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Abstract: Fresh potatoes were deep-fried in olive oil (OO), extra virgin olive oil (EVOO), and their
blends with 5%, 10%, and 20% v/v sesame oil (SO). This is the first report on the use of sesame oil as a
natural source of antioxidants during olive oil deep frying. The oil was evaluated for anisidine value
(AV), free fatty acids (FFAs), extinction coefficient (K232 and K270), Trolox equivalent antioxidant
capacity (TEAC), and total phenols (TPs) until the total polar compounds (TPCs) reached 25%. Sesame
lignan transformations were monitored through reversed-phase HPLC. While the TPCs in olive oils
increased at a steady rate, the addition of 5%, 10%, and 20% v/v SO delayed TPCs’ formation for 1, 2,
and 3 h, respectively. The addition of 5%, 10%, and 20% v/v SO increased the olive oil frying time
by 1.5 h, 3.5 h, and 2.5 h, respectively. The addition of SO to OO reduced the secondary oxidation
products’ formation rate. The AV for EVOO was lower than OO and all tested blends, even those
with EVOO. EVOO was more resistant to oxidation than OO, as measured by the TPCs and TEAC,
while the frying time rose from 21.5 to 25.25 h when EVOO replaced OO. The increase in frying time
for OO but not for EVOO, after SO addition, points to a niche market for EVOO in deep frying.

Keywords: antioxidants; deep frying; olive oil; anisidine value; sesame oil; sesame lignans; total
polar compounds

1. Introduction

Deep frying is one of the world’s most popular culinary processes, both for industrial
and domestic food preparation purposes. During deep frying, food is immersed in hot oil at
temperatures of 150 to 190 ◦C. In the presence of air, many complex reactions take place such
as oxidation, hydrolysis, and polymerization [1–3]. These reactions influence the quality of
the final product, such as the flavor, texture, shelf life of the oil, and nutrient composition,
with potential adverse effects on human health [4]. The type of frying oil, its chemical
composition, and its physical and physicochemical properties are major parameters that
influence the chemical reactions and determine the performance of the frying oil against
oxidation and decomposition [5].

Over the ages, olive oil has been widely produced and consumed in Mediterranean
countries, with it being the main lipid source in the Mediterranean diet. Its beneficial prop-
erties are associated with fatty acid composition, phenolic antioxidants, and other minor
compounds that make olive oil a very interesting option among oils and fats [6,7]. Extra
virgin olive oil exhibits high resistance to oxidation in comparison with other vegetable
oils, and it is well known for its very good sensory and health properties [8,9]. Olive oil is
resistant to degradation under domestic frying conditions, independently of its category
label [10]. Olive oil’s naturally occurring antioxidants play a significant role in the ther-
mal stability during deep frying [11]. Synthetic and natural antioxidants can be added
to prevent or minimize the oxidative deterioration of the oil. The most commonly used
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antioxidants are butylated hydroxy anisole (BHA), butylated hydroxytoluene (BHT), propyl
gallate (PG), and tert-butylhydroquinone (TBHQ). However, the use of synthetic antioxi-
dant additives is regulated in most countries because of concerns regarding their long-term
health effects. Natural components in foods with radical scavenging or antioxidant activity
have attracted interest as alternatives to synthetic antioxidants. The addition of sources of
natural antioxidants can possibly be used to improve olive oil’s resistance to the formation
of primary and secondary oxidation products without making considerable changes to
their natural composition. Blending different types of vegetable oils may help to extend the
thermal stability and nutritional profile of frying oils [12]. Sesame oil demonstrates higher
oxidative stability than other vegetable oils [2,13]. The study of this superior oxidative
stability has mainly been focused on sesame lignans, which are present in small amounts
in sesame oil. Sesamin and sesamolin are the major lignans found in sesame seeds [14,15].
When sesame seeds are roasted at a high temperature, sesamolin degrades into sesamol [16].
Sesamol is reported to possess higher radical scavenging activity compared to sesamin and
sesamolin [17]. The significant stability of sesame oil could be related with the continuous
generation of sesamol from the degradation of sesamolin during thermal oxidation, rather
than the initial antioxidant content [18].

