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Abstract: As a valuable traditional Chinese herbal medicine, Radix Astragali has attracted much
attention due to its extensive pharmacological activities. In this study, density functional theory
(DFT) was used thermodynamically and kinetically in detail to predict the antioxidant activity
and reaction mechanisms involved in the free radical scavenging reactions of three representative
isoflavonoids (formononetin, calycosin, and calycosin-7-glucoside) extracted from Radix Astragali.
Three main mechanisms, including hydrogen atom transfer (HAT), proton transfer after electron
transfer (SET-PT), and sequential proton loss electron transfer (SPLET) were examined by calculating
the thermodynamic parameters. It was found that HAT is the predominant mechanism in the
gas phase, while SPLET is supported in the solvent environment. The isoflavonoids’ order of
antioxidant activity was estimated as: calycosin > calycosin-7-glucoside > formononetin. For the
calycosin compound, the result revealed the feasibility of double HAT mechanisms, which involve the
formation of stable benzodioxazole with significantly reduced energy in the second H+/e− reaction.
In addition, the potential energy profiles and kinetic calculations show that the reaction of •OH
into the 3′-OH site of calycosin has a lower energy barrier (7.2 kcal/mol) and higher rate constant
(4.55 × 109 M−1 s−1) compared with other reactions in the gas phase.

Keywords: antioxidant mechanism; radical scavenging reaction; isoflavonoids; DFT;
structure-activity relationship

1. Introduction

Reactive oxygen species (ROS) are generated by normal metabolic processes and
external stimuli within the cell, and play a key role in regulating many physiological
functions. However, inappropriate scavenging or an excessive build-up of ROS in the body
would lead to oxidative stress, which usually results in tissue damage and is eventually
implicated in aging and a variety of diseases, such as cancer as well as atherosclerosis and
neurodegenerative disorders [1–4]. The most promising strategy for defending against
oxidative damage is the usage of antioxidants or radical scavengers [5]. Therefore, searching
and identifying efficient antioxidant compounds has become an increasingly important
area of research.

Radix Astragali, one of the most popular traditional Chinese herbal medicines, has
been widely used in health foods and dietary supplements to enhance immunity and
treat diseases for thousand years in China [6,7]. Several studies have indicated that Radix
Astragali has various pharmacological functions, including antitumor [8], antioxidation [9],
anti-inflammation [10], and neuroprotection [11], which are highly correlated with its
bioactive components. Isoflavonoids, as a subclass of flavonoids, including formononetin,
calycosin, and its glucoside, named calycosin-7-glucoside (Figure 1), are important bioactive
constituents of Radix Astragali and contribute to multiple biological activities of Radix
Astragali [12]. They are often used as standard components for the quality evaluation
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of Radix Astragali. In recent years, many advanced technologies in experiments have
been adopted to extract and separate bioactive components from Radix Astragali [13,14].
Interestingly, formononetin, calycosin, and calycosin-7 glucoside were found to be active
against free radicals as evaluated by DPPH radical scavenging activity and oxygen radical
absorbance capacity (ORAC) assays, exhibiting excellent antioxidant activity [15–18].
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different hydroxyl sites of quercetin can have different effects on its antioxidant activity 
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Figure 1. Chemical structures and atom numbering sites of three isoflavonoid components extracted
from Radix Astragali.

Experimental studies on the antioxidant behavior of compounds have attracted
widespread attention from theoretical researchers. With the development of theoreti-
cal approaches, theoretical calculations have been used in multiple research fields [19–22].
Many investigations have demonstrated the successes of different density functional theory
(DFT) methods in revealing structure–activity relationships, determining the most likely
chemical reactions involved in the antioxidant activity, as well as explaining the experi-
mental results [23–29]. Compared with the experimental studies, theoretical calculations
based on DFT can be considered as cogent tools in elucidating the antioxidant activity of
flavonoid compounds with lower cost and shorter time requirements. It is well known
that the free radical scavenging capacity of flavonoids is largely affected by the number
and position of hydroxyl groups in their molecular structures. The reaction mechanisms
involved in free radical scavenging by hydroxyl groups have been found to mainly include
hydrogen atom transfer (HAT), single electron transfer followed by proton transfer (SET-
PT), and sequential proton loss electron transfer (SPLET) [30–32]. Additionally, the double
H+/e− free radical scavenging mechanism has also been identified. For example, Amić
et al. pointed out that cinnamic acid derivatives may scavenge free radicals via a double
H+/e− reaction through the participation of a catechol or guaiacyl moiety [33]. At the same
time, studies on the contributions of substituents to the radical scavenging capability have
also been reported. Introducing an electron-donating group (−NH2) into genistein has
been found to effectively improve its antioxidant activity [34]. Zheng et al. demonstrated
that introducing glycoside groups at different hydroxyl sites of quercetin can have different
effects on its antioxidant activity [35].

