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Abstract: The irrational use of synthetic pesticides in agriculture has had negative impacts on ecosys-
tems and contributed to environmental pollution. Botanical pesticides offer a clean biotechnological
alternative to meet the agricultural challenges posed by pests and arthropods. This article proposes
the use of fruit structures (fruit, peel, seed, and sarcotesta) of several Magnolia species as biopesticides.
The potential of extracts, essential oils, and secondary metabolites of these structures for pest control
is described. From 11 Magnolia species, 277 natural compounds were obtained, 68.7% of which were
terpenoids, phenolic compounds, and alkaloids. Finally, the importance of a correct management of
Magnolia species to ensure their sustainable use and conservation is stressed.

Keywords: magnoliaceae; bioprospecting; conservation; botanical pesticides; pollyfollicle; seed;
sarcotesta

1. Introduction

One of the main problems faced in the production of fruits and vegetables around the
world is pest control [1]. The Food and Agriculture Organization of the United Nations
(FAO) reports that 40% of total world agricultural production is lost to pests [2], mostly of
the Hexapoda class (insects) and the orders, Coleoptera, Diptera, Hemiptera, Homoptera,
Hymenoptera, Lepidoptera, Orthoptera, and Thysanoptera [3,4].

Among the many crop protection methods known today, chemical control (pesticides)
remains the most widely used one [5]. Applying synthetic pesticides to crops is an effective
way to reduce the production losses. However, their toxicity poses serious risks. Pesticides
are chemical compounds or combinations of them used to repel, destroy, and control pests [6].
Generally, they are characterized as highly effective, wide-spectrum chemical substances, but
the majority of them are also highly toxic and contaminates the ecosystem. According to the
target organism, pesticides are classified as insecticides, molluscicides, acaricides, fungicides,
bactericides, or others [7]. In the case of insecticides, the most environmentally harmful groups
are organochlorines, organophosphates, carbamates, and pyrethroids [8].

The Integral Pest Control promoted by the FAO consists of monitoring, regulating, and
controlling pests via sound methods compatible with the natural environment, while reduc-
ing the use of toxic pesticides that affect the life of non-target organisms, the environment,
and natural resources [9]. An alternative to synthetic pesticides is the use of pesticides of
botanical origin, whose action may be comparatively slower but are safer and environmen-
tally friendly [8-10]. They are also known as natural pesticides and biopesticides and may
come in the form of botanical extracts, essential oils, and natural compounds [11,12].

Botanical pesticides offer several advantages over synthetic pesticides. In fact, they are
as effective or even superior to their counterparts [13]. They pose minimal risks to other
organisms, such as mammals (including humans), birds, reptiles, and plants. As they are of
natural origin, their degree of persistence and accumulation in the environment are very low.
They are photosensitive biodegradable molecules that are easily decomposed by solar rays and
the action of microorganisms [14]. For example, it has been demonstrated that azadirachtin
remains in the soil and cultivars for 24 to 48 h [15], while pyrethrin persists for three to five
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hours after application, which reduces its potential impact on natural resources (water, soil,
and air) and constitutes a beneficial attribute for environmental conservation [14]. Another
important characteristic of botanical insecticides is their multispecific action, which makes
it more difficult for pests to develop resistance to the compound, as opposed to chemical
pesticides, which regularly target a specific molecule [16]. For example, flavanones were
evaluated in terms of Mycobacterium tuberculosis viability to act against protein kinase G (PknG)
as a new promising drug target [17], and fukugetin, a natural flavone as an inhibitor of human
tissue kallikreins [18].

In this article, the biopesticide potential of botanical extracts and essential oils obtained
from the fruit (seeded and whole), seeds, and sarcotesta of several Magnolia species is
analyzed in detail. To understand their effectiveness in pest control, the biological activity
of their secondary metabolites is described. The bibliographic review conducted here
confirms the benefits of using Magnolia species as natural biopesticides in agroecosystems
and stresses the need to promote their conservation and further the study of this taxonomic
group from an ecological perspective.