In one study, the addition of sesame lignans in oils during frying increased sesamol
and decreased sesamolin, while sesamin was rather resistant to heat. Sesame lignans could
have applications as natural antioxidants in the edible oil and food industry [19]. Other
studies suggest that lignan compounds in sesame oil are effective antioxidants in deep fat
frying due to their high stability and efficacy [2,20]. The addition of roasted sesame oil, as a
natural source of antioxidants, prolonged the oil’s heat stability and shelf life. Moreover,
when the roasted sesame oil concentration increased, the antioxidant capacity of frying oils
increased. The proper blending of high polyunsaturated sunflower oil with sesame oil can
produce oil blends of high nutritional value and enhanced stability for home cooking and
deep frying [21].

Consumers’ perception of the health benefits of olive oil creates a niche market for
olive oil for deep frying, despite its high price. Consumers nowadays may have a different
perception of extra virgin olive oil, recognizing its superiority over olive oil. This creates
the need to further study these two olive oil products during deep frying and assess the
benefits of adding antioxidants as blends with natural products that will not deteriorate
consumers’ perception of the health benefits of olive oil. Although olive oil’s deep-frying
characteristics have been studied, we were not able to find any study with sesame oil
admixtures. In this study, we describe the effect of adding virgin sesame oil as a source
of natural antioxidants at different levels to extra virgin olive oil and olive oil during
domestic deep frying. Sesame lignan changes in the oil samples during deep frying and
the correlation between the sesame oil antioxidant activity and its efficacy in retarding the
oxidative deterioration of olive oil and extra virgin olive oil were investigated. In order to
evaluate the oxidation progress, we monitored the total polar compounds, anisidine value,
free fatty acids, extinction coefficient, total phenols, and antioxidant activity.

2. Results and Discussion
2.1. Total Polar Compounds

The formation of polar compounds indicates oil deterioration and is strongly related to
primary and secondary oxidation during frying. Total polar compounds are considered one
of the most objective indicators in evaluating the deterioration of deep-frying oils [22,23].
In several countries, the rejection value for TPCs has been set at 25% by weight for frying
oils [24]. TPCs increased linearly, as shown in Figure 1 for OO and Figure 2 for EVOO. The
OO frying time increased from 21.5 to 23, 25, and 24 h upon the addition of 5, 10, and 20%
SO, respectively. During this procedure, the formation of TPCs was slightly delayed when
sesame oil was added. The delay was proportional to the SO concentration, lasting 1, 2,
and 3 h for 5, 10, and 20% SO, respectively. Then, TPCs increased at a steady rate of 1% per
hour for all three blends, which is lower in comparison to 1.5% for pure OO.
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The EVOO frying time was not increased by SO blending and was approximately
the same (25–26 h) for all blends. This is due to the higher antioxidant content of EVOO,
indicating the higher nutritional value and health benefits of EVOO in comparison to OO.
The TPC formation rate for EVOO did not decrease upon the addition of SO; it was always
1% per hour. A slight delay in the formation of TPCs upon 10 and 20% SO addition to
EVOO was also detected, while 5% had no effect. After this delay, TPCs increased at a
steady rate of 1% per hour (Figure 2).

2.2. Lignans

Large amounts of sesamol are produced from sesamolin during frying, contributing to
oil stability [16,25]. Chatzos and Georgiou [26] reported that radical scavenging activity
increases during virgin sesame oil heating, in contrast to all other seed oils in their study.
This paradox is attributed to the fact that sesamol has higher antioxidant activity than its
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precursor, sesamolin [17]. We followed the decomposition of sesamolin to sesamol during
the domestic deep frying of potatoes in admixtures with olive oil through reverse-phase
HPLC. Initially, only sesamin and sesamolin were detected (Figure 3). After 1h of frying,
sesamol was detected and sesamolin decreased by 18%. After 2 h of deep frying, both
sesamol and sesamolin decreased by 5% and 38%, respectively. After 4 h, sesamol and
sesamolin decreased further by 60% and 70%, respectively. A similar study on sesame oil
by Hemalatha and Ghafoorunissa is in accordance with our study, reporting the maximum
concentration of sesamol after one hour followed by a gradual decrease for one more
hour [27].

