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Abstract: Spirotetramat is a potential tetronic acid pesticide for controlling various pests with
piercing–sucking mouthparts. To clarify its dietary risk on cabbage, we established an ultra-high-
performance liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS) method and then
investigated the residual levels of spirotetramat and its four metabolites in cabbage collected from
field experiments under good agricultural practices (GAPs). The average recoveries of spirotetramat
and its metabolites in cabbage were 74~110%, while the relative standard deviation (RSD) was 1~6%,
and the limit of quantitation (LOQ) was 0.01 mg kg−1. The terminal residue of spirotetramat was in
the range of <0.05~0.33 mg kg−1, the chronic dietary risk (RQc) was 17.56%, and the acute dietary
risk (RQa) was 0.025~0.049%, which means an acceptable dietary intake risk. This study provides
data to guide on the use of spirotetramat and to establish the maximum residue limits (MRLs) of
spirotetramat on cabbage.

Keywords: spirotetramat; cabbage; dissipation; dietary intake risk

1. Introduction

Cabbage (Brassica oleracea var. capitata Linnaeus), a Brassica vegetable of the Cruciferae
family, is rich in antioxidant chemicals such as vitamin C, vitamin E, flavonoids, and
carotenoids, so it has the effect of reducing chronic diseases [1]. China is the largest
cabbage producer in the world, with an annual yield of more than 33 million g hm−2 from
2000 to 2021 [2]. Spirotetramat (STM, Figure 1), cis-4-(ethoxycarbonyloxy)-8-methoxy-3-(2,5-
xylyl)-1-azaspirodec-3-en-2-one, is a new type of tetronic acid insecticide and acaricide [3,4]
which was developed by Bayer CropScience in 2008 to control aphids [5,6]. STM is the only
insecticide that has the dual guiding property of moving up and down the crop through
both the xylem and phloem, killing larvae by inhibiting the biosynthesis of insect fat, and
can effectively control a variety of pests with piercing mouthparts and harmful mites [7].
As there is no cross-resistance to existing insecticides and little negative effect on beneficial
arthropods, 140 STM products have been registered in China [8].

The European Union, Codex Alimentarius Commission (CAC), and other countries
set maximum residue limits (MRLs) as thresholds for monitoring pesticide residues and
ensuring food safety [9,10]. However, due to non-standardized detection methods, the
existing MRLs for spirotetramat in China were all “temporary”. Establishing a sensitive
method for identifying and quantifying spirotetramat in agricultural products is signifi-
cant. Previous reports focused on the analysis methods of STM in fruits (apples, grapes,
oranges, strawberries, mangoes), vegetables (cucumbers, Chinese cabbage, spinach, pepper,
onions), and cotton by liquid chromatography or liquid chromatography–mass spectrome-
try [11–15]. However, there were some challenges in the detection of STM’s four metabo-
lites, namely spirotetramat-enol (STM-enol), spirotetramat-enol-glucoside (STM-enol-glu),
spirotetramat-keto-hydroxy (STM-keto), and spirotetramat-mono-hydroxyl (STM-mono).
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Han et al. determined the presence of STM and STM-enol in apple and apple processed
products based on ultra-high-performance liquid chromatography–tandem mass spec-
trometry (UPLC–MS/MS) [16]. Mohapatra et al. and Singh et al. used the QuEChERS
(Quick, Easy, Cheap, Effective, Rugged, Safe) method based on high-performance liquid
chromatography (HPLC) to quantify STM and STM-enol in mango whole fruit, peel, pulp,
grape, okra, brinjal, green chili, red chili, and soil [12,17,18]. However, there have been
very few reports on determining the other three metabolites of STM. Only two reports
demonstrated the residue and risk assessment of STM and four metabolites in citrus and
pineapple [19,20]. To our knowledge, the residue and dietary risk assessment of STM and
its four metabolites on cabbage have yet to be reported.
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Figure 1. Structural formulas of spirotetramat and its metabolites.