2. The Magnoliaceae Family

The Magnoliaceae family is among the most primitive living flower plant families.
Fossil registries date from the Cretacic period (135-100 million years ago), when dinosaurs
were still alive [19,20]. The family is divided into Liriodendron and Magnolia, the latter
genus being the largest one, with a total of 312 species [21]. Most of the species identified
(~80%) are distributed in temperate and tropical climate zones in south-east Asia, and a
smaller number (~20%) are found in the American continent [22]. Magnolia species are
easily identified by their morphological characteristics. They are arboreous or shrubby
plants with deciduous or evergreen foliage [23]. The flowers are large and solitary, with
a perianth of two or more spirals of free tepals (petaloids), many stamens, anthers with
two loculaments and carpels arranged in spirals. The fruits are polyfollicles made of
joint or separated carpels and they may be dehiscent, circumscissile, or indehiscent, and
the seeds are long and wrapped in a crimson red sarcotesta that can be removed from
the endocarp [22]. The sarcotesta is also called aril, an edible pulp that covers the seed
(Figure 1) [24]. Interestingly, the seeds specifically depend on spreading birds that can
detect their red color [25,26].
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Figure 1. Morphological characteristics of Magnolia. (A) flower of M. pugana. (B) Immature fruit of
M. pugana, mature fruit with exposed seeds of (C) M. pugana and (D) M. vovidesii. (E) Seeds of M.
vovidesii. (F) Sarcotesta (aril) seed without sarcotesta and seedless fruit of M. vovidesii. (G) Ripening
process of fruit with seeds of M. perezfarrerae. (H) Mature fruit with exposed seeds of M. perezfarrerae.
Photo credit: Suria Vasquez.
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3. Magnolia in Traditional Medicine

Some Magnolia species have been used in traditional medicine for their therapeutic and
pharmacological properties [27]. Houpu, a traditional Chinese remedy made with the bark
of M. officinalis, has been used for millennia to treat “energy (gi) stagnation”, the cause of
asthma and digestive afflictions, as well as to prevent stress, anxiety, and depression [28]. It
has been found that the two main active components of houpu are the lignans, magnolol and
honokiol [29]. Likewise, in traditional medicine in India, root bark extracts of M. champaca
have been used to treat tumors, constipation, swelling, amenorrhea, and dysmenorrhea,
and its flowers are used to treat chronic gastritis, fever, cough, bronchitis, and heart
weakness [30]. In traditional medicine in North America, Magnolia has been used to treat
several illnesses. The ethnomedical data describe that the tonic obtained from the bark
of the root and stem of M. virginiana is a remedy for autumn fever, fever paroxysms, and
rheumatism [31]. Native communities use an extract of M. grandiflora seeds, whose sedative
and hypnotic effects help to control sleep and body temperature. This extract has also
antispasmodic and anti-inflammatory properties and can eliminate the immunoresistance
associated with breast and prostate cancers. It can also be used to treat convulsions and fight
microbial infections [32]. In Mexico, infusions of flowers and leaves of M. yajlachhi have
been used in traditional Zapotec medicine for several purposes, including the strengthening
of heart rhythms, invigorating the blood, and the clearing eyes, in addition the aroma of
the flowers is used to treat asthma [33]. The decoction of leaves and bark of M. dealbata is
used as a tranquilizer and anticonvulsant in cases of epilepsy [34].

4. Magnolia and Sustainable Agriculture

The growing interest in the use of botanical pesticides in agriculture today constitutes
a favorable scenario for the application of natural products (botanical extracts, essential
oils, and others) derived from Magnolia plants. Several reports highlight the biocidal
properties of these compounds on insects that afflict plants of commercial value [35,36]. For
example, the raw extracts and essential oils from fruits, seeds, and sarcotesta of Magnolia
spp. have been successfully used against insect infestations [37-39], and a large variety
of phytochemicals with possible insecticidal properties have been proposed. Sarker and
Maruyama [22] and Song and Fischer [40] have documented that some Magnolia spp. are
rich in lignans, neolignans, alkaloids, flavonoids, and terpenoids, with different biological
uses as insecticides, deterrents, repellents, and anti-nutrients [22—40]. Therefore, the use of
natural products derived from Magnolia spp. is a good strategy in integral pest management
and can help mitigate environmental deterioration and the accumulation of toxic residues
derived from the application of synthetic insecticides [41].