Molecules 2023, 28, x FOR PEER REVIEW 4 of 12 
 

 

2.2. Lignans 
Large amounts of sesamol are produced from sesamolin during frying, contributing 

to oil stability [16,25]. Chatzos and Georgiou [26] reported that radical scavenging activity 
increases during virgin sesame oil heating, in contrast to all other seed oils in their study. 
This paradox is attributed to the fact that sesamol has higher antioxidant activity than its 
precursor, sesamolin [17]. We followed the decomposition of sesamolin to sesamol during 
the domestic deep frying of potatoes in admixtures with olive oil through reverse-phase 
HPLC. Initially, only sesamin and sesamolin were detected (Figure 3). After 1h of frying, 
sesamol was detected and sesamolin decreased by 18%. After 2 h of deep frying, both 
sesamol and sesamolin decreased by 5% and 38%, respectively. After 4 h, sesamol and 
sesamolin decreased further by 60% and 70%, respectively. A similar study on sesame oil 
by Hemalatha and Ghafoorunissa is in accordance with our study, reporting the maxi-
mum concentration of sesamol after one hour followed by a gradual decrease for one more 
hour [27]. 

As mentioned in Section 3.1, the TPCs after one hour of frying remained constant at 
the same time as when the sesamol concentration peaked. Then, after four hours, when 
sesamol was depleted, the TPCs increased again, while all blends exhibited similar behav-
ior. This points to a beneficial role of sesame oil addition. The delay of TPC formation 
correlates to sesamolin concentrations: higher concentrations increase the delay time. This 
finding is in agreement with previous research, where the antioxidant capacity of sesamol 
may have been influenced by the concentration [28]. 

 
Figure 3. Sesame lignans during deep frying using 20% v/v sesame oil in olive oil. 

2.3. Changes in Anisidine Value 
Deep frying promotes secondary oxidation products, mostly conjugated dienals and 

2-alkenals, which are more stable during the heating process. Thus, the AV is an essential 
and reliable test to measure oil oxidation [29]. These compounds are accessed through the 
anisidine value. The AV increased significantly for both the OO and the blends with SO 
during the initial 12h. Then, the AV increased at a lower rate. It should be noted that the 
blends always scored lower than OO (Table 1). 

  

Figure 3. Sesame lignans during deep frying using 20% v/v sesame oil in olive oil.

As mentioned in Section 3.1, the TPCs after one hour of frying remained constant at
the same time as when the sesamol concentration peaked. Then, after four hours, when
sesamol was depleted, the TPCs increased again, while all blends exhibited similar behavior.
This points to a beneficial role of sesame oil addition. The delay of TPC formation correlates
to sesamolin concentrations: higher concentrations increase the delay time. This finding is
in agreement with previous research, where the antioxidant capacity of sesamol may have
been influenced by the concentration [28].

2.3. Changes in Anisidine Value

Deep frying promotes secondary oxidation products, mostly conjugated dienals and
2-alkenals, which are more stable during the heating process. Thus, the AV is an essential
and reliable test to measure oil oxidation [29]. These compounds are accessed through the
anisidine value. The AV increased significantly for both the OO and the blends with SO
during the initial 12h. Then, the AV increased at a lower rate. It should be noted that the
blends always scored lower than OO (Table 1).

The AV significantly increased for EVOO and all its SO blends during the initial 12 h
(Table 1). At the same time, the blends scored higher in the AV. Then, the AV increased at
a lower rate, while the blends still scored higher. It is interesting to note that secondary
oxidation products were lower in EVOO throughout the study. This points out that the
antioxidant compounds therein are much more efficient than sesame oil.
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Table 1. Changes in AV during deep frying. Olive oil, extra virgin olive oil, and blends with sesame
oil.

Time
Frying
Cycle

Anisidine Value

OO
OO Blends with SO

EVOO
EVOO Blends with SO

5% 10% 20% 5% 10% 20%

0 1 26.3 18.9 12.2 23.5 16.0 20.4 20.1 36.6
0.5 3 30.7 21.9 14.3 24.0 19.7 30.9 28.7 40.7
1 5 45.8 26.7 15.3 24.3 21.2 36.6 34.9 42.0

1.5 7 52.1 29.6 19.4 33.4 23.6 44.7 38.5 41.7
2.5 11 54.0 38.1 26.9 36.1 29.1 45.7 45.6
4 17 55.3 48.8 37.9 46.0 41.4 54.2 45.9 56.1

4.5 19 52.5 48.9 41.5 48.7 47.2 54.6 46.4 59.65
9.5 39 95.9 63.0 76.7 71.8 66.9 74.9
12 49 97.8 85.7 69.5 80.6 64.3 67.6 68.5 90.9
14 57 102.0 90.0 75.9 90.3 76.3 75.2 88.4 97.1
16 65 109.2 94.3 79.4 96.4 77.8 86.7 90.3 107.2
18 73 113.4 84.5 109.3 92.2 96.9 97.9 102.3

21.25 86 128.2
23 93 114.1 96.2 124.6 97.1 105.3 100.0 122.5
24 97 124.9 102.0 126.8 111.9 115.9 117.8

24.75 100 114.7 119.6
25 101 112.3 119.9 129.2
26 105 121.6 129.9

OO: olive oil, EVOO: extra virgin olive oil, SO: sesame oil.

