even stronger stimuli suppression [39]

Energy density (E) 214.29 J/cm2 per spot
Calculated as: E = Dose energy (J)/beam área (cm2)

photostimulatory effects = 1–10 J/cm2; photoinhibitory
effects ≥10 J/cm2) [41]

Time 60 s/spot

IntraoperativeApplication
Five points of the defect surface

clockwise (12 h, 3 h, 6 h, 9 h), plus
a central point (single session).

To treat the entire injured area considering the radiation loss by
scattering and reflection; >effect on cells—early stages of

repair—>cell proliferation and division—>volume of newly
formed bone [38,42]

Energy dose (D) 6 J for 60 s/point Calculated as: D = potency (W) × point time (s). 37% scattering
loss ≥ 2 mm depth (0.56 mm overlying soft tissue) [43,44]

Considering that this study aimed to investigate the effect of laser on critical bone
defects in the calvaria of rats filled with the new three-dimensional construction of the het-
erologous fibrin biopolymer associated with deproteinized bovine matrix, the results denote
potential effects of laser radiation capable of inducing a functional bone regeneration.
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Before proceeding with the descriptions of the analyses, it is important to justify
the non-performance of the group with defects filled by blood clot (BC) in this study, as
we prioritize the principle of the three Rs, as proposed by reduction, substitution, and
refinement in the use of animals, with the objective of constantly promoting a balance
between scientific progress and animal welfare [45–47]. Likewise, because such a group has
already been carried out in our previous studies with the same methodology, animal model,
and experimental period (volume density of the newly formed bone, mean 7.06 ± 0.49 and
bone volume, mean 5.20 ± 1.02) [21].

The physicochemical characteristics of the particulate biomaterial used in this study
(Commercial Samples—Bio-OssTM, Geistlich Pharma AG, Wolhusen, Switzerland) are
previously reported in the literature: total intruded volume (0.546 cm3/g), mode of intra-
particle pores (0.03 µm), total porosity (63.5%), and intraparticle porosity (51%—taken as
the percentage of the particles internal pores (<1 µm), relative to the total), particle size
(250–1000 µm—Size range reported by producers) [48]. Studies recommend that the ideal
diameter of the particles be between 200 and 350 µm, which ensures in this experiment that
such properties provided vascularization, fluid diffusion and cellular recruitment to the
defect produced [49]. As for the proliferation of mesenchymal cells in the fibrin biopolymer
scaffold, it was demonstrated in the studies by Gasparotto et al. (2014) [50], in which,
through investigations of flow cytometry, light and electron microscopy, he proved the
satisfactory plasticity and excellent capacity of interaction of the three-dimensional matrix
and the mesenchymal stem cells (MSCs) [50].

The possible mechanisms of cell proliferation and how laser-treated scaffolds increase
the effect of cell proliferation can be explained by the cells that aresurrounding the wound,
intrinsically related to the bone regeneration process, bind directly to fibrin, through platelet
surface receptors, the integrins, providing the adsorption of these ligands. Previous studies
suggest that electromagnetic laser radiation increases the expression of these cell adhesion
molecules, increasing the density of binding sites and concomitantly cell infiltration and
proliferation [51]. In addition, another factor to be elucidated, is the action of the laser on
fibroblasts since these cells penetrate the wound in order to synthesize type I collagen. Thus,
the greater deposition and organization of collagen fibril bundles generated by radiation
modulation provides a synergistic effect as cellular support of the three-dimensional fibrin
network at the lesion site [51].

On the other hand, the laser activates NF-kB ligand receptors (RANKL), inhibiting
osteoclast formation during the differentiation process. This fact substantially reduces the
expression of the plasminogen receptor present in these precursor cells of the phagocytic
mononuclear system, delaying fibrinolysis [52].

Microtomographically, two- and three-dimensional reconstructions made it possible
to investigate bone modeling, as well as obtaining volumetric measurements within bone
defects [53]. Thus, at 14 days, the central hypodensity observed in BCL corresponds to the
region occupied by granulation tissue and osteoid matrix (see Figure 1). The presence of
mineralized bone trabeculae under the dura mater was evident by the hyperdensity of
notable structures in this period, but without closure of the surgical wound by mineralized
tissue at 42 days, which can be characterized as a defect of critical size [54].