5. Botanical Extracts and Essential Oils with Insecticidal Properties

The biocidal potential of natural products derived from native plants to combat different
pest insects has called the attention of the scientific community [42]. Though the importance of
knowing the properties (chemical composition, biomolecules such as proteins, and genes) of
the species that make up the local and endemic flora has become increasingly evident, not all
the taxonomic groups of the Magnolia genus have been sufficiently explored [43]. For example,
while M. officinalis, an endemic species from China, has been widely studied, the biocidal
capabilities of M. fragarigynandria, M. mayae, M. narinensis, and M. rzedowskiana remain scarcely
known [21-44]. Moreover, phytochemical studies of the vegetative structures of Magnolia spp.
have rarely paid attention to leaf, bark, flower, fruit, seed, and sarcotesta in equal proportions.

The insecticidal properties of Magnolia have been confirmed in a study by Kelm
et al., [45], in which extracts of hexane and methanol from fruits of M. salicifolia, a species
endemic to Japan, were given to mosquitoes. The results indicate that both of these
extracts had a significant biocide potential (250 ppm in 24 h) on Ae. aegypti at the fourth
larval stage [45]. Similarly, the insecticidal activity of essential oils of the mature and
immature leaves, flowers, and fruits of M. grandiflora, a species endemic to the United
States, were found to have the worst toxic effects (49.4 and 48.9 ppm) on Ae. aegypti larvae.
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Finally, an essential oil obtained from seeds showed a strong repellent effect (0.89) on adult
mosquitoes [46].

Wang et al., [47] run toxicity tests of a substance obtained via the hydro-distillation of
seeds of M. denudata, a species endemic to China, on larvae of Culex pipens pallens, Ae. aegypti,
Ae. albopictus, and Anopheles sinensis and obtained insecticidal bioactivity values of 19.6, 19.3, 21 4,
and 24.84 mg/L, respectively [47]. Recently, it was reported that the essential oil of M. grandiflora
seeds is highly effective against imported hybrid fire ants (Solenopsis invicta) [48]. Vasquez-
Morales et al., [38] on the other hand, reported that the ethanolic extracts of sarcotesta and
seed of Magnolia schiedeana, a species endemic to Mexico, have a potential in the development
of useful bioinsecticides in the control of adult specimens of Anastrepha ludens, the Mexican
fruit fly. In the study, ethanolic extracts of leaves, flowers, bark, empty polyfollicles, seeds,
and sarcotesta were evaluated, and it was found that only the seed and sarcotesta extracts had
significant levels of insecticidal effectiveness (59.3 and 64.7%) against flies [38]. On the same
insect, the ethanolic extracts of leaves, flowers, bark, seeds, and sarcotesta of M. dealbata (currently
M. vovidesii, a species endemic to Mexico) were evaluated. It was reported that the ethanolic
extracts of sarcotesta showed the highest insecticidal activity level (96%) against A. ludens
adults [37]. Additionally, feeding bioessays showed that the sarcotesta extracts of M. perezfarrerae
and M pugana, species endemic to Mexico, were 95% and 93% effective, respectively, against
Anastrepha ludens adults, while the sarcotesta extracts of M. vovidesii, were 92% effective against
A. obliqua, the West Indian fly [49].

6. Secondary Metabolites in Magnolia
6.1. Fruit with Seed

The fruit (polyfollicle) of Magnolias is a structure that is rich in secondary metabolites
with specialized metabolic pathways, which are not involved in primary metabolism [50].
The chemical analysis of essential oils derived from fruits of 2 populations of M. ovata, a
species endemic to Brazil, showed that they possess a wide diversity of metabolites, includ-
ing 49 volatile constituents, such as o« and 3-cubebene, butyl heptanoate, and naphtalene,
and 14 non-volatile constituents, such as parthenolide, michelenolide, 1-hexadecanol, as
well as 3 alkaloids, lysicamine, lanuginosine and O-methylmoschatoline [51].

The phytochemicals contained in the essential oils of ripe fruits with seed of M. grandiflora
comprised 49 terpenes, such as x-pinene, ethyl 2-methylbutyrate, and isobutyl isobutyrate,
and 3 fatty acids, such as (Z)-9-methyl octadecanoate (=methyl oleate), (Z.Z)-9,12-methyl
octadecadenoate (=methyl linoleate), and hexadecanoic acid [46]. Additionally, the phy-
tochemical study of immature fruits with seeds of M. grandiflora reported the isolation of
five chemical compounds (Figure 2) [52]. The presence of nitrile functional groups in the
compound in Figure 2E suggest their diversity in terms of biological activity and use in the
pharmaceutical industry [52,53]. Additionally, research with phytochemicals of fruits of M.
tripetala, a species endemic to the United States, lead to the isolation of tripetalin A and B,
4’-methoxymagnaldehyde B, magnaldehyde B, magnoquinone, and magnotriol B [54].