We aim to (1) establish a simple and reliable ultra-high-performance liquid
chromatography–tandem mass spectrometry (UHPLC–MS/MS) method for simultaneous
determination of STM and its four metabolites in cabbage, (2) study the terminal residues
of STM and its metabolites in cabbage, and (3) evaluate the acute and chronic dietary risks
of supervised trials median residue (STMR) in cabbage based on field data. This work
will provide primary data for guiding the rational use of STM and the risk to cabbage
consumers.

2. Results and Discussion
2.1. Method Validation

Pesticide residue analysis includes pretreatment and instrumental analysis, among
which sample pretreatment in complex matrices is the most critical step. In recent years,
QuEChERS pretreatment technology has been widely used to extract STM from various
matrices [15,21–23]. However, STM-enol and STM-mono-hydroxy are more polar than
STM, which may cause extraction trouble. Some improvements should be made, such as
pH adjustment and using formic acid to improve recovery [24]. In this study, the modified
QuEChERS method was used for the pretreatment of STM and its metabolites, using 1%
formic acid acetonitrile extraction, 4 g anhydrous magnesium sulfate, 1 g sodium chloride,
1 g sodium citrate, and 0.5 g disodium hydrogen citrate for salting out, and 20 mg primary
secondary amine (PSA) along with 7.5 mg graphitized carbon black (GCB) for purifying.
The multiple reaction monitoring (MRM) parameters are presented in Table 1, and the
chromatograms showing the separation of STM and its metabolites are shown in Figure 2.
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Table 1. MRM conditions of UHPLC–MS/MS for spirotetramat and its metabolites.

Compound Retention Time
(Rt, min)

Production
(m z−1)

Declustering
Potential (DP, V)

Collision Energy
(CE, V)

STM 2.91
374.20 > 330.1
(quantitation) 66

47

374.20 > 216.1
(confirmation) 21

STM-enol 2.65
302.30 > 270.2
(confirmation) 60

40

302.30 > 216.0
(quantitation) 30

STM-enol-glu 2.10
464.40 > 302.2
(confirmation) 67

20

464.40 > 216.0
(quantitation) 40

STM-keto-
hydroxy 2.71

318.20 > 214.0
(quantitation) 40

20

318.20 > 268.1
(confirmation) 20

STM-mono-
hydroxy 2.49

304.30 > 254.1
(confirmation) 60

20

304.30 > 211.1
(quantitation) 20
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sample, (B) chromatogram of spiked spirotetramat and its metabolite (0.01 mg kg−1) spiked in blank
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The method of STM and its four metabolites in cabbage was verified by the linearity,
correlation coefficient (R2), matrix effect (ME), and LOQ. The matrix-matched standard
curve was constructed with the standard solution concentrations of 0.005, 0.01, 0.02, 0.05,
0.1, and 0.2 mg L−1 as abscissa and the corresponding chromatographic peak area as
ordinate. As shown in Table 2, the determination coefficients (R2) of the standard curves of
STM and its metabolites were greater than 0.99, indicating good linearity.
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Table 2. The calibration curves, determination coefficient (R2), and matrix effect of STM and
its metabolites.

Compounds Matrix Calibration Curve R2 Matrix Effect
(%)

STM
Acetonitrile y = 4.089 × 106x + 355.0 0.9998 -

Cabbage y = 4.292 × 106x + 389.9 0.9998 5.0

STM-enol
Acetonitrile y = 9.598 × 107x + 1.015 × 105 0.9979 -

Cabbage y = 4.865 × 107x − 4125 0.9979 −29.2

STM-enol-glu Acetonitrile y = 1.627 × 107x + 3.406 × 104 0.9916 -
Cabbage y = 1.023 × 107x + −813.7 0.9909 −49.3

STM-keto-hydroxy Acetonitrile y = 2.822 × 107x + 2.228 × 104 0.9989 -
Cabbage y = 1.962 × 107x + 3.421 × 104 0.9994 −37.1

STM-mono-hydroxy Acetonitrile y = 1.322 × 107x + 2.637 × 104 0.9953 -
Cabbage y = 9.614 × 106x + 1474 0.9981 −29.9