2.4. Free Fatty Acids

Hydrolysis in fats and oils results in the formation of free fatty acids, mono- and
di-glycerides, and glycerol, inducing oxidative degradation and contributing to shelf life
reduction [2]. The free fatty acid content increases during frying [30].

The FFA content in the OO sample was 0.71%, which is within the legally accepted
limit of 1%. After 12h of frying, the FFA content in OO and the three blends increased to
1.44, 1.52, 1.47, and 1.59, respectively, as shown in Table 2. The total frying time was 21.5, 23,
25, and 24 h for OO and the three blends. The end FFA values were 1.9, 2.3, 2.8, and 3.0%,
respectively. Although the frying time increased due to SO addition, it was accompanied
by a higher FFA content, which could have a negative organoleptic impact or even surpass
the maximum value set in specific countries (2.5%) [24].

The FFA content in EVOO was 0.67%, which is within the legally accepted limit of
0.8% established by the Commission Delegated Regulation (EU 2015/1830). After 12 h of
deep frying, the FFA content in EVOO and the three blends increased to 1.29, 1.30, 1.45,
and 1.41%, respectively, as shown in Table 2. The total frying time was 25, 25.25, 25.5,
and 26 h for EVOO and the three blends. The end FFA values were 2.2, 1.8, 2.4, and 2.4%,
respectively. The frying time was accompanied by a higher FFA content without exceeding
the maximum value set in specific countries (2.5%) [24].

2.5. Extinction Coefficients: K232 and K270

When polyunsaturated fatty acids are oxidized, ultraviolet absorption increases. The
changes in ultraviolet absorption at 232 nm are associated with the formation of conjugated
dienes of polyunsaturated fatty acids, while changes at 270 nm are associated with the
formation of conjugated trienes and carbonyl compounds. OO’s and EVOO’s values of
K232 and K270 are shown in Tables 2 and 3, respectively. The values for OO, EVOO, and
their blends with SO increased during frying. There were no evident differences between
the types of oil or between the blends. The increase was not related to the amount of SO.
Moreover, no difference between OO and EVOO was recorded.
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Table 2. Olive oil and blends with sesame oil, changes in FFA, extinction coefficients, and TEAC value.

Frying Time (h) FFA K232 K270
TEAC

(mmol/Kg)

OO
0 0.71 ± 0.03 1.55 0.20 0.91 ± 0.01
12 1.44 ± 0.08 3.91 1.77 0.15 ± 0.02

21.5 1.91 ± 0.05 3.99 1.86 0.26 ± 0.02

5% SO
0 0.69 ± 0.00 1.19 0.21 1.10 ± 0.01
12 1.52 ± 0.04 3.91 1.08 0.02 ± 0.02
23 2.34 ± 0.05 3.90 1.21 0.60 ± 0.02

10% SO
0 0.58 ± 0.08 1.43 0.26 1.29 ± 0.01
12 1.47 ± 0.05 2.24 1.29 0.099 ± 0.01
25 2.81 ± 0.1 4.15 1.74 0.53 ± 0.03

20% SO
0 0.41 ± 0.01 2.09 0.36 1.37 ± 0.01
12 1.59 ± 0.06 2.16 1.61 0.18 ± 0.02
24 3.03 ± 0.04 4.13 2.27 0.92 ± 0.03

OO: olive oil, SO: sesame oil.

Table 3. Extra virgin olive oil and blends with sesame oil, changes in FFA, extinction coefficients, and
TEAC value.