On the other hand, in the essential oil derived from the dry and fresh fruits of M. kobus,
a species endemic to China, Japan, and the Republic of Korea, 17 chemical compounds
were found, including «-thujene, a-pinene, and camphene [55]. Similarly, in the fruits of
M. obovata, a species endemic to Japan and the Republic of Korea, 20 neolignans (including
obovatalignan A, magnolol, and honokiol), six phenylethanoid glycosides (such as (1—2)-
-D-allopyranoside, magnoloside D, and magnoloside A), and five phenylpropanoids
(including obovatoside A, syringin, and pavonisol) were identified [56—61]. Finally, in the
fruit of M. officinalis var. biloba, nine phenylethanoid glycosides, including magnoloside la
and crassifolioside, were found [62].
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Figure 2. Compounds obtained from Magnolia grandiflora. (A) 5,5'-diallyl-[1,1’-biphenyl]-2,2’-diol,
(B) 3’ 5-diallyl-[1,1’-biphenyl]-2,4’-diol, (C) (35,3aS,85,9aS,10aR,10bS,E)-8-hydroxy-3,6,9a-trimethyl-
3a,4,5,8,9,9a,10a,10b-octahydrooxireno [2/,3":9,10]cyclodeca [1,2-b]furan-2(3H)-one, (D) 5,5'-diallyl-2'-
methoxy-[1,1’-biphenyl]-2-ol, and (E) 1-(4-isopropylbenzyl)-1,3-dihydro-2H-benzo[d]imidazol-2-one
(Source: [52]).

6.2. Seedless Fruit (Peel)

As with all fruit structures of Magnolia species, the seedless fruit (or fruit follicles)
contain a wide variety of natural compounds. In a recent study, the phytochemicals
contained in the essential oils of ripe seedless fruits of M. grandiflora were analyzed [46].
A total of 43 compounds were identified in this structure, including x-pinene, 1,8-cineole,
p-cymene, terpinolene, bornyl acetate, c-humulene, myrtenol, and T-cadinol. From the
analysis of essential oils from seedless fruits of the species M. acuminata, M. grandiflora,
M. fraseri, and M. tripetala, species endemic to Canada and the United States, 34 volatile
compounds were identified, including x-pinene, 3-myrcene, limonene, eucalyptol, borneol,
and trans-nerolidol [63]. Likewise, in the seedless fruits of M. vovidesii, 15 compounds
were isolated from sesquiterpene lactones, such as shizukolidol, and phenols, such as
protocatechuic acid, among others [64]. In another study, from the essential oil derived
from the peel of M. kwangsiensis, a species endemic to China, 21 volatile compounds
(including cis-4-thujanol, borneol, and guaiol) were obtained, as well as 10 fatty acids
(including heptadecanoic acid, linoleic acid, and heneicosanoic acid [39].

6.3. Seed

Magnolia seeds also contain a wealth of natural chemical compounds. Via the purpose
of isolating lignans, extracts of dichloromethane from seeds of M. grandiflora, M. acumi-
nata, and M. virginiana (species endemic to Cuba and the United States) were analyzed,
including five phenylpropanoids from M. grandiflora (Figure 3), honokiol, and magnolol
from M. virginiana, galgravin, and veraguensin from M. acuminata [65]. Another anal-
ysis of the compounds in the essential oil of M. grandiflora seeds reported the presence
of 14 chemical compounds, such as 4-(2-propenyl)-phenol, tetradecanoic acid, eucalyp-
tol, and 2,3-dihydroxy-anti-oleic acid ester [66]. The methanolic extract of M. grandiflora
seeds presented the neolignans, honokiol and bishonokiol [67]. In a seed hydrodistillate of
M. denudata, 17 chemical compounds were found, including p-cymene, B-caryophyllene,
nerolidol, and ethyl palmitate [47]. The CG-MS chemical analysis of the essential oil
from seeds of M. pugana obtained 33 chemical compounds, such as isovalerate isobutyl,
a-bergamotene, germacrene D, cyclocolorenone, and dehydrosaussurea lactone [68].
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Figure 3. Phenylpropanoids from the seeds of Magnolia grandiflora. (A) 1—Honokiol. (A) 3—4-O-metil-
honokiol. (B) Magnolol, (C) 5,5'-di-2-propenyl-3-methoxy-[1,1’-biphenyl]-2,2’-diol. (D) 4a,9b-dihydro-
8,9b-di-2-propenyl-(4H)-dibenzofuran-3-one, grandifloralignan (Source: [65]).