In this work, we attempted to theoretically evaluate the antioxidant activity of the
formononetin, calycosin, and calycosin-7-glucoside extracted from Radix Astragali by
performing systematic DFT studies. The main goal of this research is to shed light on the
structure–radical scavenging activity relationship and the possible multiple mechanisms
underlying the radical trapping process. The thermodynamic parameters involved in the
three well-established radical scavenging mechanisms were calculated in the gas phase
and in solution, including the bond dissociation enthalpy (BDE), ionization potential (IP),
proton dissociation enthalpy (PDE), proton affinity (PA), and electron transfer enthalpy
(ETE). Additionally, calycosin bearing a guaiacyl moiety proceeds with a double free radical
trapping reaction. Furthermore, the potential energy surfaces (PES) and rate constants
(k) of the reaction between the calycosin and radical •OH/•OCH3 were explored for an
insight into their mechanism of action. The frontier molecular orbital and natural bond
orbital (NBO) analyses were executed to evaluate the free radical scavenging ability of the
abovementioned isoflavonoid components.
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2. Results and Discussion
2.1. Conformational Analysis

The conformational structures of flavonoids are closely related to their ability to re-
sist the attacks of free radicals. In order to select the predominant conformer for further
studies, we first performed the conformational search for formononetin, calycosin, and
calycosin-7-glucoside using the Molclus program [36]. Low-lying isomers were subse-
quently optimized at the M06-2X level [37] with the 6-311 + G(d,p) basis set [38] using
the Gaussian 16 package [39], with the vibrational frequencies checked. The most stable
optimized conformer of the three isoflavonoid compounds in the gas phase are depicted
in Figure S1. As can be seen, all of the studied molecules adopt nonplanar geometrical
structures. A comparison of formononetin with other studied isoflavonoids showed that
the introduction of substituents (hydroxyl group or glycosyl group) in the B-or A-ring
only causes slight geometrical changes. Starting from the structures of the most stable
conformer, the structures of the corresponding radicals, radical cations, and anions of the
studied isoflavonoids were optimized at the same level. No significant geometrical changes
were observed when abstracting the hydrogen atom from each phenolic OH group for all
studied isoflavonoids.

2.2. Analysis of Free Radical Scavenging Reaction Paths

To predict the free radical scavenging activity of formononetin, calycosin, and calycosin-
7-glucoside, the thermodynamic parameters involved in the free radical scavenging mech-
anisms were calculated. The first H+/e− reaction may proceed via the HAT, SET-PT, or
SPLET mechanisms. For calycosin with more than one hydroxyl group, it is found that the
phenoxyl radicals generated in the first H+/e− reaction may proceed in a second H+/e−

reaction to trap free radicals.

2.2.1. HAT Mechanism

In the HAT mechanism, the BDE is usually regarded as a reliable thermochemical
parameter to evaluate the radical scavenging activity of antioxidants. A lower BDE indi-
cates a higher radical scavenging capacity of the investigated compounds. The BDEs of
formononetin, calycosin, and calycosin-7-glucoside computed at the M06-2X/6-311 + G(d,p)
level in the gas, water, and ethanol phases are listed in Table 1. Ethanol is the common
organic solvent used for extraction, which is non-polluting, non-toxic, and cost-effective.
The solvent effects were investigated using the SMD continuum solvation model [40]. For
formononetin with only one hydroxyl group in ring A (7-OH), the BDEs were calculated to
be 108.3, 95.6, and 94.4 kcal/mol in the three media, respectively. When another hydroxyl
group was introduced into ring B (calycosin), the BDEs of 7-OH maintained the same
value in the gas phase, whereas they increased by 8.6 and 10.5 kcal/mol in the water and
ethanol phases, respectively. Moreover, the BDEs of 3′-OH in calycosin were calculated to
be 87.1, 85.1, and 84.3 kcal/mol in the three media, respectively, which are always lower
than those of 7-OH calculated at the same level, indicating that 3′-OH should determine
the H-donating ability of calycosin. For the calycosin-7-glucoside compound, it can be
seen as replacing the 7-OH of the A-ring of calycosin with a glycosyl group. Surprisingly,
the BDEs of 3′-OH were calculated to be 87.3, 85.1, and 84.5 kcal/mol in the three media,
respectively, indicating that the presence of a glycosyl group at the 7-OH site of the A ring
of the calycosin-7-glucoside compound has almost no influence on the 3’-OH in the B ring.
As revealed in Table 1, the solvent effects only exert a slight influence on the BDEs of the
isoflavonoids because no charged species are involved in the HAT process.