Frying Time
(h) FFA K232 K270

TEAC
(mmol/Kg)

EVOO
0 0.67 ± 0.01 1.22 0.13 1.91 ± 0.02
12 1.29 ± 0.05 3.63 0.89 0.32 ± 0.01
25 2.21 ± 0.07 2.94 0.79 0.49 ± 0.03

5% SO
0 h 0.67 ± 0.00 2.13 0.25 1.63 ± 0.01
12 h 1.30 ± 0.08 3.39 1.21 0.34 ± 0.02

25.25 h 1.79 ± 0.05 3.47 1.27 0.44 ± 0.02

10% SO
0 h 0.63 ± 0.03 2.06 0.19 2.1 ± 0.02
12 h 1.45 ± 0.04 3.11 1.31 0.46 ± 0.02

25.5 h 2.44 ± 0.07 2.35 1.41 0.68 ± 0.03

20% SO
0 h 0.63 ± 0.01 2.03 0.36 2.03 ± 0.01
12 h 1.41 ± 0.12 2.77 1.55 0.56 ± 0.02
26 h 2.42 ± 0.08 4.06 1.92 0.94 ± 0.02

EVOO: extra virgin olive oil, SO: sesame oil.

2.6. Changes in Antioxidant Capacity

Lipid oxidation is a free radical reaction that is strongly modulated by synthetic
and natural antioxidant compounds. During deep frying, antioxidant compounds are
consumed, resulting in a lower score in antioxidant capacity tests. Measured by the radical
scavenging ability while reacting with a relatively stable radical such as 2,2-diphenyl-1-
picrylhydrazyl (DPPH) [31].

In our study, the total antioxidant capacity was expressed as the Trolox equivalent
antioxidant capacity (TEAC), defined as the mmol Trolox/kg of oil. The OO blends with
SO initially had higher TEAC values than OO, which were proportional to the percentage
of SO in the blend (Table 2). After 12 h of deep frying, all oils reached extremely low TEAC
values. This comes in accordance with Kalantzakis et al.’s study, where olive oil samples
practically lost their radical scavenging activity after 5 h of heating at 180 ◦C [32]. Although
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the oil samples were not expected to present any radical scavenging activity at the end of
the frying experiment, the TEAC values were elevated for all samples (Figure S1a). This is
an artifact explained by the reaction of DPPH with aldehydic compounds that are the end
products of lipid oxidation and are produced in high concentrations during the late stage
of deep frying [33].

The antioxidant capacity of EVOO was not increased that much with the addition
of SO, as with OO (Tables 2 and 3, zero frying time). The antioxidant capacity of EVOO
after 12 h of deep frying decreased by 84%. This improved to 72% upon 20% SO addition
(Table 3). In a similar way as was said for OO above, the TEAC values increased after 25 h
of deep frying (Figure S1b).

2.7. Changes in Total Phenols

Phenolics are the major health-promoting compounds in olive oil and the Mediter-
ranean diet [34]. It is, therefore, important to follow the evolution of phenolics during deep
frying to assess the potential health benefits of using olive oil.

The initial phenolic content of OO was 55.96 mg/Kg. The total phenols suffered a
significant decrease for OO and all its blends with SO after 12 h of deep frying, going
almost to zero (Figure S2).

The initial amount of phenolics in EVOO was 127.0 mg/Kg. After 12 h of deep frying,
EVOO and all its blends with SO retained 30% of their phenolic content. After 25 h, there
were no phenolic compounds left (Figure S3).

2.8. Fatty Acid Composition

The fatty acid compositions reflected the high proportion of oleic acid in OO (74.6%)
and EVOO (75%). In contrast to olive oils, the major fatty acid in SO is linoleic (41.5%), fol-
lowed by oleic (31.9%), palmitic (14.8%), and stearic (9%) acids. The fatty acid compositions
of SO, OO, and EVOO were in agreement with values from the literature [35,36].

3. Materials and Methods
3.1. Reagents

Isooctane, isopropanol, glacial acetic acid, chloroform, ethyl acetate, acetone, diethyl
ether, ethanol, n-hexane and methanol of analytical grade, sodium acetate of pro-analysis
grade, and potassium hydroxide pellets for analysis were obtained from Merck, Darm-
stadt, Germany.

p-anisidine 99%, 2,2-Diphenyl-1-picrylhy-drazyl (DPPH) 90%, and 6-hydroxy-2,5,7,8-
tetramethylchroman-2-car-boxylic acid (Trolox) 97% were purchased from Sigma-Aldrich
(St. Louis, MO, USA). Gallic acid monohydrate was supplied from Riedel-de Haen (Seelze,
Germany). LC-MS-grade methanol and CDCl3 98% D were purchased from Fluka. Sesamol
was purchased from Sigma Chemical Co. (St. Louis, MO, USA).