Since, in the same period, the defects filled with biomaterials, PHF and PHFL, in
all imaging planes, denote difficulty in distinguishing the new bone tissue, strongly in-
terwoven with the particles, due to their isorradiographic density and the remaining
bone [55]. Additionally, considering thresholding, the strong contact between the surface
of the xenogenic particle and the native bone, may have contributed to the lower selectivity
of the different fractions based on gray values [56].

At 42 days, in all experimental groups, the mineralized bone tissue was restricted to
the edges of the defects, with some sparse mineralization nuclei in the center of the surgical
area and/or intertwining the biomaterial particles. These findings are consistent with the
studies by Chen et al. (2021) [56], which attributed to the regenerated bone restricted the
margins of the defect, exclusively to bone progenitor cells migrated from adjacent native
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bone tissues. It is also believed, due to the presence of xenogenic biomaterial particles,
even at 42 days, it may have selectively hindered cell infiltration and, consequently, the
diffusion of paracrine factors and nutrients to the center of the defect, justifying the absence
of restoration of the calvarial bone plate.

As an additional analysis, 3D images of the calvaria were obtained in microtomog-
raphy for the comparative measurement between the groups regarding bone volume,
particulate material, and soft tissue. At 14 days, a significant difference was observed in the
percentage of total tissue volume (TV) present in the region of interest (ROI) between PHF
and PHFL vs. BCL, HF and HFL (means 94.9 ± 12.22 mm3 vs. 51.45 ± 6.01 mm3), inherent
to the volume occupied by the filling materials vs. bone block removed, respectively.

As the TV was higher in PHF and PHFL and bone formation was restricted to the
edges of the defect, the total soft tissue volume, STV, was higher in these groups with
a mean of 71.58 ± 7.68 mm3 in relation to BCL, HF and HFL, mean of 46.93 ± 6.09 mm3,
in the analyzed periods, data consistent with the studies of Lappalainen et al. (2016) [57].
Regarding the variable BV, at 14 days, it showed the highest means in PHF and PHFL
compared to the others (10.45 ± 3.31 and 9.94 ± 1.51 vs. 4.51 ± 1.25, p < 0.05). According
to preliminary evidence, the granular configuration of the xenogenic biomaterial associ-
ated with the three-dimensional conformation of the fibrin mesh may have contributed to
a greater biomimetic surface area, initially facilitating microvascular penetration, adsorp-
tion of bioactive molecules and cellularization of autologous tissue [58].

Additionally, the explanation for such data can be elucidated by other studies that
point out that the presence of the graft material prevents the infiltration of supracalvarial
tissues in the surgical area, and consequently the competition for cell adhesion between
osteoblasts and fibroblasts, facilitating the growth of osteoprogenitor cells [59,60]. At
42 days, the mean bone volume, BV, showed a significant increase in the BCL, HFL and
PHFL groups, which can be explained by the considerable decrease in the severity of the
inflammatory response in the initial periods, through the inhibitory activity of the laser
energy in the release of pro-inflammatory chemical mediators such as TNF-α, IL-1β and
IL-6 [61].

As for the averages of BMV, it was observed that there was no change (PHF and PHFL,
p ≥ 0.05) during the entire experimental period. Considering the compatible time for
replacement of biomaterial particles by bone tissue, there is still a lack of consensus in the
literature. Some authors report that xenogenic particles of Bio-OssTM (Geistlich Pharma
AG, Wolhusen, Switzerland) are not bioreabsorbed, being incorporated into the new bone
tissue formed inside the bone defects [62,63].

On the contrary, other studies reveal that after months of repair, osteoclastic activ-
ity is observed on the surface of the particles, decreasing the pH in the microenviron-
ment, which provides the breakdown of hydroxyapatite from the bovine bone matrix.
This fact suggests a remodeling of the bone/particle set, which, in a way, characterizes
a slow process of bioresorption and replacement [64,65]. According to the histological
results (Figures 3 and 4), a sequence of similar steps is observed in the BCL, HF and HFL
groups, with the complete filling of the defects by a thin layer of fibrous connective tissue
at 42 days. Such evidence is compatible with the chronology of bone repair of extensive de-
fects in rat calvaria, described previously and confirmed by the microtomography images,
reported previously [21,22,35,66,67].