As shown in Figure 3, the average recoveries of STM were 96% to 102% at three spiked
levels of 0.01, 0.1, and 2.0 mg kg−1, and the relative standard deviation (RSD, n = 5) was
less than 2%. The average recoveries of STM-enol were between 83% and 90%, with RSD
in the 2% to 3% range. The average recoveries of STM-enol-glu were between 79% and
84%, and the relative standard deviation was between 3% and 6%. The average recovery of
STM-keto-hydroxy was 102~107%, and the RSD was 2~4%. The average recovery rate of
STM-mono-hydroxyl was 95–105%, and the RSD was less than 2%. The average recovery
of all compounds was in the range of 79% to 107%, and the RSD was less than 6%, which
meets the requirements of “guideline on pesticide residue trials on crops (NY/T 788-2018)”.
The LOQs of the five compounds were all 0.01 mg kg−1. Therefore, this method can be
used for the residue analysis of STM and its metabolites in cabbage samples.
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ME was caused by the co-ionization of the ESI source with other components in
the matrix when analyzing the target compounds, which interferes with the quantitative
accuracy of the analytes [25,26]. Except for STM (5%), the absolute ME values (Table 2) of
STM-enol, STM-enol-glu, STM-keto-hydroxyl, and STM-mono-hydroxyl in cabbage were
−29.2%, −49.3%, −37.1%, and −29.9%, respectively, all greater than 20%, indicating a
prominent matrix weakening effect. Therefore, in this study, the matrix-matching standard
curve was used for calibration as a compensation strategy for ME.

In conclusion, the modified QuEChERS pretreatment and UHPLC–MS/MS method was
satisfactory for determining STM and its metabolites, so it can be used in field experiments.

2.2. The Terminal Residues

In 12 provinces, STM suspension was sprayed on open-field cabbage according to the
recommended dosage (60 g ai hm−2). The terminal residues of cabbage were collected at
7 d, 10 d, and 14 d after application, and the total residue of STM was calculated. As shown
in Table 3, the terminal residues of STM in cabbage were between <0.01 and 0.108 mg kg−1,
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those for STM-enol were in the range of <0.010 to 0.035 mg kg−1, and those for the STM-
keto-hydroxyl group were less than 0.14 mg kg−1. The residues of STM-enol-glu and
STM-mono-hydroxyl were all ≤0.01 mg kg−1 in actual cabbage samples. The total residue
(risk assessment definition) of STM in cabbage was <0.050~0.33 mg kg−1, which was lower
than the maximum residue limit (MRL) of STM in cabbage as stipulated by the CAC
(2 mg kg−1) [27], European Union (7 mg kg−1) [28], United States (2.5 mg kg−1) [29], Japan
(7 mg kg−1) [30], and Australia (7 mg kg−1) [31].

Table 3. Terminal residues of STM in cabbage.

Locations
Pre-Harvest

Interval
(Days)

Mean Residues (mg kg−1)

STM STM-enol STM-enol-glu STM-keto-
hydroxy

STM-mono-
hydroxy

Total
Residues

Shanxi
7 0.039, 0.108 0.019, 0.035 <0.010, <0.010 0.081, 0.14 <0.010, <0.010 0.18, 0.33

10 0.043, 0.073 <0.010, <0.010 <0.010, <0.010 0.13, 0.11 <0.010, <0.010 0.22, 0.24
14 0.023, 0.077 <0.010, <0.010 <0.010, <0.010 0.049, 0.051 <0.010, <0.010 0.11, 0.17

Liaoning
7 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.050, <0.050

10 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.050, <0.050
14 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.050, <0.050

Beijing
7 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 0.011, <0.010 <0.010, <0.010 0.052, <0.050

10 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.050, <0.050
14 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.050, <0.050

Shandong
7 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.050, <0.050

10 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.050, <0.050
14 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.050, <0.050

Henan
7 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.050, <0.050

10 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.050, <0.050
14 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.050, <0.050

Anhui
7 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 0.033, 0.032 <0.010, <0.010 0.078, 0.078

10 <0.010, <0.010 0.01, 0.02 <0.010, <0.010 0.032, 0.028 <0.010, <0.010 0.08, 0.087
14 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 0.012, 0.014 <0.010, <0.010 0.055, 0.057