In addition, the natural bond orbital (NBO) analyses [41] were also performed on the hy-
drogen atoms of phenolic hydroxyls for formononetin, calycosin, and calycosin-7-glucoside.
As listed in Table S1, the results showed that the charge on the hydrogen atom of 3’-OH was
higher than that of 7-OH, indicating that 3’-OH had higher activity and was more prone to
reacting with oxygen radicals. Based on the above results, the hydrogen-donating ability of
the isoflavonoids obeys the order of calycosin > calycosin-7-glucoside > formononetin.
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Table 1. Relative enthalpy energies (BDE, IP, PDE, PA, and ETE, in kcal/mol) of the three major antioxidant mechanisms for the studied compounds calculated at the
M06-2X/6-311 + G(d,p) level in the gas phase and solvent.

Mechanism HAT SET-PT SPLET

BDE IP PDE PA ETE

Compounds Gas Water Ethanol Gas Water Ethanol Gas Water Ethanol Gas Water Ethanol Gas Water Ethanol

Formononetin 175.2 132.9 127.2
7-OH 108.3 95.6 94.4 246.5 16.7 14.3 328.9 30.7 31.7 92.8 118.9 109.8

Calycosin 172.9 129.3 123.7
3′-OH 87.1 85.1 84.3 227.6 9.7 7.6 348.4 36.4 38.7 52.1 102.6 92.7
7-OH 108.3 104.2 104.9 248.7 28.8 28.2 329.2 30.7 31.7 92.5 127.4 120.3

Calycosin-7-glucoside 173.0 129.7 124.1
3′-OH 87.3 85.1 84.5 227.7 9.4 7.4 347.3 36.4 38.7 53.3 102.7 92.8
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2.2.2. SET-PT Mechanism

Apart from the HAT mechanism, SET-PT is another significant mechanism for flavonoid
compounds to scavenge free radicals. The calculated IP and PDE parameters involved in
the SET-PT pathway for the studied isoflavonoids in different media are summarized in
Table 1. The first step of the SET-PT mechanism is electron transfer, which is determined
by the IP. It can be found that in the gas phase, the IPs of formononetin, calycosin, and
calycosin-7-glucoside obey the order of calycosin (172.9 kcal/mol) < calycosin-7-glucoside
(173.0 kcal/mol) < formononetin (175.2 kcal/mol). Moreover, an analogue tendency is also
found in water and ethanol solvent, whereby calycosin < calycosin-7-glucoside < formononetin.
These results indicate that calycosin is more prone to donate electrons than the others in
all three media, whereas formononetin is the least effective one. In addition, compared to
the BDEs, solvents have a significant impact on the IP values. The IPs decreased by ~43
and 49 kcal/mol in water and ethanol solvents, respectively, in comparison to those in
the gas phase. This means that the polar solvents favor the electron abstraction from the
studied isoflavonoids.

The PDE is the parameter for the second step in the SET-PT mechanism, which
involves deprotonation from the radical cation yielded in the first step. It was found that
the calculated PDEs for the investigated compounds dramatically decreased by averages
of 221 and 224 kcal/mol from the gas phase to the water and ethanol phases, respectively,
due to the high solvation enthalpy of protons in solution. The PDE of 3′-OH is smaller than
the PDE of 7-OH, which means that the second step of the SET-PT mechanism of calycosin
and calycosin-7-glucoside is favored by 3′-OH to donate protons from its radical cation.

By comparison, it can be found that in three studied media, the BDE values are always
lower than the IP values. This indicates that the HAT mechanism is a more preferable
process for trapping radicals than the SET-PT mechanism.