Thus, at the end of the period, the morphological characteristics of the original diploe,
in all experimental groups, were not reestablished either in the external cortical bone
or in the epidural, with only partial bone repair of defects, similarly observed in the
Kretlow et al. (2010) [68] and Pires et al. (2021) [69] studies. Thus, the histomorphometric
data were compatible with the microtomographic data in volume/mm3 and area/mm2,
with TV and BA values significantly higher in the groups treated with lasers at 42 days.

In fact, a single intraoperative laser session with a wavelength of 808 nm and an energy
dose of 6 J for 60 s/point, already established in the scientific literature [70–72], as demon-
strated by the effectiveness in the first stage of the procedure which is the Repair process,



Molecules 2023, 28, 407 14 of 24

as greater proliferation and cell division occur in this period, providing an increase in the
volume of the newly formed bone. In addition, the laser stimulates the expression of active
molecules intrinsically related to the reduction of exudate by the activation of macrophage
cells in situ, as could be observed discrete inflammatory infiltrate at 14 days [73].

Following these findings, it is also believed that laser radiation significantly increases
mast cell degranulation in the first 24 h after tissue injury, promoting a transient amplifica-
tion of the acute inflammatory response, followed by a substantial reduction in neutrophil
concentration. This result leads to an indication of the crucial role of laser in bone repair
in the early stages, as it modulates the inflammatory response to accelerate the acute
phase and, thus, culminate in the anticipation of the chronification of the process and,
consequently, promote bone formation [74].

Expanding on histological investigations, the analysis of the structural organization
of collagen fibers in the microarchitecture of the new bone tissue formed, by means of
Picrosirius-red staining, confirmed the intrinsic relationship between the different shades
of birefringence with the quantity and thickness of the aligned filaments. Thus, the birefrin-
gence tone emitted by collagen fibers can vary from green, indicating thinner and more
dispersed fibers, changing from yellow to red, indicating gradually thicker and organized
fibers with a greater degree of compaction (see Figures 6 and 7) [75].

Therefore, it was found that the three birefringence tones were seen in all experimental
groups, with a similar pattern among them in terms of quantity, organization, and alignment
of collagen fibrils. However, at 42 days, there was a greater deposition of collagen matrix
versus the previous period (18.94 ± 6.86%, 14 days vs. 35.71 ± 6.89%, 42 days), with
a predominance of thicker fibers/red (mean 85.03 ± 5.54%).

Taking these results into account, it is suggested that a gene upregulation of type
1 collagen, COL-I, has occurred, similar between the groups at the end of 42 days, which
points to a greater presence of fibroblasts and active osteoblasts in locus, triggering in
a better organization of the primary trabecular bone and consequently of the mature
bone. In view of the results presented, it is undeniable that the new proportionality of the
fibrinogen component of the heterologous fibrin biopolymer played a fundamental role in
hemostasis during the surgical procedure, and as an agglutinating agent for graft particles,
contributing to greater wound stability [76].

It is also worth mentioning that the present study proposed a new proportionality of
the fibrinogen component of the heterologous fibrin biopolymer, in order to reduce the
stiffness and high density of the fibrin mesh, as seen in our previous studies [25,30]. Thus,
it is believed that it enables a tissue construction with pore morphology compatible with
the native bone matrix, enabling the incorporation and adsorption of bioactive molecules
and cells.

Finally, the placement of the particulate xenograft in the calvarial defect, at 14 days,
provided support for cell fixation, consequently presenting a higher bone percentage
(BA/TA%). However, at 42 days, it was expected that defects filled with tissue construction
treated with laser radiation, PHFL, would present statistically significant higher means,
but this was not demonstrated. The suggestion for this finding lies in the fact that the
particulate material may have exerted a shielding action against electromagnetic radiation
to the cells, inhibiting the regenerative action of the laser treatment, as observed in the
studies by Luca et al. (2020) [77].