3.2. Oil Samples

A commercial extra virgin olive oil (EVOO); a commercial blend of refined olive oil
and virgin olive oil labeled as olive oil (OO) purchased from Minerva S.A. (Athens, Greece);
and commercial virgin sesame oil (SO) purchased from Haitoglou Bros S.A. (Thessaloniki,
Greece) were used for the frying experiments. The oils were purchased from local stores in
Athens, Greece in sealed and marked commercial containers.

3.3. Frying Process

A 2.5 L domestic deep-frying electric fryer (KENWOOD DF520) was used, where the
temperature was regulated at 170 ± 5 ◦C. Fresh potato strips (7 cm × 0.5 cm × 0.5 cm), of
Spunta variety cultivated in Greece, were deep-fried in 70 g batches. The batches were fried
at 9 min intervals for 12 h per day for two consecutive days, without oil replenishment,
until the oil was discarded. The end-of-frying assay and oil rejection point were determined
by the value of total polar compounds (max. 25%), according to the regulation of frying
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fats and oils in most European Countries [24]. The frying experiment was planned in such
a way as to simulate a continuous/prolonged deep-frying process.

3.4. Oil Sampling

After each frying session, lasting 15 min, the TPCs were assessed directly on the hot oil.
Extinction coefficients (K232 and K270), antioxidant capacity (AC), free fatty acids (FFAs),
and total phenols (TPs) were assessed by removing a 6 mL sample: (a) right after the
thermal equilibration of the oil to 170 ± 5 ◦C before frying the potatoes, (b) at 12 h, and
(c) at the time when the TPCs reached 25% and the oil was rejected. The anisidine value
(AV) was assessed by removing 0.5 mL sample at regular intervals. The samples were
placed in screw-cap glass vials and were immediately stored in the freezer until analysis.
To monitor sesame lignan transformations, 2 mL oil samples were removed before starting
and after 1 h, 2 h, and 4 h.

3.5. Total Polar Compounds

TPC estimation was based on the dielectric constant changes, measured directly on the
hot oil with a Testo 270 sensor (Testo SE & Co. KGaA, Titisee-Neustadt, Germany). Before
measuring, about 5 min was allowed after removing the fried potatoes until there were no
more bubbles rising. The sensor took about 1 min to obtain a stable reading. TPC % content
along with the temperature were displayed on the screen of the sensor. Sensor calibration
was performed through the oil, supplied by the Testo 270 manufacturer, right before the
analysis. The sensor was cleaned with warm water and neutral detergent and dried well
between measurements.

3.6. HPLC Analysis

Sesamin and sesamolin were isolated and crystallized from sesame oil, as described
by Hemalatha and Ghafoorunissa [26]. Sesamin and sesamolin were characterized with
mass spectrometry and 1H-NMR and 13C-NMR spectrometry. Sesamol was purchased
from Sigma Chemical Co. (St. Louis, MO, USA). HPLC analysis was carried out with an
Agilent Technologies 1100 series diode array detector. Sesame lignans were analyzed as
described by Wen-Huey Wu [37], using HPLC equipped with a Supelco Analytical HPLC
column (Discovery HS C18) with a length of 250 mm, internal diameter of 4.6 mm, and
particle size of 5 µm. The mobile phase was a mixture of methanol–deionized water (70:30,
v/v) at a flow rate of 0.8 mL/min and the column temperature was maintained at 25 ◦C.
The absorption at 290 nm was monitored. Twenty-microliter aliquots of oils, dissolved
in chloroform (0.5 mg/mL), were injected for analysis. The retention times for standard
sesamol, sesamin, and sesamolin were 4.6, 15.6, and 20.8 min, respectively (Figures S4–S9,
Table S2).

3.7. Analytical Methods

The AV was determined according to the modified European Pharmacopoeia 5.0
method. The oil samples were dissolved in isooctane and then allowed to react for ten min-
utes with a 2.5 g/L p-anisidine solution in acetic acid. The absorbance value was measured
at 350 nm using the Cary 60 Scan UV–visible spectrophotometer. The spectrophotometer
gives the average absorbance of three readings.