6.4. Sarcotesta (Aril)

Since the majority of Magnolia seeds studies are conducted using whole seeds with
sarcotesta, only a small amount is known about the secondary metabolites’ profile of
this particular structure. The chemical analysis of an essential o0il from the sarcotesta
of M. kwangsiensis produced 21 terpenes, among them p-menth-2-ene, 3-phellandrene,
acoradiene, and guaiol, and 10 fatty acids, including pentadecanoic, linoleic, eicosanoic,
and heneicosanoic, were among them [39].

A search conducted of the scientific literature obtained 277 chemical compounds in
the Magnolia plant structures, attesting to the wide variety of metabolites contained in each
of them. The Venn diagram (Figure 4) shows that fruit with seeds is the plant structure
with the largest number of exclusive chemical compounds (122), followed by seedless fruit
or peel (46), seed (42), and sarcotesta (5). Additionally, fruit with seeds was the structure
that presented the largest number of chemical compounds shared with other structures: it
shares 17 chemical compounds with fruit without seeds, 13 with the latter one and with
seeds, and 1 compound it shares fruit without seeds with seeds. Finally, only five chemical
compounds are shared by all the structures (Table S1).

A large part of these compounds has been individually evaluated for different plague
insect species. Boulogne et al., [69] pointed out that terpenoids, phenolic compounds, and
alkaloids are the most frequently reported compounds in relation to protection from insects.
These three types of compounds are the main secondary metabolism groups involved in
the ecological interactions of plants, such as competition and herbivory [70].
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Figure 4. Venn diagram with the distribution of 277 chemical compounds in each of the plant
structures of 11 Magnolia species, represented by the following colors: fruit (green), peel (red), seed
(blue), and sarcotesta (purple), as well as intersection percentages. The compounds were obtained
from M. acuminata, M. fraseri, M. grandiflora, M. kobus, M. kwangsiensies, M. obovata, M. ovata, M. pugana,
M. tripetala, M. virginiana, and M. vovidesii.

7. Terpenoids

Terpenoids is a group of secondary metabolites composed of isoprene molecules, units
of five carbons (C5), which are known as isopentenil diphosphate (IPP), and dimetilalil
diphosphate (DMPP) [71]. In plants, it is possible to synthesize IPP and DMPP following the
route of cytosolic mevalonate derived from acetyl-CoA (MEV) and the route of 2-C-metil-
D-eritritol-4-phosphate (MEP) plastidial derived from pivurate [72]. Terpenoids are very
heterogeneous substances in structure and property, though the majority of them are fat
soluble and can be found mainly in essential oils. They stand out for their various degrees
of volatility and the influence they have on community and ecosystem interactions [73].

Monoterpenes (C10) and sesquiterpenes (C15) have high degrees of volatility, and
they are referred as “inferior terpenoids” [74]. Plants release them in direct defense after
an attack by microorganisms, insects, or mammals, but they also have the indirect defense
property of attracting the natural predators of attacking herbivores [75]. C10 and C15 are
released in complex blends that confuse herbivores and inhibit their capacity to develop
resistance to the substances [73].

For these reasons, terpenoids have proved to have insecticidal and anti-nutrient effects
on several species of plague insects. However, only a small percentage of monoterpenoids
and sesquiterpenoids (approx. 16%) obtained from Magnolia fruits with and without seeds
and sarcotesta have been tested on insects and other arthropods (Table 1). This small
part can have an important role as bioinsecticides and replace the indiscriminate use of
harmful pesticides. Unassayed terpenoids (84%) remain an opportunity for research on
bioactivity against several pests [76]. Their synergic effects could be explored by trying
them in different combinations. Moreover, the effectiveness of existing natural extracts and
essential oils can be enhanced via adding extra terpenoids [77,78].
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Table 1. Biocidal potential of Magnolia terpenoids against insects and other arthropods. Compounds were isolated from M. acuminata, M. fraseri, M. grandiflora,

M. kobus, M. kwangsiensies, M. obovata, M. ovata, M. pugana, M. tripetala, M. virginiana, and M. vovidesii. Stages: (A) adult, (L4) fourth instar larva, (L3) third instar

larva, and (L) larva.