In view of the above, it is believed that the set of evidence raised in the present
work allowed us to obtain new and relevant information, which may contribute to the
understanding of the effects of laser on bone repair treated with different bone grafts
associated with fibrin biopolymer with alteration in the proportionality of fibrinogen.

Although we have noticed differences between the experimental groups in the inves-
tigations carried out, we consider future molecular and immunohistochemical analyzes,
which can serve to compare the expression of cytokines intrinsically related to the inflam-
matory process, and to cell recruitment during bone repair.
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4. Materials and Methods
4.1. Deproteinized Bovine Bone Particles

Bio-Oss™ (Geistlich Pharma AG, Wolhusen, Switzerland) is an inorganic matrix of
sterilized bovine cortical bone consisting of a structure and calcium-phosphorus ratio simi-
lar to human bone hydroxyapatite (Ministry of Health Registry Brazil No. 806.969.30002;
granules 0.25–1 mm; lot 8160089) (Figure S1, Supplementary Materials).

4.2. Heterologous Fibrin Biopolymer

The fibrin biopolymer, formerly called fibrin sealant derived from snake venom, was
provided by the Center for the Study of Venoms and Venomous Animals (CEVAP) at
São Paulo State University (UNESP), Botucatu, São Paulo, Brazil, whose components and
application formula is in accordance with patent number BR 102014011432-7 issued on
6 July 2022 by the National Institute of Industrial Property of Brazil (INPI) [78]. It underwent
a phase I/II clinical trial, which proved its safety for therapeutic use in humans, standing
out as a promising therapeutic potential [79].

The biopolymer is composed of three solutions, previously thawed, mixed, and ho-
mogenized before the application. Fraction 1 is a thrombin-like enzyme extracted from
Crotalus durissus terrificus venom, the diluent comprises calcium chloride and fraction 2 is
a cryoprecipitate rich in fibrinogen produced from Bubalus bubalis blood. The proportion
and the amount were used (1:1:1) and readjusted according to the research needs [11,12,14,80].
(Figure S1, Supplementary Materials).

4.3. Selection and Maintenance of Animals

Sixty rats were obtained from the bioterium of the Ribeirão Preto (University of São Pa-
ulo—USP, Brazil), following the inclusion criteria: adults (Rattus norvegicus), Wistar han-
nover strain, healthy males, age 90 days, and weighing of approximately 320 g (Figure 9A).

The animals were received at the age of 42 days and during the experimental period
they were kept in conventional cages containing initially four animals each (change accord-
ing to the animal’s weight), with feeders and drinkers “ad libitum”, irradiated feed—Nu-
vilab rodents (NuvilabTM rat chow, Nuvital, Colombo, Brazil) and filtered water, in an ac-
climatized environment, air exhaust, light-dark period 12L/12D, temperature 22 ± 2 ◦C,
humidity 60 ± 10%, lighting 150 lux/1 m floor, max noise 70 DCb.

This study was approved by the Ethics Committee on the Use of Animals (CEUA) of
the Bauru Dental School—University of São Paulo (FOB-USP), CEUA-Proc. No 005/2020.
The present study strictly followed the ARRIVE (Animal Research: Report of in vivo
Experiments) checklist in order to allow researchers to properly examine the work, assess
its methodological rigor and reproduce the methods and results [81,82]. During the entire
experiment, the animals were monitored for pain expression, by observing whether the
animal was apathetic, depressed, aggressive or hyper-excited, mainly due to such traits
that are variables of its usual behavior. It was also controlled whether there were changes
in walking, posture or facial expression, water and food consumption, in addition to
clinical symptoms.