The extinction coefficients (K232 and K270) and free acidity of the oils were determined
according to the analytical methods described in European Commission Regulations (Com-
mission Regulation (EEC) No.2568/91) [38]. The total antioxidant capacity was determined
through DPPH radical. A 65 mg oil sample was added to 4 mL of a 1.3 × 10−4 M solution
of DPPH in ethyl acetate. Then, the mixture was shaken vigorously and left in darkness
for 1 h. Finally, the absorbance of the mixture was measured against ethyl acetate (blank)
at 515 nm with a spectrophotometer (Cary 60 Scan UV–visible spectrophotometer). The
total antioxidant capacity was expressed as Trolox equivalent antioxidant capacity (TEAC),
defined as the mmol Trolox/kg of oil [26]. The total phenols in the methanolic extract of the
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oils were determined colorimetrically at 765 nm with Folin–Ciocalteu reagent according to
Capannesi et al. [39]. Gallic acid standard solutions were used for calibration (r = 0.9998).

3.8. Fatty Acid Analysis

The sample (0.1 g) was dissolved in 2 mL of heptane and shaken. The sample was then
transesterified with 0.2 mL of 2 N methanolic potassium hydroxide solution and vigorously
shaken (Commission Regulation (EEC) No.2568/91) [37]. Methyl esters in the upper layer
were assessed with GC–FID. GC was performed on a 30 m × 0.25 mm i.d. × 0.25 µm
film HP-5MS capillary column using a Hewlett Packard (Waldbronn, Germany) 5890 gas
chromatograph connected to a flame ionization detector (FID). The GC conditions used
were as follows: injection volume, 1 µL; split injection, 50:1 at 220 ◦C; and oven temperature
ramped to 270 ◦C at 5 ◦C min−1 held for 5 min, giving a total run time of 55 min. The
helium gas carrier was held at a constant flow rate of 1 mL min−1, whilst the detector was
set at a temperature of 290 ◦C.

4. Conclusions

Blending olive oil with sesame oil decreases secondary oxidation products throughout
the frying period until its rejection at 25% total polar compounds. Through blending, the
useful frying period increases from 21.5 h to 25 h in proportion to the amount of sesame oil,
reaching the frying time of extra virgin olive oil, which does not benefit from blending.

Blending extra virgin olive oil, in contrast to olive oil, increases secondary oxidation
products. It is clear that the natural antioxidant compounds in extra virgin olive oil are
more efficient at preventing deep-frying oxidative damage than sesame oil blending.

In summary, sesame oil addition increases olive oil’s frying time but is not beneficial for
extra virgin olive oil. This points to a niche market for extra virgin olive oil in deep frying.

We report, for the very first time, that the formation of total polar compounds during
olive oil deep frying is decreased through sesame oil blending, pointing to a need for
further research.

Olive oil is very much appreciated in the Mediterranean and Greek diets, with the
biggest benefit coming from phenolic antioxidants. Sesame oil addition did not have any
effect on protecting olive oil phenolics during frying. Our study showed that olive oil
lost all phenolics after 12 h, while extra virgin olive oil retained around 30%. This result
could evolve after further research to a guideline on the use of extra virgin olive oil for
deep frying so that the beneficial phenolics are not depleted. Such a guideline could help
branding extra virgin olive oil as a health-promoting frying oil. We envisage that deep
frying with extra virgin olive oil should not continue until the total polar compounds reach
25%, but should stop much earlier to spare phenolic antioxidants.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28114290/s1, Figure S1: TEAC (mmol/Kg) values
during deep frying (a) OO, (b) EVOO and the blends with SO; Figure S2: Changes in total phenols
(mg GA/Kg oil) during deep frying OO and the blends with SO; Figure S3: Changes in total phenols
(mg GA/Kg oil) during deep frying EVOO and the blends with SO; Figure S4: HPLC chromatogram
of a mixed standard solution of sesamol, sesamin, and sesamolin; Figure S5: HPLC chromatogram of
blend of 20% v/v sesame oil and olive oil before frying; Figure S6: HPLC chromatogram of blend
of 20% v/v sesame oil and olive oil after 30 min frying; Figure S7: HPLC chromatogram of blend
of 20% v/v sesame oil and olive oil after 1 h of frying; Figure S8: HPLC chromatogram of blend of
20% v/v sesame oil and olive oil after 2 h of frying; Figure S9: HPLC chromatogram of blend of 20%
v/v sesame oil and olive oil after 4 h of frying; Figure S10: mass spectrum of sesamolin; Figure S11:
1H-NMR spectrum of sesamolin; Figure S12: 1H-NMR spectrum of sesamin; Table S1: total polar
compounds during deep frying with olive oil (OO), extra virgin olive oil (EVOO), and blends with
sesame oil (SO); Table S2: The retention time, standard curve, LOD, and LOQ for sesame lignans.
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