
Citation: Huang, S.; Shan, G.; Qin, C.;

Liu, S. Polymerization-Enhanced

Photophysical Performances of

AIEgens for Chemo/Bio-Sensing and

Therapy. Molecules 2023, 28, 78.

https://doi.org/10.3390/

molecules28010078

Academic Editor:

Takahiro Kusukawa

Received: 26 November 2022

Revised: 17 December 2022

Accepted: 18 December 2022

Published: 22 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Review

Polymerization-Enhanced Photophysical Performances of
AIEgens for Chemo/Bio-Sensing and Therapy
Shanshan Huang 1, Guogang Shan 1,* , Chao Qin 1,* and Shunjie Liu 2,*

1 National & Local United Engineering Laboratory for Power Batteries, Department of Chemistry, Northeast
Normal University, Changchun 130024, China

2 Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of
Sciences, Changchun 130022, China

* Correspondence: shangg187@nenu.edu.cn (G.S.); qinc703@nenu.edu.cn (C.Q.); sjliu@ciac.ac.cn (S.L.)

Abstract: AIE polymers have been extensively researched in the fields of OLEDs, sensing, and cancer
treatment since its first report in 2003, which have achieved numerous breakthroughs during the
years. In comparison with small molecules, it can simultaneously combine the unique advantages
of AIE materials and the polymer itself, to further enhance their corresponding photophysical
performances. In this review, we enumerate and discuss the common construction strategies of AIE-
active polymers and summarize the progress of research on polymerization enhancing luminescence,
photosensitization, and room-temperature phosphorescence (RTP) with their related applications in
chemo/bio-sensing and therapy. To conclude, we also discuss current challenges and prospects of
the field for future development.

Keywords: aggregation-induced emission; polymerization; photophysical performance; sensor;
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1. Introduction

Organic luminescent materials are widely used in frontier fields of optoelectronic
devices [1,2], chemical sensing [3], and biological theranostics [4–7]. The development of
new organic fluorophores has always been a research hotspot. However, conventional
organic fluorophores usually possess planar structures and exhibit well emission behav-
ior when dispersed in the solvent at a low concentration state. Nonetheless, in a high
concentration or aggregation state, the close packing between molecules leads to strong
π-π interaction and thus exhibits severe emission quenching, i.e., the ACQ effect [8,9].
The fact of only working in dilute solutions has greatly limited their practical applica-
tions [10–13]. Researchers have tried to reduce the degree of intermolecular aggregation
by physical and chemical modification or engineering methods to prohibit the ACQ effect,
but only minimal achievements have been obtained [14]. In 2001, Tang et al. [15] reported
an opposite phenomenon, in which fluorophores emit none or weak luminescence at low
concentrations, but exhibit brighter fluorescence emission at high concentrations or in ag-
gregated states. Such fluorophores usually possess twisted molecular structures with freely
rotatable or vibrating structural units, and the free motion of the molecules is restricted
in the aggregated state, reducing the energy dissipation caused by molecular motion and
facilitating the radiative relaxation, thus exhibiting enhanced fluorescence, i.e., the AIE
effect with the most widely accepted mechanism, restriction of intramolecular motion
(RIM) [9,16]. In recent years, molecular structures of AIE-active luminescent materials have
been precisely controlled with different photophysical properties to meet the application
demand of different fields. Tang and Lam et al. [17] have designed and synthesized a series
of AIE-active E/Z isomers through the fine-tuning regulation of molecular structure. The
subtle differences in structure allow them to show great differences in luminescence and
biotoxicity, which makes them potential candidates in the field of visual drug screening and
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effect evaluation. For chemo-sensing, AIEgens are widely used as detection probes for a
wide range of metal ions, which usually possess excellent luminescence efficiency and well
photostability in the aggregate state to be recognized by the naked eye, and high sensitivity
for precise identification of trace analytes. A systematic review has been presented by
Tang et al. [18]. For the biomedical field, AIE-based bioprobe has developed vigorously,
from bio-constituent sensing to imaging and diagnostic therapeutics, due to their good
photostability and photobleaching resistance, higher signal-to-noise ratio, and sensitivity,
etc., as summarized in depth by Tian et al. [19].

From the perspective of materials, most of the current research is concentrated in the
field of small molecules with more controllable structures, and the development and appli-
cation of fluorescence polymers still have a lot of room for exploration and enhancement.
Polymer materials have gradually become a research hotspot in various fields due to their
high thermal stability, good ductility and other advantages combined with luminescent
properties and information about fluorescence polymers with different characteristics and
applications have been summarized in detail by these recent reviews [20–22]. The Introduc-
tion of AIE fluorophore units into the structure of polymer side chains or backbone could
appropriately tune its morphology and composition to obtain well-defined novel functional
materials with multiple advantages such as high brightness, stability, and biocompatibility.
Since the first AIE polymer was designed and prepared by Tang et al. [23] in 2003, the
preparation and application of AIE-active polymers have been continuously expanded.
MOF (metal-organic framework) and COF (covalent organic framework) are also common
polymeric materials. Li et al. [24] prepared a highly stable yellow-emitting MOF, LMOF-231
by immobilizing the AIE-active chromophore H4tcbpe into a rigid framework structure
and was coated on the surface of commercial blue LED for the successful preparation of
white-emitting LED. In addition, AIE-active fluorophore of novel organic-inorganic hybrid
compounds with unique luminescent characteristics constructed by cheap and non-toxic
metal ions such as d10 zinc cations has also been a new research hotspot [25]. In recent
years, as shown in Figure 1, researchers have found that some photophysical properties
such as luminescence intensity, as well as photosensitization ability, two-photon absorption
intensity, etc. can be significantly improved and enhanced by polymerization strategies on
the basis of small molecules [26–28]. For example, the enlarged conjugation of conjugated
polymers allows for enhanced light-trapping capabilities compared to small-molecule
model compounds [29]. At the same time, with the gradual increase of the conjugation
degree, the ∆EST value (energy gap between the singlet and triplet states) of the polymer
gradually decreased, which facilitated the process of ISC (intersystem crossing) and thus
effectively enhanced the generation efficiency of ROS [30]. In addition, the polymerization
strategy also has certain applications in inducing the production of RTP [31], TADF [32],
and so on.