The animals were randomly distributed into 5 groups (n = 12) according to the type
of defect filling and photobiomodulation treatment (Figure 9C–E): BCL—defect filled by
blood clot and laser photobiomodulation therapy; HF—defect filled by heterologous fibrin
biopolymer; HFL—defect filled by heterologous fibrin biopolymer and laser photobiomodu-
lation therapy; PHF—defect filled by deproteinized bovine bone particles incorporated into
heterologous fibrin biopolymer; PHFL—defect filled by deproteinized bovine bone particles
incorporated into heterologous fibrin biopolymer and laser photobiomodulation therapy.
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Figure 9. Illustrations and images of the experimental design. (A) Inclusion criteria: 60 rats, adults,
Rattus norvegicus, Wistar hannover strain, males, age 90 days, body mass of approximately 320 g.
(B) Experimental model: Bone defect in the center of the parietal bones with the aid of a trephine drill,
8 mm in diameter. (C) Randomization (n = 12/group) and Treatment: BCL—defect filled by blood
clot and laser photobiomodulation therapy; HF—defect filled by heterologous fibrin biopolymer;
HFL—defect filled by heterologous fibrin biopolymer and photobiomodulation; PHF—defect filled
by deproteinized bovine bone particles incorporated into fibrin biopolymer; PHFL—defect filled by
deproteinized bovine bone particles incorporated into fibrin biopolymer and photobiomodulation.
(D) PBMT—transoperative laser photobiomodulation treatment (Dosimetry)—continuous mode,
infrared spectrum, 0.028 cm2 beam area, 808 nm wavelength, 100 mW power, 3.57 W/cm2 target
irradiance, energy density of 214.29 J/cm2 per point, 60 s/point, application at five points of the
defect surface clockwise and central point (single session). Each point received an energy dose of 6 J
for 60 s/point, and the total energy area of 30 J. (E) Experimental periods: Half of each experimental
group was euthanized in 14 days and the other half in 42 days.

4.4. Experimental Procedure

Surgical procedures were standardized and performed by the same team of profes-
sionals. The animals were submitted to intraperitoneal general anesthesia in the left lower
abdominal quadrant, using the sedative ketamine hydrochloride 80 mg/kg of animal
weight (DopalenTM, Sespo Industria e Comercio Ltd., São Paulo, Brazil) and the muscle
relaxant xylazine hydrochloride 10mg/kg of animal weight (AnasedanTM, Sespo Industria
e Comercio Ltd., São Paulo, Brazil), with strict monitoring.

Then, trichotomy was performed with the aid of a hair trimmer (PhilipsTM Multigroom
QG3250, São Paulo, Brazil) in the frontal–parietal bone region, between the external auric-
ular pavilions and weighed on an analytical balance (MicroNalTM Precision Equipment,
São Paulo, Brazil).

Antisepsis of the shaved region, including the fur around this area, was performed
with a 10% topical solution of Polyvinyl Pyrrolidone Iodine PVPI (PovidineTM, Vic Pharma
Ind e Comercio Ltd., São Paulo, Brazil).

The surgical procedure took place independently, on a covered bench, on a wooden
table covered with cork, with material exchange for each specimen. The animals were
fixed to the operating table, positioned in the prone position. Then, a 4 cm semilunar
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incision was made with a No. 15 carbon steel scalpel blade (EmbramaxTM, São Paulo,
Brazil) in the integument and the periosteum was carefully detached with the aid of the
syndesmotome and folded back together with the other tissues, exposing the surface
exterior of the parietal bones.

A circular osteotomy of 8.0 mm in diameter was performed in the center of the parietal
bones with the aid of a trephine drill (NeodentTM, Curitiba, Brazil) adapted to the contra-
angle (DrillerTM, São Paulo, Brazil) coupled to an electric micromotor (DrillerTM BLM 600
Baby, São Paulo, Brazil), at low speed (1500 rpm), under constant and abundant sterile saline
solution 0.9% sodium chloride JPTM (JP Farma—Pharmaceutical Industry, Ribeirão Preto,
Brazil) to avoid bone necrosis by thermal action, thus obtaining a rounded bone fragment,
without spicules, preserving the integrity of the dura mater and the brain (Figure 9B).

In the animals of the BCL group, the defects were performed and not filled by bioma-
terials (blood clot only). In the animals of Groups HF and HFL, the defects were filled by
the fibrin biopolymer. In PHF and PHFL groups, the defects were filled with deproteinized
bovine bone particles incorporated into the fibrin biopolymer.