2.2.3. SPLET Mechanism

The SPLET mechanism consists of the deprotonation of the phenolic OH group,
followed by electron transfer from the phenoxyl anion. The two descriptors of PA and
ETE were used to explore the probability of the SPLET mechanism for the investigated
compounds. Similar to the SET-PT mechanism, the first step of the SPLET mechanism also
plays an important role, with the lowest IP and PA values indicating the main mechanism
and reaction pathway from a thermodynamic perspective. The obtained results are given
in Table 1. The order of the PAs of the investigated isoflavonoids in the three media is
gas >> ethanol > water. As an example, the PAs of 3′-OH in calycosin decrease from
348.4 kcal/mol in the gas phase to 38.7 and 36.4 kcal/mol in water and ethanol, which
indicates that deprotonation occurs more easily in the solvents. For the investigated
compounds, the PAs of 3′-OH are slightly bigger than that of 7-OH. This result indicates
that the formation of the isoflavonoid-O7− anion is easier than the isoflavonoid-O3′− anion
in the studied environments.

By comparison, it can be clearly observed that the PAs in the solvent phase are signifi-
cantly lower than the corresponding BDEs and IPs, indicating that the SPLET mechanism
dominates the reaction pathway in the solvent phase. The ETEs are higher in the solution
environment and lowest in the gas phase, which is caused by the larger solvation enthalpy
of the anion rather than the electron and neutral radical. These results are in line with
previous reports [42,43]. In addition, when compared to the PAs and ETEs of the same O-H
site in the different investigated compounds, the values do not change much. For example,
it is found that the substitution of the 7-OH group with glycosyl group has little influence
on the acid strength of the 3′-OH of the calycosin-7-glucoside compared with calycosin and
the donating electron ability of the corresponding anions.

2.2.4. Double HAT Mechanism

Here, we further explored the thermodynamic feasibility of the double HAT (dHAT)
mechanism for the calycosin. To better illustrate the process, the dHAT mechanism in the
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gas and ethanol phases for the calycosin is given in Figure 2. The results indicate that
the phenoxyl radical can generate stable benzodioxole (singlet state) through cyclization
using twisted ortho-OCH3 groups rather than the phenoxyl diradical (triple state) after the
second H+/e− reaction. Thus, the OCH3 group is the preferred site for the second HAT. As
can be seen, the BDEs for the formation of benzodioxazole are only 39.1 and 44.0 kcal/mol
in the gas phase and ethanol, respectively, which are ~53 and 51 kcal/mol more stable than
the formation of the phenoxyl diradical, respectively, similar to previous studies [24,27].
These values are lower than the corresponding BDEs of the 3′-OH and 7-OH in the first
HAT, which suggests the high antioxidant capacity of the generated phenoxyl radicals and
the feasibility of the second HAT process from the OCH3 group for trapping free radicals.
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2.3. Kinetic Study

Apart from the thermodynamic approach, in order to obtain further insights into the
free radical scavenging activity of the antioxidants, we performed a systematic study on
the reaction pathway of calycosin with different ROS such as hydroxyl (•OH) and methoxy
(•OCH3) radicals via the HAT mechanism. Table 2 summarize the reaction kinetics and
thermodynamics of the O3′ and O7 positions of calycosin with •OH/•OCH3 radicals.
Here, to better understand the H donation process, the potential energy surfaces (PES)
were calculated for the reactions between •OH/•OCH3 and the different sites of calycosin,
correspondingly (Figure 3). The rate constants were also calculated using the KiSThelP 2019
program [44], which are useful criteria for identifying the most efficient compounds for
scavenging radicals. All calculations were performed in the gas phase at the M06-2X/6-311
+ G(d,p) level.

2.3.1. Reaction with •OH

As one of the most reactive oxygen-centered free radicals, •OH usually reacts with
almost all biological molecules in its vicinity and causes oxidative damage to tissues. As
can be seen in Figure 3a,b and Table 2, it was found that the reactions of the O3′ and O7
positions of calycosin with the •OH radical are always exergonic relative to the reactant
complexes, with the Gibbs free energy values falling to 30.3 and 8.9 kcal/mol in the
gas, respectively. The average activation Gibbs free energy (∆G 6=) value for calycosin is
7.3 kcal/mol, indicating shallow barriers when the H atom transfer reacts with •OH. This
result is in keeping with other findings for polyphenol [28,45]. A comparison of the Gibbs
free energy values and barriers of the two positions of calycosin showed that 3′-OH is the
more active site for radical attacks, which is consistent with the results obtained in the
thermodynamical calculations. Examining the optimized structures of TSs, the distances of
breaking O···H bonds are 1.04 and 1.04 Å, whereas the forming H···O bonds are 1.40 and
1.36 Å, respectively, indicating the existence of an early transition state. Furthermore, the
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rate constant of the calycosin-3′-OH + •OH reaction is 4.55 × 109 M−1 s−1, which is higher
than that of the calycosin-7-OH + •OH reaction (2.03 × 109 M−1 s−1).