Compound Activity Species Orden Stages LD50 Time Exposition References
a-caryophyllene Insecticide Helicoverpa armigera Lepidoptero L3 20.86 ug/mL 24h Intake [79]
a-humulene Insecticide Dorymyrmex thoracicus Hymenoptera A 75 uL/L 48 h Spraying [80]
a-phellandrene Insecticide Sitophilus zemais Coleoptera A 15.61 mg/L 24h Spraying [81]
a-pinene Insecticide Lycoriella mali Diptera A 9.85 uL/L air 24h Spraying [82]
Insecticide Tribolium castaneum Coleoptera A 14.08 mg/L air 24h Spraying [83]
a-terpinene Insecticide T. castaneum Coleoptera A 23.70 uL./L air 24 h Spraying [84]
Insecticide Musca domestica Diptera A 241 uL/L 24h Spraying [85]
a-terpineol Larvicide Culex pipiens molestus Diptera L4 194 mg/L 24h Contact [81]
Insecticide M. domestica Diptera A 3.74 uL/L 24h Spraying [85]
Ar-curcumene Larvicide An. stephensi Diptera L3 10.45 pg/mL 24h Contact [86]
Larvicide Cx. quinquefasciatus Diptera L3 12.24 pg/mL 24h Contact [86]
[3-caryophyllene Insecticide D. thoracicus Hymenoptera A 1.49 uL/L 48 h Spraying [80]
Insecticide T. castaneum Coleoptera A 36.0 pg/adult 24 h Contact [87]
[-myrcene Insecticide M. domestica Diptera A 495 uL/L 24h Spraying [85]
-phellandrene Insecticide T. castaneum Coleoptera A 22.56 mg/L 24h Spraying [83]
[-pinene Insecticide Lasioderma serricorne Coleoptera A 14.66 mg/L 24h Spraying [83]
Insecticide L. mali Diptera A 11.85 uL./1 air 24h Spraying [82]
Bornyl acetate Insecticide Liposcelis bostrychophila Psocoptera A 1.1 mg/L air 24h Spraying [88]
Insecticide M. domestica Diptera A 424 uL./L 24 h Spraying [85]
[-selinene Insecticide Drosophila melanogaster Diptera A 0.55 pg/adult 3h zggifcaal tion [89]
Caryophyllene oxide Larvicide An. anthropophagus Diptera L4 49.46 mg/L 24h Contact [90]
Insecticide T. castaneum Coleoptera A 0.00018 mg/cm3 24 h Spraying [91]
d-cadinene Larvicide Anopheles stephensi Diptera L3 8.23 ug/mL 24h Contact [92]
Larvicide Aedes aegypti Diptera L3 9.03 ug/mL 24h Contact [92]
E-nerolidol Insecticide Metopolophium dirhodum Hemiptera A 3.5mL/L 48 h Contact [93]
y-terpinene Insecticide Phthorimaea operculella Lepidoptera A 5.98 mg/L air 24 h Spraying [94]
Guaiol Insecticide M. domestica Diptera A 169 uL/L 48 h Spraying [95]
Larvicide Plutella xylostella Lepidoptera L3 8.9 mg/larva 12h Contact [95]
Limonene Insecticide T. castaneum Coleoptera A 6.79 mg/L 24h Spraying [83]
Insecticide M. domestica Diptera A 3.22 uL./L 24h Spraying [85]
Linalool Insecticide Sitophilus zeamais Coleoptera A 10.46 mg/L 24h Spraying [96]
Larvicide Cx. pipiens molestus Diptera L4 193 mg/L 24h Contact [97]
p-cymene Insecticide T. castaneum Coleoptera A 27.01 puL/1 air 24h Contact [84]
Insecticide M. domestica Diptera A 0.77 uL/L 24h Spraying [85]
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8. Phenols

Phenolic compounds are characterized as having at least one aromatic ring with
one or more hydroxyl groups in combination. They are classified as non-flavonoids
or flavonoids [98]. Non-flavonoids include free phenols, phenolic acids, and phenyl-
propanoids, which in turn are divided into hydroxycinnamic acids, coumarins, phenyl-
propanoids, lignins, lignans, and neolignans. Flavonoids, on the other hand, are classified
into more than 10 classes, including flavones, isoflavones, flavonoids, flavanones, stil-
benes, and anthocyanins [99]. The synthesis of phenolic compounds in superior plants
happens in two ways: (1) via shikimic-phenylpropanoids (predominantly in plants) and/or
(2) via malonate-polyketide-phenylpropanoids (predominantly in bacteria, fungi, and
plants) [100].