The biomaterial was previously weighed on an analytical balance (MicroNalTM Pre-
cision Equipment, São Paulo, Brazil) in order to completely fill the surgical cavity. After
complete polymerization of the biopolymer with the bone matrix, the resulting compound
was transferred to the defect site without exerting pressure on the brain.

Subsequently, the experimental groups BCL, HFL and PHFL were submitted to laser
photobiomodulation treatment. With the surgical cavity still exposed, the laser was posi-
tioned perpendicularly at five points on the surface of the defect in a clockwise direction
(12 h, 3 h, 6 h, 9 h), in addition to a central point in a single session. (Figure 9C).

The tissues of the surgical area were repositioned, taking care that the periosteum
covers the cavities, and then the integument was sutured (simple stitches) with 4–0 silk
thread (EthiconTM, Johnson and Johnson Company, São Paulo, Brazil). The region was
carefully cleaned with gauze moistened with topical antiseptic, 2% chlorhexidine (RiohexTM

Pharmaceuticals Rioquimica, São José do Rio Preto, Brazil).
The animals were placed in the lateral decubitus position in cages and exposed to

incandescent light for complete anesthetic recovery. Immediately after the surgical proce-
dures, the animals received a single dose of the antibiotic FlotrilTM 2.5% (Schering-Plough,
Rio de Janeiro, Brazil), at a dose of 0.2 mL/kg and the analgesic Dipirona Analgex VTM

(Agener União, São Paulo, Brazil) at a dose of 0.06 mL/kg, in intramuscular applications.
Analgesic application was maintained for 3 days, in addition to continuity with the anal-
gesic Acetaminophen (Paracetamol, Generic medication, Medley, São Paulo, Brazil) at
a dose of 200 mg/kg, 6 drops/animal dissolved in the water available in the drinking
fountain until the period of euthanasia.

4.5. Laser Photobiomodulation Therapy Protocol

Groups BCL, HFL and PHFL were submitted to treatment with Therapy XT DMCTM

(São Carlos, Brazil), in continuous mode, infrared spectrum, with active medium GaAlAs
(Gallium-Aluminum-Arsenide), beam area of 0.028 cm2, wavelength of 808 nm, output
power 100 mW, target irradiance 0.6m W/cm2, energy density 210 J/cm2 per spot, 60 s/spot,
application to five points of the defect surface clockwise (12 h, 3 h, 6 h, 9 h), plus a central
point (single session). Each point received an energy dose of 6 J for 60 s/point, and the area
received a total energy of 30 J. Only one application was performed transoperatively [10]
(Figure 9D) (Figure S1, Supplementary Materials).

4.6. Euthanasia and Tissue Collection

After the periods of 14 and 42 days after surgery, 6 animals from each group per
period were weighed and euthanized by the general anesthetic overdose method (triple
dose—240 mg/kg ketamine + 30 mg/kg xylazine). Then, the animals returned to the box,
as they remained in stage II (excitation) for a longer time.
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After confirming the death of the animal, the defect region of each animal was carefully
removed with the aid of straight surgical scissors, preserving the supraperiosteal soft tissues
and fixed in 10% phosphate-buffered formalin (AllkimiaTM—Commerce of Materials for
Laboratories Ltd., Campinas, Brazil), pH 7.2 for 24 h, and later destined to the examination
in the microtomograph.

4.7. X-ray Computed Microtomography (µ-CT)

After fixation of the bone fragments, the pieces were submitted to an X-ray beam
scanning on the SkyScan 1174v2 computerized microtomograph (Bruker-microCT, Kontich,
Belgium). The X-ray beam sources (Cone-Beam) were operated at 50 kV, 800 uA, using
a Cu+Al filter. The pieces were packed in tubes, positioned and fixed in the appropriate
sample holder for the equipment, with a useful wax, enabling stabilization, in order to
prevent any type of movement during scanning. Then, they were rotated 180◦, with a “rota-
tion step” of 0.7, and a spatial resolution of 19.78 µm pixel size (1024 rolls × 1304 columns),
generating an acquisition time of 41 min and 33 min and 25 s/sample.