In this review, we discussed the common synthesis strategies of AIE-active polymers
and enumerated the phenomenon, mechanisms, and effects where significant improve-
ments in photophysical properties have been obtained by polymerization, and briefly
discussed the opportunities and challenges for further development.
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Figure 1. The schematic diagram of the representative polymerization-enhanced photophysical
properties and applications.

2. Design of AIE-Active Polymers

Compared with small molecular systems, polymer materials still have a lot of space for
development in terms of morphology regulation and structural modification. Therefore, it is
of great significance to develop mild, efficient, and environmentally friendly polymerization
strategies to construct novel functional AIE-active polymer materials. In general, AIE-
active polymer can be designed and prepared through various polymerization, the basic
principle of which is usually the introduction of AIEgens into the main or side chain of
the polymer by means of insertion, linking, or grafting. Figure 2 illustrates several basic
approaches to embed AIEgens into the polymer main chain by (a) direct polymerization
of AIE-active monomers or (b) copolymerization with other monomers. Similarly, the
attachment of AIEgens to polymerizable monomers, followed by homopolymerization
(c) or copolymerization (d) reactions can introduce them into the side chains of the liner
polymer. In addition, AIEgens served as an initiator to initiate polymerization (e) is also a
common method to obtain AIE-active polymers. Alternatively, AIE-inactive precursors can
also be polymerized to obtain polymers with AIE property (f). More details are summarized
by other reviews [14,33–36].
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Figure 2. Construction strategies of AIE-active polymers. (a) Direct polymerization of AIE-active
monomers and (b) copolymerization of AIE-active monomers with other monomers to embed
AIEgens into the main chain of polymer. (c) Homopolymerization and (d) copolymerization to
introduce AIEgens into the side chain of polymer. (e) AIEgens served as an initiator to initiate
polymerization. (f) Polymerization of AIE-inactive precursors to obtain polymers with AIE property.

3. Polymerization-Enhanced Luminescence for Reaction Tracking and Responsive
Materials

During the reaction, the physical properties of the polymerization system, such as
luminescent color, viscosity, solubility, etc., usually change continuously over time, so it is
of great importance to design and prepare high-performance polymers by effectively moni-
toring the degree and process of the reaction through fluorescence techniques to achieve
visualized controlled polymerization [37]. Tang et al. [38] combined photochemistry with
AIE technology to achieve a high degree of visualization of the reversible addition fragmen-
tation chain transfer (RAFT) polymerization process without destroying the reaction system.
The quenching effect caused by the carbonyl sulfur groups resulted in the non-luminescence
of TPE-based RAFT agents in either solid or liquid states [37,39]. As the reaction proceeded,
the obtained polymer exhibited strong luminescence with AIE properties. As shown in
Figure 3b, as the conversion rate of below 34%, the system was barely emissive. When
gradually increased to 84%, the luminescence was rapidly enhanced due to the increase in
system viscosity. Finally, as the conversion rate was higher than 84%, the viscosity of the
system was almost unchanged, and the emission intensity increased slowly and tend to be
stable. The PL spectra presented in Figure 3c,d showed the same trend, and the resulting
polymer PMMA showed an exponential increase in Mn over fluorescence intensity. In-
spired by this, Pang et al. [40] reported another similar work in which TPE-3, exhibiting the
highest polymerization conversion, was applied as an AIE-active initiator to carry out atom
transfer radical polymerization (ATRP) with tBA (tert-butyl acrylate), a commonly used
monomer. As time went by, the fluorescence intensity of the system increased gradually,
and as the conversion rate reached 80%, the increase in emission intensity tended to be
gentle (Figure 3f). Meanwhile, as shown in Figure 3h, a linear relationship between the PL
intensity of the system and Mn was achieved, which enabled a non-invasive visualization
of the polymerization process of the ATRP system.
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Figure 3. (a) Illustration of the RAFT reaction process. (b) The fluorescent photographs of the polymer
solutions at different conversions taken under UV irradiation. (c) PL spectra of the polymerization
mixtures at different conversions. (d) The exponential relationship of conversion and Mn with PL
intensity. Reprinted with permission from Ref. [38]. 2018, Wiley-VCH. (e) Illustration of the ATRP
reaction process. (f) Fluorescent photographs of the polymer solutions at different conversions
taken under UV irradiation. (g) PL spectra of the polymerization mixtures at different conversion.
(h) The linear relationship of Mn with PL intensity. Reprinted with permission from Ref. [40]. 2020,
Wiley-VCH. (i) Illustration of the precipitation polymerization process and fluorescent photographs
of the mixtures monitored under daylight and UV light at different times. Reprinted with permission
from Ref. [41]. 2019, Wiley-VCH.