Table 2. Activation (∆G 6=) and reaction (∆G) Gibbs free energies and rate constants (k) calculated at
the M06-2X/6-311 + G(d,p) level of theory at 298.15 K in the gas phase.

Reactions ∆G (kcal/mol) ∆G 6= (kcal/mol) k (M−1 s−1)

Calycosin-3′-OH + •OH −30.3 7.2 4.55 × 109

Calycosin-7-OH + •OH −8.9 7.4 2.03 × 109

Calycosin-3′-OH + •OCH3 −14.8 12.1 6.72 × 105

Calycosin-7-OH + •OCH3 6.5 11.7 /
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•OH/•OCH3 radical in the gas phase. RC, TS, and PC represent the pre-complex, transition state,
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M06-2X/6-311 + G(d,p) level. The distances of O···H are highlighted in blue (unit: Å). The elements
C, O, and H are indicated in gray, red, and white, respectively.

2.3.2. Reaction with •OCH3

Methoxy radicals (•OCH3), as the simplest members of the alkoxy group family (RO•),
have moderate reactivity compared to the high reactivity of •OH radicals. The Gibbs free
energies of the overall reaction (∆G) and activation barriers (∆G 6=) associated with the
radical abstraction channels of the calycosin molecule against •OCH3 in the gas phase
are provided in Figure 3c,d and Table 2. The reaction energy barriers of the O3′ and
O7 positions of calycosin with the •OCH3 following the HAT mechanism are 12.1 and
11.7 kcal/mol, respectively, which are considerably higher than those of •OH. For the
3′-OH of calycosin, the PES tendency of the reaction with •OCH3 is quite similar to that of
the reaction with •OH. However, it is worth noting that the reaction between the 7-OH of
calycosin and •OCH3 is endothermic. The rate constant of the calycosin-3′-OH + •OCH3
(6.72 × 105 M−1 s−1) is smaller than that of the •OH radical, which may be attributed to
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•OH being a stronger electron acceptor than •OCH3, meaning it can quickly react with the
calycosin molecule through the HAT pathway.

2.4. Molecular Orbital Analysis

The electron density distribution and energies of the HOMO and LUMO in the gas
phase for the studied isoflavonoids are given in Figure 4. The energies of the HOMO and
LUMO can been regarded as important parameters in evaluating electron-donating and
electron-receiving abilities, respectively. It can be observed that the HOMO energies follow
the order of calycosin (−7.100 eV) > calycosin-7-glucoside (−7.143 eV) > formononetin
(−7.234 eV), indicating that calycosin would exhibit the strongest electron-donating ability.
As shown in Figure 4, the HOMOs of formononetin, calycosin, and calycosin-7-glucoside
present a similar electron density distribution, which is mainly localized on the B- and
C-rings as well as the 3′-OH group. In contrast, the LUMOs of all compounds are centered
on the A- and C-rings. Interestingly, there is no contribution of the glycoside substituent
for the HOMO and LUMO of calycosin-7-glucoside, which indicates that H atoms on the
glycoside substituent do not easily participate in the reaction.
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3. Computational Details

The stable conformation of the formononetin, calycosin, and calycosin-7-glucoside
were searched by the Molclus program in this study [36]. Further optimization and a
frequency analysis for these investigated molecules and their radicals, radical cations, and
anions were performed at the M06-2X/6-311 + G(d,p) level of the theory using the Gaussian
16 package [37–39]. The M06-2X function is highly recommended for thermodynamic
and kinetic calculations. In particular, this functional has been used in many studies for
modelling reaction energetics involving free radicals [28,33,46,47]. The influence of water
and ethanol as solvents was calculated using the SMD continuum solvation model [40],
which has been successfully used for the study of free radical scavenging mechanisms
in conjunction with the hybrid M06-2X functional [48]. Unrestricted calculations were
used for the radicals. Natural bonding orbital (NBO) analyses were performed using
the NBO 6.0 program in order to analyze the distribution of the unpaired electron in the
radical species [41].

The transition states, pre-complex (RC), post-complex (PC), and products of the
reaction between the •OH/•OCH3 radicals and calycosin molecules were optimized and
calculated at the same level. The RCs, PCs, and products were verified by a normal-mode
analysis to be local minima, and the transition states for each reaction were confirmed by
having a single imaginary frequency on the potential energy surface. The intrinsic reaction
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coordinate (IRC) calculations were performed to ensure that the obtained structures were
the true TS [49]. All reaction enthalpies and Gibbs free energies were calculated at 298.15 K.