Shanghai
7 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.050, <0.050

10 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.050, <0.050
14 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.050, <0.050

Hunan
7 0.018, <0.010 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 0.058, <0.050

10 0.021, 0.039 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 0.061, 0.079
14 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.050, <0.050

Guangxi
7 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 0.012, 0.016 <0.010, <0.010 0.054, 0.058

10 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.050, <0.050
14 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.050, <0.050

Guizhou
7 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.050, <0.050

10 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.050, 0.053
14 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.050, <0.050

Hainan
7 0.010, 0.013 <0.010, <0.010 <0.010, <0.010 0.028, 0.023 <0.010, <0.010 0.073, 0.069

10 0.008, 0.012 <0.010, <0.010 <0.010, <0.010 0.028, 0.03 <0.010, <0.010 0.073, 0.077
14 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 0.053, 0.065

Guangdong
7 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 0.01, 0.014 <0.010, <0.010 0.052, 0.056

10 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.050, <0.050
14 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.010, <0.010 <0.050, <0.050

2.3. Dietary Risk Assessment

The chronic dietary risk quotient (RQc) and acute dietary risk quotient (RQa) were
used to assess the chronic and acute dietary risk of STM intake from cabbage, respectively.
According to the China Pesticide Information Network, there are 136 products registered
for cabbage, celery, tomato, eggplant, chili, cucumber, potato, citrus, apple, pear, peach,
banana, watermelon, melon, and tea. The national estimated daily intake (NEDI) of STM
was calculated based on the dietary group diet of different populations in China published
by the Ministry of Health in 2002, combined with STMR. Since the STMR of crops other than
cabbage could not be obtained, the MRL of each country was chosen instead of STMR. The
MRLs established by China, the Commission, the United States, and Australia should be
given priority. Based on risk maximization, the maximum value is selected for evaluation
when there are multiple MRL values. The average weight of the general Chinese population
was 63 kg. The ADI of STM was 0.05 mg kg−1 bw (GB2763-2021). STMR in cabbage and
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MRLs in potato, celery, peach, and tea were used to calculate the NEDI of STM. As shown
in Table 4, the RQc at 7, 10, and 14 days between harvesting periods was all 17.56%, much
lower than 100%, indicating that the long-term dietary risk of STM would not threaten
ordinary consumers.

Table 4. Chronic dietary intake risk assessment of STM based on Chinese dietary composition.

Crops Food
Classification Fi (kg) Residue

(mg kg−1) Sources NEDI (mg) ADI
(mg)

Risk Quotient
(RQc, %)

Potato Tubers 0.0495 0.8 China, MRL 3.960 × 10−2

0.05

1.26
Celery Dark vegetables 0.0915 4 China, MRL 3.660 × 10−1 11.62
Peach Fruits 0.0457 3 China, MRL 1.371 × 10−1 4.35

Tea Salt 0.012 0.1 Australia, MRL 1.200 × 10−3 0.04

Cabbage Light vegetables 0.1837
0.051 STMR1 (PHI = 7) 9.369 × 10−3 0.30
0.050 STMR2 (PHI = 14) 9.185 × 10−3 0.29
0.050 STMR3 (PHI = 21) 9.185 × 10−3 0.29

Total 0.3824
5.533 × 10−1 (PHI = 7) 17.56 (PHI = 7)
5.531 × 10−1 (PHI = 14) 17.56 (PHI = 14)
5.531 × 10−1 (PHI = 21) 17.56 (PHI = 21)

The short-term dietary risk of STM after intake of cabbage was assessed (Table 5).
According to the official data of the World Health Organization [32], the LP of cabbage
in different age groups in China ranges from 0.0201 kg d−1 to 0.0515 kg d−1. The high
residue of STM in cabbage was 0.33 mg kg−1. Therefore, in four different age groups, the
national estimated short-term intake (NESTI) of STM was in the range of 2.46 × 10−4 to
5.39 × 10−4 mg (kg bw)−1. The RQa was from 0.025% to 0.054%, much lower than 100%,
indicating that the short-term dietary intake risk caused by STM in children and adults after
eating cabbage was acceptable. Our experiment was significant in determining the residual
status of STM, providing a scientific basis for reducing the dietary risk assessment and the
supervision of agricultural authorities, and protecting people’s consumption health.