In addition to the above two polymerization reactions, precipitation polymerization
was also a common means of polymerization. Tang et al. [41] used AIBN as initiator and
AIE-active TPE-VBC, styrene (St), and maleic anhydride (MAH) as monomers to carry
out the polymerization in isopentyl acetate (IAAC) and monitored the reaction under
sunlight and UV light for different times. As the AIE-active TPE-VBC was grafted onto
the polymer backbone, the conformation of the molecular backbone changed with the
progress of the reaction and gradually confined to particles, leading to the changes in
emission intensity and the visualization of reaction microenvironments. As shown in
Figure 3i, for the first 5 min, although the color of the system changed in daylight, the
fluorescence of the system was still weak under UV light, which was probably due to
the low degree of polymerization at this time. With the passage of time, the degree
of polymerization gradually increased, and the intermolecular interactions were also
enhanced, resulting in a bright orange emission under UV light. When increased to the
critical point, the solubility of the system dropped sharply, and the obtained polymer
began to aggregate and phase-separate gradually. Recently, Zhao et al. [42] prepared
covalent adaptable liquid crystal networks with AIE properties by using the tetraphenylene
derivative TPE-2MI as a fluorescent probe and dynamic cross-linking agent, and reacted
with LCPF via thermally reversible Diels-Alder (DA) reaction to enable visual monitoring
of network dynamics. As shown in Figure 4b,c, the initial phase of the mixture was non-
emissive because of the quenching effect caused by the photo-induced electron transfer
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(PET) mechanism. As the reaction proceeded at 40 ◦C, DA adducts were formed on both
sides of TPE-2MI, which eliminated the PET process, and the blue-green fluorescence
of the system gradually increased. At the same time, furan and TPE-2MI was selected
as model molecules to observe that TPE-2MI-furan DA adducts exhibited obvious AIE
characteristics with increasing water content (Figure 4d), indicating that the AIE effect
was also responsible for the enhanced fluorescence of the reaction system. Due to the
reversibility of DA reaction, when the system is heated at 125 ◦C for 5 min, the DA bond
dissociated, accompanied by the disappearance of fluorescence in the system, followed
by holding at 40 ◦C for 3 h, the DA bond restored with the fluorescence recovered again.
The process can be repeated for multiple cycles without any significant attenuation of
fluorescence intensity, and almost completely recovered, which indicated the well thermal
regulation stability of the prepared AIE-CALCNs. Meanwhile, based on the above results, a
good correlation between the cross-linking state of DA reaction system and the fluorescence
emission intensity was achieved, which makes the information of cross-linking state of AIE-
CALCN material visually displayed by fluorescence signal. As a demonstration, (Figure 4e)
the pattern drawn on LCP-F film with TPE-2MI/ acetone solution can be reversibly erased
and revealed many times under different conditions (heating at 125 ◦C for 5 min or keeping
at 40 ◦C).
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Figure 4. (a) The chemical structures and dynamic mechanism of the prepared AIE-CALCNs via
the reversible of DA reaction. (b) PL spectra of TPE-2MI/LCP-F film keeping at 40 ◦C for different
durations. (c) Plot of fluorescence intensity versus different times at 40 ◦C, and photographs of the
sample taken under UV light. (d) PL spectra and photographs of AIE properties of TPE-2MI-furan
reactants. (e) PL spectra and photographs of AIE-CALCN over multiple cycles of switching taken
under UV light. Reprinted with permission from Ref. [42]. 2022, Wiley-VCH.

Visualized polymerization based on AIE mechanism could also be combined with
other detection methods, so as to control the degree of polymerization in a more precise way.
Based on fluorescence polarization anisotropy, the measurement of fluorophore rotational
dynamics to obtain changes in the chemical environments in the reaction has been widely
used in a variety of polymerization systems. Goldsmith et al. [43] applied fluorescence
anisotropy for the first time to monitor the chemical reaction progress in droplets, combin-
ing AIE effect with the introduction of TPE-NB monomers with AIE properties to jointly
track the reaction process of the polymerization system. Polymerization reactants and
conditions were shown in Figure 5a, Ruthenium-based Grubbs Generation II-catalyzed ring-
opening metathesis polymerization (ROMP) were selected, TPE and PDI-based norbornene
monomers were selected as fluorescent probes, and the reaction-prepared droplet arrays
were imaged using fluorescence microscopy. As shown in Figure 5c, the anisotropy of the
mixture increases rapidly during the initial stage of the reaction, but soon plateaus. At this
point, the AIE measurements complemented the reaction process well, with a late onset
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of the AIE response over time, continued to increase after the anisotropy measurements
reached their highest value, and was able to be monitored continuously for up to several
hours (Figure 5d). The results suggest that fluorescence polarization anisotropy may be
more suitable for efficiently judging whether the polymerization reaction has occurred in
the system, while subsequent reaction processes, such as whether a larger Mn has been
reached, can be detected by AIE measurement. Such a combination of two complementary
approaches provided new ideas for the design of monitoring polymerization processes
with fluorescence self-reporting properties.
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AIE intensity with time. (c) The photographs of anisotropy values in droplets over time. (d) Emission
intensity of the AIE monomer probe in a droplet over time. Reprinted with permission from open
access of Ref. [43]. 2020, Royal Society of Chemistry.

In addition to reaction tracking, AIE polymers have also been extensively studied
in the field of responsive materials. Recently, Liou et al. [44] designed the AIE-active
conjugated polymer with fine-tuned DA structure as an electret for high-performance
optical programmable memory with electrical writing/photoerasing functions (Figure 6a).
The device has an ultra-fast optical response time (0.1 ms), excellent current switching
ratio (106), and ultra-high stability (hold time up to 40,000 s). Meanwhile, different storage
behaviors can be switched from flash to WORM by regulating the torsion angle between the
donor and acceptor structural parts, which provides a new idea for the design of ultra-fast
optical storage device materials.