3.1. Antioxidant Mechanisms and Thermochemical Parameters

Three common antioxidant mechanisms (HAT, SET-PT, and SPLET) were considered
in the free radical scavenging activity of flavonoids (ArOH) [30–32]. The thermochemical
parameters related to the three antioxidant mechanisms were systematically calculated.

(a) HAT is a one-step mechanism in which hydrogen atoms are transferred from flavonoid
hydroxyl groups to the free radicals through homolytic cleavage of the O-H bond
(Equation (1)). The activity of the antioxidants can be characterized by the BDE for
this mechanism (Equation (2)):

ArOH + R• → ArO• + RH (1)

BDE = H(ArO•) + H(H•) − H(ArOH) (2)

(b) The SET-PT mechanism consists of two-steps. In the SET-PT mechanism, electron
transfer from ArOH is followed by proton transfer (Equation (3)). The first and
second step of the SET-PT mechanism are governed by IP and PDE, respectively
(Equations (4) and (5)):

ArOH + R• → ArO•+ + R− → ArO• + RH (3)

IP = H(ArOH•+) + H(e−) − H(ArOH) (4)

PDE = H(ArO•) + H(H+) − H(ArOH•+) (5)

(c) For the SPLET mechanism, it also consists of two-steps. Proton transfer from ArOH is
followed by electron transfer (Equation (6)). The PA and ETE were used to drive the
first and second steps, respectively (Equations (7) and (8)):

ArOH→ ArO− + H+ + R• → ArO• + RH (6)

PA = H(ArO−) + H(H+) − H(ArOH) (7)

ETE = H(ArO•) + H(e−) − H(ArO−) (8)

where ArO•, ArOH•+, and ArO− represent the radical, radical cation, and anion of the
flavonoids, respectively. The enthalpy values of the hydrogen atom (H•), proton (H+), and
electron (e−) were obtained from the literature [50,51]. The proton and electron solvation
enthalpies were computed according to the reported literature [52]. The BDE, IP, and PA
values were used as the main thermodynamic parameters to explain the radical scavenging
activity of the studied compounds.

3.2. Kinetic Parameters

The rate constants were calculated using the KiSThelP 2019 program [44] at 1 M
standard state in the gas phase. Based on conventional transition state theory (TST) [53],
the rate constants were calculated as follows:

kTST = σk
kBT

h
exp

(
−∆G#

RT

)
(9)
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where kB is the Boltzmann constant, T is the temperature, h is the Planck constant, ∆G# is
the Gibbs free energy of activation, σ is the reaction path degeneracy, and k accounts for
tunneling corrections, which are calculated through the Wigner approaches [54].

4. Conclusions

In this paper, the antioxidant properties of three isoflavonoid components (formononetin,
calycosin, and calycosin-7-glucoside) extracted from Radix Astragali were studied using
the DFT method through the HAT, SET-PT, and SPLET mechanisms. The thermodynamic
descriptors including the BDE, IE, PDE, PA, and ETE were calculated in the gas, water,
and ethanol phases for the radical scavenging activity. The conclusions are summarized
as follows:

(1) The hydroxyl group on the O3′ position has a higher H-atom donation ability than
that on the O7 position for the investigated compounds. A comparison of the intrinsic
thermodynamic properties including BDEs, IPs, and PAs demonstrated that the
HAT action is thermodynamically preferred in the gas phase and SPLET is more
preferred in the solvent phase in the first H+/e− reaction. The sequence of free
radical scavenging capability for the three isoflavonoid compounds is calycosin >
calycosin-7-glucoside > formononetin.

(2) The calycosin preferentially undergoes the first H+/e− reaction on the 3′-OH site,
followed by the second H+/e− reaction from the ortho-OCH3 group to form stable
benzodioxazole with considerably reduced energy via the double HAT mechanism.

(3) The potential energy profiles and kinetic calculations show that the reaction of •OH
into the 3′-OH site of calycosin has a lower energy barrier (7.2 kcal/mol) and higher
rate constant (4.55 × 109 M−1 s−1) compared with other reactions. It is worth noting
that the reaction between the 7-OH of calycosin and •OCH3 is endothermic.

These results contribute to a deeper understanding of the antioxidant activity of
the Radix Astragali. We believe that our findings will provide a theoretical basis for the
development and application of natural antioxidants.
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