Table 5. Acute dietary risk assessment of STM on cabbage for 4 representative ages.

Age Weight
(kg)

Food Consumption
(kg d−1)

NESTI
(mg (kg bw)−1)

RQa
(%)

2~10 12.3~22.9 0.0201~0.0343 4.94 × 10−4~5.39 × 10−4 0.049~0.054
11~17 34.0~46.9 0.0381~0.0440 3.10 × 10−4~3.70 × 10−4 0.031~0.037
18~59 52.1~64.9 0.0448~0.0515 2.62 × 10−4~2.84 × 10−4 0.026~0.028
≥60 51.0~61.5 0.0380~0.0472 2.53 × 10−4~2.46 × 10−4 0.025~0.025

3. Materials and Methods
3.1. Chemicals and Reagents

The certified standards, STM (purity 98.86%), STM-enol (purity 99.12%), STM-enol-
glu (purity 95.7%), STM-keto-hydroxy (purity 94.24%), and STM-mono-hydroxyl (purity
99.48%) were provided by Dr. Ehrenstorfer (Augsburg, Germany). Analytical grade ace-
tonitrile was from Tiandi Co., Ltd. (Ohio, USA). HPLC-grade acetonitrile and formic acid
were purchased from Thermo Fisher Scientific Co., Ltd. (Shanghai, China). HPLC-grade
methanol was purchased from Merck, Germany. HPLC-grade ammonium acetate came
from Guangfu Institute of Fine Chemical Industry (Tianjin, China). Analytical grade formic
acid was provided by Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Analytical
grade anhydrous magnesium sulfate, sodium chloride, disodium hydrogen citrate, and
sodium citrate were purchased from Shimadzu Technology Trading Co., Ltd. (Shanghai,
China). Disperse solid phase extraction purification tubes (20 mg PSA, 7.5 mg GCB, and
142.5 mg anhydrous MgSO4, 2 mL) were provided by Aces Scientific. The polytetrafluo-
roethylene filter (0.22 µm) was purchased from GL Sciences Technology Trading Co., Ltd.
(Shanghai, China).

The standard solution was prepared using acetonitrile to dissolve 10.1 mg, 10.1 mg,
10.4 mg, 10.6 mg, and 10.1 mg STM, STM-enol, STM-enol-glu, STM-keto-hydroxy, and
STM-mono-hydroxyl in a 10 mL volumetric flask, respectively. These reserves were then
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stored in a refrigerator at −18 ◦C. The above standard solution was diluted with acetonitrile
to obtain a mixed standard solution with a concentration of 100 g mL−1. Then, six mixed
standard solutions with a concentration of 0.005, 0.01, 0.02, 0.05, 0.1, and 0.2 µg mL−1 were
serially diluted with acetonitrile. Matrix-matched standards were obtained by spiking an
appropriate amount of standard to blank cabbage extract.

3.2. Field Trials and Sampling

According to “Guideline on Pesticide Residue Trials” (NY/T788-2018), STM’s terminal
residue experiment in cabbage was carried out in Jinzhong city in Shanxi province (E112◦,
N37◦), Liaoyang city in Liaoning province (E123◦, N41◦), Changping District in Beijing
(N40◦, E116◦), Qingdao city in Shandong province (N36◦, E120◦), Xinxiang city in Henan
province (N35◦, E113◦), Suzhou city in Anhui province (N34◦, E116◦), Fengxian District
in Shanghai (N30◦, E121◦), Liuyang city in Hunan province (N27◦, E113), Nanning city in
Guangxi province (N22◦, E108◦), Guiyang city in Guizhou province (N26◦, E106◦), Haikou
city in Hainan province (N20◦, E110◦), and Foshan city in Guangdong province (N22◦,
E112◦). These field experiments sites covered almost all the residual risks of cabbage
planting areas, taking into account the effects of cabbage planting methods, varieties, soil
types, cultivation methods, and climate on pesticide residues. The soil properties and
climatic conditions of the field plots are presented in Table S1 (Supplementary Materials).
Soil pH, cation exchange capacity, and organic matter were measured in accordance with the
Agricultural Industry Standard of the People’s Republic of China—NY/T1121 Part II, Part
V, and Part VI. The mean temperature data and precipitation were continuously obtained
by the field meteorological station during the experimental period. In the experiment, STM
treatment and one control group were set up. Two replicates were set up for each treatment,
and each treatment area was about 50 m2. We kept a buffer zone between the treatment
intervals to avoid cross-contamination. About 14 days before maturity, STM was sprayed
on the cabbage according to the recommended dose (60 g ai hm−2). The cabbage samples
collected at 7 d, 10 d, and 14 d were used as terminal residual samples. After removing the
wilted part, the cabbage sample was chopped with a knife, and two samples of no less than
200 g were taken by the quartering method, one for the experimental sample and one for
the backup sample. All field samples were stored in a −20 ◦C freezer.