Phenolic compounds have an ecological function, namely, to prevent nutrient loss in
plants as a result of the feeding behavior of phytophaga [70]. They act also as protection
agents against the effects of abiotic factors (sunlight and low temperatures) that indirectly
modify plant growth, mineral nutrition, and pigment and aroma in flowers and fruits, and
additionally, they act as natural toxic inhibitors for animals and invasive organisms [101,102].

It is evident that phenols have the capacity to act as molecules against insects and that
they can also have an important role in the protection of crops. Table 2 presents the insecticidal
potential of those phenolic components that have been evaluated in different plague insects,
which represent approximately 18% of the total compounds reported from Magnolia fruit
with and without seeds and sarcotesta. It is important to note that a high percentage (82%) of
the phenolic compounds obtained have not yet been assayed (Table 2) either in the laboratory
or in the field to determine their insecticidal effect on several plagues.
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Table 2. Biocidal potential of Magnolia phenols against insects and other arthropods. Compounds were isolated from M. acuminata, M. fraseri, M. grandiflora, M. kobus,
M. obovata, M. ovata, M. tripetala, M. virginiana, and M. vovidesii. Stages: (A) adult, (L4) fourth instar larva, (L3) third instar larva, and (L) larva.

Compound Activity Species Orden Stages LD50 Time Exposition References
2 4-di-tert-butylphenol ~ Acaricide Z;ii;‘?bz i?:;s Trombidiformes A 7.61 uM 24h Spraying [103]
Estragol Larvicide Spodoptera frugiperda Lepidoptera A 0.92 mg mL 24h Intake [104]
Insecticide Sitophilus zeamais Coleoptera A 14.10 mg/L 24h Spraying [87]
Eugenol Insecticide Tribolium castaneum Coleoptera A 1 ug/kg 24h Contact [105]
Insecticide ;ZZZ?ZZ?CPWS Coleoptera A 24.8 uL/L 24h Spraying [106]
Honokiol Larvicide Aedes albopictus Diptera L3 6.13mg/L 24 h Contact [107]
Larvicide Anopheles sinensis Diptera L3 7.37 mg/L 24h Contact [107]
Insecticide Nilaparvata lugens Hemiptera 0.324 mM 48 h Topl.cal . [108]
application
Licarin A Larvicide S. litura Lepidoptera 0.20% m/m 7d Intake [109]
Magnolol Insecticide N. lugens Hemiptera 0.137 mM 48 h Toplgal . [108]
application
Larvicide Culex pipiens pallens Diptera L3 26 mg/L 24h Contact [107]
Protochatecuic acid Insecticide Ae. aegypti Diptera A 1.25 ug/mg 24 h Contact [110]
Quercetin Larvicide S. litura Lepidoptera L4 10.88 ppm 24h Intake [111]
Larvicide Pectinophora gossypiella  Lepidoptera L 0.2% Until pupae maturation Intake [112]
Rutin Insecticide Oedaleus asiaticus Orthoptera A 763.7 mg/L 7 days Intake [113]
Scopoletin Larvicide Spilarctia obliqua Lepidoptera L4 209 ug/g 24h Intake [114]
Syringin Anti-nutrients S. granarius Coleoptera A 134.4 uL/L 5d Intake [115]
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9. Alkaloids

Alkaloids are organic substances containing nitrogen, with a high or low degree of
base quality [116]. In the case of Magnolia, alkaloids of the aporphine type belonging to the
class of isoquinolines were identified in the fruit of M. ovata [51-117]. Their biosynthesis is
achieved via benzylisoquinolines that give way to (s)-reticulin, an intermediary metabolite
key to the formation of aporphines [118]. In general, alkaloids are part of the arsenal of
chemical defense against herbivores and pathogens [119]. They can be characterized as
repellents, deterrents, anti-nutrients, toxic, allelopathics, or germination inhibitors [120].
However, the study of the insecticidal interaction between lysicamine aporphines, lanugi-
nosine, and O-methylmoschatoline has not been determined. This is an area of opportunity
to ask new research questions about unassayed alkaloids and get to learn about their
bioactivity against pest insects and other organisms.