In addition to chemical sensing, functional polymers also have applications in biosens-
ing. Kim et al. [45] designed an efficient signal-boosted nanophotonic probe (CLNP-
PPV/BDP) as an “energy relay” system. As shown in Figure 6b, peroxide CPPO was
served as “chemical fuel” and green luminescent BODIPY as the “relay molecule”. The
low band gap near-infrared AIE conjugated polymer DPA-CN-PPV with unique photonic
characteristics is effectively excited through the “energy relay” of this BODIPY molecule,
achieving intracellular and in vivo NIR imaging of H2O2, with a low detection limit of
10−9 M and a tissue penetration depth over 12 mm, which makes it possible to deeply
image inflammatory H2O2 in mice (Figure 6c).



Molecules 2023, 28, 78 8 of 22Molecules 2022, 27, x FOR PEER REVIEW 8 of 23 
 

 

 

Figure 6. (a) The chemical structures of the relevant molecular and schematic illustration of pho-

toprogrammable recorder device. Reprinted with permission from Ref. [44]. 2021, Wiley-VCH. (b) 

Schematic illustration of the structure of energy-relayed POCL nanoparticle (CLNP-PPV/BDP) and 

corresponding molecules. (c) The photographs of mouse model of arthritis and peritonitis. Re-

printed with permission from Ref. [45]. 2016, Elsevier. 

In addition to chemical sensing, functional polymers also have applications in bio-

sensing. Kim et al. [45] designed an efficient signal-boosted nanophotonic probe (CLNP-

PPV/BDP) as an “energy relay” system. As shown in Figure 6b, peroxide CPPO was 

served as “chemical fuel” and green luminescent BODIPY as the “relay molecule”. The 

low band gap near-infrared AIE conjugated polymer DPA-CN-PPV with unique photon-

ic characteristics is effectively excited through the “energy relay” of this BODIPY mole-

cule, achieving intracellular and in vivo NIR imaging of H2O2, with a low detection limit 

of 10−9 M and a tissue penetration depth over 12 mm, which makes it possible to deeply 

image inflammatory H2O2 in mice (Figure 6c). 

4. Polymerization-Enhanced Photosensitization for Photodynamic Therapy and Pho-

tocatalysis 

Compared to traditional clinical treatments, photodynamic therapy (PDT) has 

shown great application prospects in the therapy of a wide range of diseases due to its 

advantages of non-invasiveness, strong controllability, and few side effects. Photosensi-

tizers, together with oxygen and light sources, were called the three essential elements of 

PDT. Common photosensitizers mainly include phthalocyanine [46,47], porphyrin [48], 

and BODIPY derivatives [49]. In recent years, the design and synthesis of small molecu-

lar photosensitizers have developed rapidly. Tang et al. [50] reported a dual-functional 

Figure 6. (a) The chemical structures of the relevant molecular and schematic illustration of pho-
toprogrammable recorder device. Reprinted with permission from Ref. [44]. 2021, Wiley-VCH.
(b) Schematic illustration of the structure of energy-relayed POCL nanoparticle (CLNP-PPV/BDP)
and corresponding molecules. (c) The photographs of mouse model of arthritis and peritonitis.
Reprinted with permission from Ref. [45]. 2016, Elsevier.

4. Polymerization-Enhanced Photosensitization for Photodynamic Therapy and
Photocatalysis

Compared to traditional clinical treatments, photodynamic therapy (PDT) has shown
great application prospects in the therapy of a wide range of diseases due to its advantages
of non-invasiveness, strong controllability, and few side effects. Photosensitizers, together
with oxygen and light sources, were called the three essential elements of PDT. Com-
mon photosensitizers mainly include phthalocyanine [46,47], porphyrin [48], and BODIPY
derivatives [49]. In recent years, the design and synthesis of small molecular photosensi-
tizers have developed rapidly. Tang et al. [50] reported a dual-functional photosensitizer,
which showed an ultra-high 1O2 quantum yield of up to 98.6% in the aqueous solution and
could simultaneously exhibit excellent PDT effects and real-time monitoring of treatment
in in vivo. Dong et al. [49] designed a D-A-D structure photosensitizer, DPPBDPI, using
Diketopyrrolopyrrole (DPP) and BODIPY as building units with 1O2 quantum yield of over
80%, showing good PDT capabilities at both in vitro and in vivo. How to achieve more
efficient ROS yield has always been the core content of photosensitizer design. The corre-
sponding design strategies and classification of photosensitizers based on small molecules
have been reviewed in detail by the groups of Prof. Peng [51] and Prof. Li [52]. Recently,
polymerization-enhanced photosensitization has also been proven to be one of the most
effective methods to improve the efficiency of ROS generation [30,53,54]. Compared with
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small molecule photosensitizers, the extended conjugation length endowed conjugated
polymers with greater enhancement of light capture ability [30,55–57]. Meanwhile, AIE
effect also solved the problem of reduced ROS yield due to decreased fluorescence intensity
caused by the ACQ effect. Nowadays, AIE-active conjugated polymer photosensitizers
have been extensively studied in the field of photodynamic therapy [58–60]. Liu et al. [30]
selected four reported small-molecule photosensitizers SM1-SM4 and their correspond-
ing conjugated polymers CP1-CP4 after polymerization (Figure 7a) for comparing their
1O2 generation efficiency. The results indicated that the 1O2 generation efficiency of the
obtained conjugated polymers has increased by 5.06, 5.07, 1.73, and 3.42 times, respectively,
compared with their model compounds. Time-dependent density functional theory (TD-
DFT) calculations have shown that the increase of repeating conjugated units have reduced
the difference between the upper excited states (Sn and Tn) energy levels and the lowest
excited states (S1 and T1) [61], which promoted the ISC process and thus the yield of singlet
oxygen was effectively enhanced. On the other hand, the molar absorption coefficient
of the polymer was enhanced with the increase of the polymer repeating units, and the
enhanced light trapping ability also promoted the photosensitization effect of the polymer.
Among them, CP1 showed the highest single-linear oxygen generation efficiency, which
was 3.71 times higher than that of the commonly used commercial photosensitizer dye
Ce6. The corresponding nanoparticles were prepared by encapsulating SM1, CP1, and Ce6
with DSPE-PEG2000 as a polymer matrix, respectively, and used for in cell and in vivo
photo-induced cancer cell ablation and tumor therapy, with all the results showing that
CP1 NPs exhibited significant better PDT efficiency (Figure 7b,c).