3.3. Sample Preparations

Cabbage samples were homogenized with a pulverizer. The weighed 10.0 g cabbage
sample was put into a 50 mL PTFE centrifuge tube and 10 mL acetonitrile-formic acid (99:1,
v:v) was added. The tube was vortexed for 10 min to extract the target compound. Then,
4 g of anhydrous magnesium sulfate, 1 g of sodium chloride, 1 g of sodium citrate, and
0.5 g of disodium hydrogen citrate were added. Then, the tubes were shaken for 5 min and
centrifuged at 8000 rpm for 5 min.

Next, 1.5 mL of the supernatant was transferred to a 2 mL centrifuge tube containing
20 mg PSA, 7.5 mg GCB, and 142.5 mg anhydrous MgSO4.The tube was vortexed for 3 min
and then centrifuged at 5000 rpm for 2 min. Finally, a 0.22 µm organic membrane was used
for filtration, to be determined by UHPLC–MS/MS.

3.4. UHPLC–MS/MS Analysis

A UHPLC–MS/MS system (Triple Quad 4500, AB Sciex) equipped with an electro-
spray ionization source was used to analyze STM and its metabolites in cabbage. The
chromatographic column was a Kinetex® 2.6 µm EVO C18 100 µm chromatographic col-
umn (50 × 2.1 mm). The mobile phase comprised 4 mmol/L ammonium acetate aqueous
solution with 0.1% formic acid (A) and methanol (B) at a flow rate of 0.3 m L/min. The gradi-
ent elution procedure was: 0~0.5 min constant, 90% A; 2.5~3.5 min, 5% A; and 3.6~5.1 min,
90% A. The column and sample room temperatures were 40 ◦C and 20 ◦C, respectively. The
electrospray ionization source was scanned in positive ion mode. The ionization voltage
was 5500 V, the collision gas was nitrogen, and the temperature of the heating module was



Molecules 2023, 28, 4763 8 of 11

550 ◦C. The injection volume was 2 µL. The mass spectrometric parameters of STM and its
metabolites are shown in Table 1.

3.5. Method Validation

The analytical methods of STM and its metabolites in cabbage samples were verified
by the accuracy, precision, linearity, limit of quantitation (LOQ), and matrix effect (ME),
according to SANTE/11312/2021 [33].

To evaluate the accuracy and precision of the analytical method, the standard of STM
and its metabolites were spiked to blank cabbage samples at 0.01 mg kg−1, 0.1 mg kg−1,
and 2.0 mg kg−1, with five replicates per level. The recovery (%) and relative standard
deviation (RSD, %) were calculated. The method had qualified accuracy and precision
when the recovery was 70~120% and the RSD was less than 20%. The limit of quantitation
(LOQ) was defined as the lowest spiked level.