The images of each specimen were analyzed and reconstituted with the specific
software 64 Bits 270013 (BrukerTM, Kontich, Belgium) and the NReconTM Program (ver-
sion.1.6.8.0, SkyScan, 2011, Bruker-microCT, Kontich, Belgium) in about 1000 to 1100 slices
according to the parameters adopted anatomical. Data ViewerTM version 1.4.4 64bit soft-
ware (linear measurements of coronal, transaxial and sagittal axes) and CTvoxTM version
2.4.0r868 (Bruker MicroCT, Kontich, Belgium) were used for the two-dimensional and
three-dimensional visualization, respectively, followed by qualitative and quantitative
analysis of newly formed bone tissue [25].

Morphometric quantifications were determined using the images (coronal position)
and the region of defect or interest (ROI), performed manually on all images every ten
times. After selecting the volume of interest (VOI), binarization was performed, enabling
the distinction between the grafted material and the newly formed bone. Thus, to perform
the 3D analysis, adequate threshold ranges were determined for the biomaterial (130–255),
and the newly formed bone (130–72). Soft tissue are hypodenses and the data total soft
tissue volume (StV) and percentage of soft tissue (StV/TV) were obtained from the differ-
ence between StV = TV—(Biomaterial Volume BioV + New bone Volume NbV) and the
percentage StV/TV = 100—(BioV/TV + NbV/TV).

4.8. Histotechnical Processing

After Collecting the microtomographic images, the specimens were washed in run-
ning water for 24 h and subjected to demineralization in ethylenediaminetetraacetic aci-
dan (EDTA) solution, a solution containing 4.13% tritiplexTM III (Merck KGaA, Hessen,
Germany) and 0.44% sodium hydroxide. sodium (LabsynthTM, São Paulo, Brazil) with
weekly changes of the solution for an approximate period of 60 days. During these EDTA
exchange intervals, radiographic analyses were performed with Insight Adult IP-21 F-
Speed—CarestreamTM periapical film (Carestream Health, New York, USA) to confirm the
demineralization process. After complete demineralization, the pieces were dehydrated in
an increasing series of ethyl alcohol, diaphanized in xylene and embedded in HistosecTM

processed paraffin (Merck, Hessen, Germany).
Subsequently, semi-serial coronal sections were performed considering the central

region of the defect with the aid of a LeicaTM RM2245 semiautomatic microtome (Leica
Biosystems, Wetzlar, Germany), with a thickness of 5 µm for hematoxylin-eosin (HE)
staining, Masson’s trichrome (MT), and Picrosirius-red (PRS).

4.9. Histomorphometric Analysis of HE-Stained Defects

For the histomorphological description of the areas of the bone defect, in all specimens,
the entire extension of the defect was considered, to evaluate the pattern of bone repair
in all groups. Thus, it was possible to analyze in each defect the presence of granulation
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tissue, inflammatory infiltrate, the presence and quality of immature or mature/lamellar
bone and the degree of filling of the neoformed tissue in HE (4×) and MT (4× and 40×).

For this, 4 semi-serial sections of the surgical bed of each defect were evaluated in
an OlympusTM BX50 light microscope (Olympus Corporation, Tokyo, Japan) and the
photographs were captured in 4× and 40× objectives, HE staining and Masson’s trichrome
with a digital camera attached. (Olympus DP 71, Tokyo, Japan) using image capture
software DP Controller 3.2.1.276 (2001–2006, Olympus Corporation, Tokyo, Japan) with
image size specifications 4080 × 3072 pixels and spot 0.1%

Volume density (VVi) is defined as the volume fraction occupied by a given constituent
(graft, inflammatory infiltrate, connective tissue, bone tissue and bone marrow) of the whole
(graft defect + reaction tissue) and can be obtained in histological sections as area fraction,
i.e., VVi = AAi. After capturing the images covering the entire defect using a 4x objective,
HE staining and storing in Tag Image File Format (TIFF), the entire defect was reconstructed
in Adobe Photoshop CS6 (Adobe Systems, San Jose, CA, USA). Then, the entire defect was
evaluated in the image analysis program AxioVision, where the total analyzed area (A)
and the area occupied by each constituent in the defect (Ai) were determined by the PIXEL
measurement unit. The volume density (Vvi) of each type of structure was calculated by
the relationship: Vvi = AAi = Ai/A.100 [83].