(d)

Figure 7. (a) The comparison of the working mechanism of photosensitizers between small molecules
and conjugated polymers. (b) The chemical structures of small molecules SM1–SM4 and conjugated
polymers CP1–CP4 with enhanced 1O2 generation efficiency. (c) Comparative photographs of the
effects of PDT based on CP1 NPS, SM1 NPS, and Ce6 NPS at the cellular level. (d) Photographs
of CP1, SM1, and Ce6 NPs for in vivo image-guided PDT. *** p < 0.001, ** p < 0.01. Reprinted with
permission from Ref. [30]. 2018, Elsevier.

On this basis, Tang et al. [54] proposed that D-A even–odd effect is another strategy
to enhance photosensitization. As shown in Figure 8b, the 1O2 quantum yield from small
molecule TB to dimer TBTB to polymer P1 existing five repeating TB units, increased from
3.8% to 8.9% and then to 14% with increasing degree of conjugation, respectively, indicating
that increasing the degree of conjugation by polymerization is indeed an effective way to
enhance the quantum yield of 1O2. In addition, the 1O2 quantum yield of BTB (A-D-A)
with different donor-acceptor units was higher than that of TBT (D-A-D) (8.7% for BTB
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and 5.6% for TBT), and their corresponding conjugated polymers BTBTB (A-D-A-D-A) and
TBTBT (D-A-D-A-D) showed the same trend (10.8% for BTBTB and 7.0% for TBTBT). Time-
dependent density functional theory (TD-DFT) calculations revealed that the ∆EST values
of BTB (0.38 eV) and BTBTB (0.24 eV) for which the number of A unit is greater than that of
D unit are lower than those of TBT (0.49 eV) and TBTBT (0.41 eV) with more D units than
A units. The reduction in ∆EST promotes the ISC process, and thereby improving the 1O2
quantum yield, which is the so-called “D-A even–odd effect”. Later, P1 was encapsulated
into water-soluble nanoparticles, PNPs, with amphiphilic DSPE-PEG2000 and applied for
in vivo PDT on tumors. PNPs possessed a high specificity for mitochondria and exhibited
well biocompatibility in the dark environment, which indicated broad application prospects
in image-guided photodynamic anticancer therapy (Figure 8c,d).
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Figure 8. (a) The chemical structures of TB, TBTB, P1, TBT, BTB, TBTBT, and BTBTB. (b) 1O2 quantum
yield (Φo) and fluorescence quantum yield (Φf) of the above materials. (c) Colocalization fluorescence
image of HeLa cells. (d) Tumor imaging of mice and in vivo PDT effects of PNPs. Reprinted with
permission from Ref. [54]. 2018, Wiley-VCH.

Profited by the enhanced light-trapping ability of the conjugated polymers, Tang
et al. [62] reported another AIE-active conjugated polymer, PTB-APFB, with D-π-A structure
and higher ROS production capacity in the aggregated state compared to the corresponding
low-mass model compound MTB-APFB (1O2 quantum yield 38% for PTB-APFB, 29% for
MTBAPFB). For in vitro and in vivo investigations, PTB-APFB can effectively suppress
the infection of S. aureus, and the treatment recovery is faster than that of cefotaxime
(Figure 9e,f), indicating great prospects for practical applications in antibacterial infections.
Benefiting from these strategies, photosensitizers with high ROS generation efficiency
designed by the polymerization and extended conjugation enhanced photosensitization
effect have been widely used in PDT anticancer and antibacterial applications [26,60,63–65].
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Figure 9. (a) The chemical structures of MTB-APFB and PTB-APFB. (b) The ROS generation ability
of PTB-APFB, MTB-APFB and Ce6 upon exposure to white light for different irradiation times.
(c) The 1O2 generation ability of PTB-APFB, MTB-APFB and RB in PBS buffer under different
irradiation times. (d) The radical generation ability of PTB-APFB and MTB-APFB after UV irradiation.
(e) Photographs of biocidal activity of PTB-APFB treated S. aureus under white light, sunlight and
dark conditions. (f) Photographs of the mice skin infected with S. aureus during treatment with
different formulations. Reprinted with permission from Ref. [62]. 2020, Wiley-VCH.