The linearity was evaluated by analyzing the standard and matrix-matched standard
solution curves in the concentration range of 0.005–0.2 mg L−1. The matrix effect (ME) was
calculated by comparing the slope of the matrix-matched calibration curve to the slope of
the solvent calibration curve by the following formula:

ME (%) = (Sm − Ss)/Ss × 100% (1)

where Sm and Ss represent the slopes of the matrix-matched standard curve and the solvent
standard curve, respectively. A positive ME value represents a matrix-enhancing effect,
while a negative ME value shows a matrix-inhibiting effect. When the matrix effect is in
the range of −20~20%, the matrix effect can be ignored; when the matrix effect is in the
range of −50~−20% or 20~50%, it means a weak matrix effect; and when the matrix effect
is lower than -50% or greater than 50%, it represents a strong matrix effect.

3.6. Definition of STM Residue

The residue definition for risk assessment of STM in plant foods was proposed as the
“Sum of spirotetramat, STM-enol, STM-keto-hydroxy, STM-mono-hydroxyl, and STM-enol-
glu, expressed as spirotetramat”. In this study, the definition was the sum of STM and its
four metabolites, which were expressed as spirotetramat. The sum of STM was calculated
as follows:

Csum = CSTM + 1.239 × CSTM-enol + 0.806 × Cenol-glu + 1.177 × Cketo-hydroxy + 1.231 × Cmono-hydroxy (2)

where CSTM, Ceno, Ceno-glu, Cketo-hydroxy, and Cmono-hydroxy were the residue concentrations
of STM, STM-enol, STM-enol-glu, STM-keto-hydroxy, and STM-mono-hydroxy, respectively.
The values 1.239, 0.806, 1.177, and 1.231 represent the ratio of the molecular weight of
STM-enol, STM-enol-glu, STM-keto-hydroxy, and STM-mono-hydroxy to spirotetramat,
respectively. When the residual concentration was less than the limit of quantitation (LOQ),
0.01 mg kg−1 was used for calculation.

3.7. Dietary Risk Assessment

In recent reports, the risk quotient method was used to assess the chronic dietary risk
(RQc) and acute dietary risk (RQa) of pesticides. An RQ < 100% indicates that the dietary
risk is acceptable to consumers, while an RQ > 100% indicates an unacceptable risk.

RQc was the ratio of the NEDI to ADI and was calculated as follows:

NEDI = Fi × STMR/BW (3)

RQc = NEDI/ADI (4)

where NEDI is the national estimated daily intake, (mg kg−1 bw) d−1; FI is the per capita
daily intake of cabbage, kg d−1; and STMR is the median residue of STM in cabbage
obtained from field experiments, mg kg−1. The field experiment showed that the STMR
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of STM was 0.051 (PHI = 7), 0.050 (PHI = 10), and 0.050 (PHI = 14) respectively. BW is the
average body weight of Chinese adult, 63 kg. ADI represents the allowable daily intake,
(mg kg−1 bw) d−1. The ADI of STM is considered to be 0.05 mg kg−1 bw [34,35].

RQa was calculated as a percentage of NESTI to ARfD:

NESTI = Lp × HR/bw (5)

RQa = NESTI/ARfD (6)

where NESTI is the national estimated short-term intake (mg kg−1 bw); LP is the highest
consumption of cabbage per day, kg d−1; HR is the highest terminal residue (0.33 mg kg−1)
of STM in cabbage obtained from field trials; BW is the average body weight of different age
groups; and ARfD is the acute reference dose. The ARfD of STM was 1 mg kg−1 bw d−1 [35].

4. Conclusions

We verified a simple, sensitive, reliable quantitative method for determining STM and
its four metabolites. The samples were extracted with acetonitrile-formic acid, purified
by PSA and GCB, and determined qualitatively and quantitatively by UHPLC–MS/MS.
The method’s precision, accuracy, linearity, and LOQ all meet the requirements of the
guidelines for pesticide residue analysis. In the supervised field experiment, the terminal
residue range of STM was from <0.05 mg kg−1 to 0.033 mg kg−1. The chronic dietary
risk was 17.56%, and the acute dietary risk was 0.025~0.049%, all of which are less than
100%, indicating that the STM suspending agent is acceptable to the chronic dietary risk of
cabbage and was sprayed according to the active ingredient at 60 g hm−2.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28124763/s1, Table S1: Soil properties and climate
conditions for field trials; Table S2: Terminal residues of STM in cabbage on 3d.
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