4.10. Birefringence Analysis of Collagen Content of Bone Defects

The PRS-stained sections were evaluated under polarized light to determine the
quality and quantity of the newly formed organic matrix over the experimental defect
healing periods. Defect images were obtained using a Leica DFC 310FX high resolution
digital camera (LeicaTM, Microsystems, Wetzlar, Germany) connected to a Leica DM IRBE
confocal laser microscope and LAS 4.0.0 capture system (LeicaTM, Microsystems, Heer-
brugg, Switzerland).

To allow for the identification and analysis of collagen quantity and quality by the
birefringence of fiber bundles organization, the central fields of the defects were analyzed
under a polarized light microscope with 10x magnification. Three histological fields were
captured corresponding to the full extent of the defect. All remaining bones and dark areas
(without tissue/material) present in the histological fields were removed to avoid counting
these fibers and/or regions in Adobe Photoshop CS6 software (Adobe Systems, San Jose,
CA, USA).

Images were transferred to AxioVision Rel imaging software 4.8 (Carl Zeiss MicroImag-
ing GmbH, Jena, Germany) and total area was determined with dashed lines, area of
biomaterial particles, connective tissue area and newly formed tissue area, yielding values
in Pixels2.

Using the interactive Processing-Segmentation-Thershold tool, the RGB (Red, Green
e Blue) color standard was determined for each color. Then, the analysis of the density
area or the percentage (%) of each type of fiber by color was evaluated. Tissue bone was
recognized by its random, disorganized fibrillar pattern, usually with polarization colors
ranging from bright green/yellow (poorly organized bone) to orange–red (lamellar bone),
depending on fiber thickness and organization. (Figure S2, Supplementary Materials).

4.11. Statistical Analysis

The volumetric quantitative data obtained in the morphometric evaluations of the
microtomography, the area and percentages obtained by the histomorphometry in the
sections stained in HE and PRS were submitted to the Kolmogorov–Smirnov normality test.
To assess the presence of statistical difference between the periods (14 and 42 days) for each
study group, the unpaired Student’s “t” test was applied. In order to verify the differences
between the groups (BCL, HF, HFL, PHF and PHFL) in each experimental period, we
applied the Analysis of Variance (ANOVA) test to one criterion followed by Tukey’s post-
test. The tests were performed by the GraphPad Prisma software 5 (GraphPad Software
Inc., San Diego, CA, USA) adopting a significance level of 5% (p < 0.05) for all parameters.
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5. Conclusions

The results of the present study showed that the transoperative protocol of laser photo-
biomodulation in critical bone defects in the calvaria of rats filled with deproteinized bovine
bone particles associated with heterologous fibrin biopolymer with alteration in the pro-
portionality of fibrinogen were relevant in all evaluation parameters, (BV, 9.94 ± 1.51 mm3;
BA/TA, 25.71 ± 2.79%, red/thicker fibers, mean of 85.03 ± 5.54% at 42 days), showing
promise in the bone repair process.

These findings encourage prospective studies in order to investigate and explore
the effects of low-level laser on other graft associations with the proportionality of fibrin,
proposed in this study. In addition, a more accurate study evaluating the best fibrinogen
concentration should be performed in the future to standardize the ideal heterologous
fibrin scaffold.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28010407/s1, Figure S1: Materials used: (A) Depro-
teinized bovine matrix (Ministry of Health Registration No. 806.969.30002); (B) Fibrin biopolymer pu-
rified from snake venom (Ministry of Health Registration No. 1020140114327 and No. 1020140114360);
(C) Therapeutic Laser, Therapy XT DMC® (Ministry of Health Registration 80030810157), Figure S2:
RGB—green-yellow-red for interpretation of color references in the birefringence analysis of collagen
fibers, used in this study.
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