Furthermore, the penetration depth of tissue also has a great influence on the PDT
effect. Two-photon excited photodynamic therapy (2PE-PDT) has attracted widespread
attention due to its enhanced tissue penetration ability and precision. The two-photon ab-
sorption (2PA) cross-section and 1O2 generation efficiency are the so-called two important
factors affecting the effectiveness of 2PE-PDT [66–68]. However, the high 1O2 generation
efficiency means the requirement of the twisted and low-conjugated donor-acceptor struc-
ture of the photosensitizer to effectively reduce the ∆EST value, but a good conjugation
structure is also indispensable to obtain the large (2PA) cross-section [69]. As expected,
polymerization can not only enhance the photosensitization ability as mentioned above but
also effectively extend the conjugation extent, providing an effective idea for the design of
high-performance two-photon PSs [70]. Liu et al. [29] prepared two AIE-active polymers
PTPEDC1 and PTPEDC2 with successively increased conjugation lengths based on a small
molecule photosensitizer, TPEDC (Figure 10a), and the generation efficiency of 1O2 was en-
hanced by 2.27 and 5.48 times under white light irradiation, along with 3.15 and 6.15 times
enhanced of (2PA) cross section, respectively. The three photosensitizers were encapsulated
with DSPE-PEG-MAL and modified with TAT-SH to obtain water-soluble nanoparticles for
further PDT experiments. As shown in Figure 10d, PTPEDC2-TAT dots not only showed
the best ablation of HeLa cells in the selected precise area of 400 mm×400 mm but also
achieved effective treatment of liver tumors in zebrafish, which provided an excellent idea
for the design of efficient photosensitizers for 2PE-PDT.
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Figure 10. (a) The chemical structures of TPEDC, PTPEDC1, and PTPEDC2. (b) The 1O2 generation
ability of TPEDC, PTPEDC1, PTPEDC2, and Ce6 upon exposure to white light for different irradiation
times. (c) Two-photon absorption cross section (2PACS) spectra of the three materials in aqueous
solution. (d) 2PE-PDT performance for in vivo zebrafish liver tumor treatment. Reprinted with the
permission from Ref. [29]. 2019, American Chemical Society.

Following the above strategies, recently, Song et al. [71] designed and synthesized
two AIE ionic polymers DCPN-1 and DCPN-2 with a reticular structure by ring-opening
polymerization to favorably restrict intramolecular motions. Under white light irradiation,
compared with DCPN-1, DCPN-2 exhibited stronger 1O2 production ability and exhibited
favorable photodynamic therapeutic effects on the growth of MCF-7, HeLa, and 4T1 cells
in vitro (Figure 11b). For the in vivo experiments, as shown in Figure 11c, the average tumor
weight of the mice in “DCPN-2 + light” group decreased by 55%, and no obvious variations
of the body weight were observed compared with other control groups, indicating its
good PDT destructive effect on primary tumors with less toxic side effects. This work has
provided a new idea for the design of biocompatible polymers with high 1O2 production
ability for preclinical research and clinical applications.
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Zhao et al. [63] reported three TPE-containing red AIE-active polymers, P1-PPh3,
P2-PPh3, and P3-PPh3, all of which can selectively target lysosomes with good intracellular
retention ability to undergo ultra-long term tracking performance against subcutaneous
tumors up to 20 days. Importantly, both in vivo and in vitro experiments showed that
these polymers possessed good photostability and 1O2 production ability, effectively pro-
longed the survival of tumor-bearing mice by inhibiting the growth of subcutaneous tumors
(Figure 12b). Tang et al. [72] introduced TPE into polymer PPE (Poly(phenyleneethynylene))
with different modifications of alkyl side chains to obtain a series of AIE-active PPE deriva-
tives CP0-CP2 with different functions (Figure 12c). Their ROS generation ability was
evaluated using DCFH (2,7-dichlorodihydrofluorescein) as a probe, the results showed
that subtle changes in the side chain groups would exert an important effect on the ROS
generation ability, and thus CP1 and CP2 could act as photosensitizers generating destruc-
tive ROS with potential applications in photodynamic therapy for killing multiple kinds
of bacteria. In order to test this idea, the killing efficiencies of CP1 and CP2 against four
bacteria, including S. aureus (G(+)), E coli (G(−)), methicillin-resistant S. aureus (MRSA), and
vancomycin-resistant Enterococcus faecium (VREF) under darkness or light irradiations were
explored. The results were shown in Figure 12e, CP2 exhibited a certain of dark toxicity
against all four bacteria, while the killing efficiency of S. aureus (G(+)), drugresistant MRSA
bacteria and VREF bacteria reached to almost 99% when incubated with a low concentration
of 5 µg mL−1 after 10 min of white light irradiation, and the survival rate of E. coli was
reduced to 22%. All the above results have demonstrated the efficient photodynamic effect
of CP2 on killing Gram-positive and drug-resistant bacteria.

In addition to fluorescent materials, organic long afterglow materials have been exten-
sively studied in various fields [73–77]. By profiting from their long lifetime and low toxicity,
they can also be used as photosensitizers for PDT. In 2020, He et al. [78] designed and
synthesized a series of ultralong organic phosphorescent (UOP) materials, EDCz (E = O, S,
Se, and Te). Among them, SeDCz nanocrystals benefited from its long-lived triplet excited
state, which produced 1O2 under white light irradiation, enabling the afterglow imaging
and PDT of S. aureus for the first time, and thus providing a new strategy for the design of
novel efficient photosensitizers based on UOP materials.