10. Magnolia: Between Bioprospection and Conservation

Existing information on the biology of Magnolia species remains scarce and, in many
cases, restricted to the study of taxonomic aspects [21,121]. According to the Red List of
Magnoliaceae, 85% of species are at risk or have insufficient data [21]. The indiscriminate
felling of trees, land use changes, and high fragmentation rates of native habitats form
a scenario in which practically the totality of Magnolia species are under some degree of
threat [122]. Moreover, the susceptibility of Magnolia increases as the inadequate conditions
of restricted habitats and the predation from soil-bound organisms prevent the successful
dispersion and germination of seeds [123].

If we add knowledge about existing lacunae and the physiological and genetic aspects
of these plants, the geographical distribution patterns of plant diversity, in general, the
effects and responses to anthropic processes, and the mechanisms for conservation to this
picture, it becomes evident that developing strategies to help and promote the conservation
of Magnolia species must be considered as a priority [43,124,125].

The bioprospection of plants for the obtention of bioinsecticides based on natural ex-
tracts and secondary metabolites can produce more information about this group of species.
This would attract the attention of researchers and elicit interest in their preservation via
correct methods, tactics, and planning to ensure the equilibrium and dynamics of Magnolia
populations [126]. In the agricultural sector, Magnolia natural products have the potential to
be part of integrated pest control management and contribute to a sustainable agriculture
free from the use of dangerous synthetic pesticides [127].

The following question arises then: how can Magnolia be used to protect crops? Judg-
ing from the data obtained in the revision of scientific literature, we believe that the ideal
sources of bioprospection are the sarcotesta and seedless fruit. When they are not consumed
by a dispersal agent, the sarcotesta inhibits the seed germination process, and the fruit, once
empty, decomposes into organic matter, a viable source of bioactive components [128,129].
Removing both seeds and sarcotesta improves the germination process and contributes
to the in situ and ex situ propagation of species [43]. The implementation of a restoration
strategy via reinstating individuals to their natural populations (in situ conservation) can
be complemented by ex situ conservation in botanical gardens, natural protected areas, and
germplasm banks [21]. These actions combined will help to reduce the risk of extinction.
Finally, it has been observed that seeds are a great source of secondary metabolites, and so,
it is important to isolate the existing bioactive insecticides and evaluate their effectiveness
in pest control around the world.

Currently, Honokiol and Magnolol isolated from Magnolia officinalis are available on
the active compounds market to treat several human diseases, respiratory diseases [22,130],
cancer [131,132], obesity [133], intestinal problems, and gastric disturbances [22]. In this
review, we suggest that the use of Magnolia active compounds against agriculture pests has
a huge economic potential, for example: (I) Terpenoids: 3-caryophyllene has an insecticide
effect on Hymenoptera and Coleoptera [80,87], B-phellandrene and o-terpinene have an
insecticide effect on Coleoptera [83,84], p-cymene has an insecticide effect on Diptera [85], and
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E-nerolidol has an insecticide effect on Hemiptera [93]. (I) Phenols: 2 4-di-tert-butylphenol
has an insecticide effect on Trombidiformes [103], Protochatecuic acid has an insecticide
effect on Diptera [110], Rutin has an insecticide effect on Orthoptera [113], and Estragol and
Quercetin have an insecticide effect on Lepidoptera [104,111,112].

11. Conclusions

The interest in the potential of botanical pesticides in agricultural practices to reduce the
use of synthetic ones is on the rise. Magnolia species are an ideal source of natural bioactive
insecticides. As shown in previous studies, seedless fruit and sarcotesta constitute an excellent
source for the study of phytochemicals with potential pest control properties. In this study,
we considered these two plant structures and their possible role in the production of natural
crop-protection ingredients. However, Magnolia species are vulnerable, and the extraction of
any part of the plant for research on natural products and the obtention of raw extracts must
follow a strict procedure and be managed according to local demographic conditions.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390 /molecules28124681/s1, Table S1: Compounds identified in Magnolia’s
fruit parts.
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