In addition to phototherapy, photosensitizers are also widely used in photocatalysis,
such as catalyzing organic synthesis [79–81], sunlight-induced wastewater treatment [82],
etc. However, many photosensitizers may themselves react with the generated ROS, with
reduced photostability, and were prone to photobleaching under high power irradiation,
which greatly limits their application range. As mentioned above, polymerization can
effectively improve the photostability of small molecule dyes and improve their photosen-
sitization capability. Motivated by these observations, Wu et al. [83] prepared photostable
conjugated polymeric PS with high 1O2 generation efficiency by a three-step design strat-
egy. Firstly, the AIE-active DTF with a D-A structure was selected as the model molecule
(Figure 13a). The introduction of the benzene ring in the molecule helps the separation of
HOMO-LUMO distribution, promotes the process of intersystem crossing (ISC), and then
improves the production efficiency of 1O2 [84,85]. Later the conjugated polymer PTF with
the same components as DTF was further prepared, the elongated conjugation makes it
wider absorption and higher 1O2 generation efficiency. Finally, the photosensitizer was
further optimized to obtain polymer CPTF with a large photooxidation-specific surface
area and good recyclability. The ISC channels of DTF and the two conjugated polymers
increased and the 1O2 generation capacity was thus enhanced after polymerization, giving
the results that the 1O2 generation efficiency of PTF was 3.63 times than that of DTP, and
CPTF was 4 times than that of DTP. Meanwhile, CPTF possessed a relatively large Brunauer-
Emmet-Teller (BET) surface area (117.2 m3g−1), which could be used as a photooxidation
catalyst for generating 1O2 under natural sunlight or simulated AM1.5G irradiation, to
oxidize benzaldehyde to benzoic acid in solvent-free conditions. In addition, the excel-
lent photostability and poor solubility of CPTF make it easy to be separated and recycled
after the reaction. In addition, due to the excellent photostability and poor solubility of
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CPTF, it is easy to separate and recycle after the reaction (Figure 13b). In sunlight-induced
CPTF-catalyzed wastewater treatment experiments, both Rhodamine 6G and S. aureus were
efficiently decomposed after 2 h irradiation with AM 1.5G (Figure 13c,d), and CPTF could
be recovered by filtration for further use.
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Figure 12. (a) The chemical structures of P1-PPh3, P2-PPh3 and P3-PPh3. (b) In vivo PDT effects
based on the three materials. Reprinted with permission from Ref. [63]. 2020, Springer Nature. (c) The
chemical structures of CP0-CP2. (d) The ROS generation ability of the three polymers. (e) Photographs
of biocidal activity of CP2 treated S. aureus, MRSA, VREF, and E. coli in darkness or upon white light
irradiation. Reprinted with permission from Ref. [72]. 2021, Wiley-VCH.

Following this, Xu et al. [60] prepared four AIE-active conjugated polymers, DBPEs
(DBPE-4, and DBPE-6) and DBPVEs (DBPVE-4, and DBPVE-6), with different conjuga-
tion strengths and aliphatic chain lengths. Taking RB as a reference, compared with the
other three polymers, DBPVE-6 with long aliphatic chains possesses the highest singlet
oxygen quantum yield (0.46, the highest for DBPVE-6, 0.13 for DBPE-4, 0.14 for DBPE-6,
and 0.34 for DBPVE-4). Density functional theory (DFT) simulation indicated that the
higher rotational energy barrier caused by the longer aliphatic chain units has effectively
limited the intramolecular rotation, thereby suppressing nonradiative transitions, show-
ing more pronounced radiative signals during the aggregation process. Meanwhile, the
relatively lower ∆EST value of DBPVEs also promoted the ISC process and enhanced the
1O2 quantum yield. Subsequently, three organic dyes, methylene blue (MB), rhodamine B
(RhB), and methyl orange (MO), were used as wastewater treatment models to evaluate
their ability to act as photosensitizers for photocatalytic degradation of wastewater. As
shown in Figure 14b, benefiting from the higher 1O2 quantum yield, DBPVEs exhibited
higher dye decomposition efficiency than that of DBPEs. After 120 min of illumination,
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DBPVE-6 showed the best photocatalytic performance in degrading organic pollutants in
wastewater with decomposition efficiencies of 54.1% for MB, 56.2% for RhB, and 60.4% for
MO, respectively.
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irradiation times. (d) Photographs of biocidal activity of CPTF-treated S. aureus upon different
irradiation times. Reprinted with permission from Ref. [83]. 2019, Wiley-VCH.
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ratio of MB, RhB and MO upon mixing with DBPE-4, DBPE-6, DBPVE-4 and DBPVE-6 under white
light irradiation, respectively. (c) The self-decomposition rates of the four polymers under white light
irradiation. Reprinted with the permission from Ref. [60]. 2021, Royal Society of Chemistry.
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5. Polymerization-Enhanced Room-Temperature Phosphorescence for Security
Protection

In addition to generating ROS, triplet excitons can also be used to produce phos-
phorescence [26]. Room-temperature phosphorescent materials are flourishing in various
fields such as anti-counterfeiting and imaging due to their long emission lifetime and rich
excited-state features [86–94]. According to the corresponding lifetime of different materi-
als, the information can be encrypted or decrypted by the technology of time resolution.
An et al. [95] designed a series of long-life RTP molecules CzPX and CzBX (X=Cl, Br) with
different lifetimes through structural modulation, and realized the related applications of
information encryption. Recently, a series of representative studies have been reported by
An [89,96,97]. It is found that many polymers have the ability to produce RTP by providing
a rigid environment or inhibiting the movement of phosphor molecules [98]. Yuan et al. [99]
systematically studied the photophysical properties of poly (ethyl terephthalate) (PET), a
polymer analogue of terephthalic acid (TPA) and dimethyl terephthalate (DMTPA) with
crystal-induced double emission (Figure 15a). It shows weak luminescence at low concen-
trations, but strong blue light emission at high concentrations and solid state, exhibiting the
typical AIE phenomenon. At the same time, it shows dual fluorescence-phosphorescence
emission in the solid state, and the film efficiency increases with the enhanced crystallinity
accompanied by the obvious RTP phenomenon. It provides a new strategy for the molecu-
lar design of chemical sensing to monitor its own crystallization process. Similarly, Yuan
et al. [100] also synthesized three amorphous polymers, all of which showed strong blue
light emission in the aggregated state (Figure 15b), where fine modulation of RTP can
be achieved by varying intermolecular interactions and changes in pendants. Among
them, PAA and PAM solids show obvious RTP phenomenon in air conditions, and can be
significantly enhanced by ionization, while the RTP of PNIPAM is quenched by oxygen,
and appeared only oxygen is isolated (Figure 15c,d). Based on this, as shown in Figure 15e,
the bird was colored with different commercial highlighter and PAM in the corresponding
parts showing completely different emission color under 312 nm UV light. After the light
source was removed, only the bird skeleton coated with PAM was visible to the naked eye.
In addition, writing “CENTER” with PAA, PAM, PNIPAM and PAAN powder obtained by
neutralization with NaOH, only the green “CTE” is visible under the irradiation of 312 nm
UV light due to the quenching effect of oxygen. All of these have enabled the application
of multi-modal anti-counterfeiting, and the unique RTP phenomenon of this amorphous
non-aromatic polymer provides new ideas for the design of new cryptography materials.

Lu et al. [101] performed a simple one-step B-O click reaction of boric acid-modified
tetraphenylene phosphor TPEDB with polyhydroxy PVA matrix to immobilize TPEDB
in a polymer network through covalent bonding for rapid preparation of RTP materials,
and their RTP performance can be well tuned by adjusting the number of B-O bonds
(Figure 15f). The theoretical calculations show that the PVA matrix provides a closed
microenvironment in which the TPEDB phosphorescence is effectively immobilized, in-
hibiting its non-radiative transition path and thus activating RTP emission. Subsequently,
the practicality of the TPEDB-PVA polymer material for use in cryptography has subse-
quently been explored. As shown in Figure 15g, the number “8” was structurally split and
encoded using TPEDB-PVA materials with varying alcoholysis degrees of PVA, showing
bright blue emission under UV light. After the light source is removed, different afterglow
durations of the corresponding materials can exhibit different numbers.
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Figure 15. (a) The chemical structures of TPA, DMTPA, and PET and the schematic illustration of
their emission photophysical properties in different states. Reprinted with the permission from
Ref. [99]. 2018, American Chemical Society. (b) The chemical structures of PAA, PAM, PNIPAM and
photographs of different PNIPAM/DMF solutions under 365 nm UV light. (c) Schematic diagram
of the modulation of p-RTP properties of different polymers. (d) Photographs of different polymer
powders taken under or after removing the 312 nm UV irradiation under nitrogen or in vacuum.
(e) Photographs of practical application in graphic security and information encryption made from
different polymers. Reprinted with the permission from Ref. [100]. 2019, Royal Society of Chemistry.
(f) Schematic illustration of polymer-based RTP through B—O click reaction. (g) Photographs of
practical application in data encryption, and digital coding by TPEDB ink on PVA under after
removing UV irradiation. Reprinted with permission from open access of Ref. [101], 2020, American
Association for the Advancement of Science.

6. Conclusions and Perspectives

The design and regulation of high-performance luminescent materials have always
been hotspot research in various frontier fields. In addition to widely used small molecules,
luminescent polymers are designed based on fluorescent small molecules through poly-
merization reactions or modification by grafting small molecule fluorophores onto side
chains of polymer structure. Combined with the advantages, such as good thermal stabil-
ity and processability of polymers themselves, luminescent polymers have occupied an
essential position in wide fields. As an alternative to traditional light-emitting materials,
AIE materials have been extensively studied and expanded since they were reported due
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to their excellent photophysical properties such as enhanced fluorescence in the aggregated
state. Among the whole luminescent material’s family, AIE-active polymers, blending
with both characteristics of polymers and AIEgens, have achieved important progress and
breakthroughs in the research of high-performance optical materials since they were first
reported in 2003, especially in recent years.

Based on numerous successful examples, in this review, recent research progress in
enhancing several optical properties of AIE materials through polymerization, including
luminescence intensity, ROS production capability, photocatalysis, RTP etc. has been
reviewed in detail. In these sections, polymerization plays a vitally important role for
improving various optical properties by one or more of the following ways: (1) Participating
in the reaction as polymerization initiator, as the reaction progresses, the viscosity of
the system gradually increased, along with the enhancement of luminescence intensity,
and thus the degree of polymerization could be monitored and tracked through a visual
method. (2) Increasing the number of repeating units, extending the conjugation length,
and reducing the value of singlet-triplet energy gap ∆EST, thereby promoting the ISC
process and enhancing the efficiency of ROS generation. (3) Increasing the rotational barrier
and suppressing the intramolecular rotation to reduce the energy dissipation caused by
non-radiative transitions. (4) Producing RTP by providing a rigid environment or inhibiting
the movement of phosphor molecules, etc. Although some discussions on the results have
been verified or presented by means of tests and theoretical calculations, more and more
comprehensive examples are still needed to verify the generality of polymerization in
enhancing the optical properties of AIE materials, so as to fully meet the needs of various
fields in the future. In addition to the cases cited above, examples of AIE-active polymers
for photothermal therapy applications have also been reported. We believe that with the
deepening of research, more optical properties improved or enhanced by polymerization
will be reported, and further research will be conducted to achieve greater breakthroughs.
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