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Kondrzycka-Dąda, A.;
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Abstract: Despite the fact that there are many studies related to the adaptogenic and pro-healthy
activities of plant-based compounds, there are some adaptogenic plants whose activities are not fully
known, especially those coming from the wild regions of Asia, Africa, and South America. The aim
of these studies was to examine the contents of non-nutritional compounds, such as polyphenols,
flavonoids, and phenolic acids in ten adaptogenic species (Astragalus membranaceus (AM), Uncaria
rhynchophylla (UR), Polygonum multiflorum (PM), Angelica sinensis (AS), Andrographis paniculatea (AP),
Tinospora cordifolia (TC), Uncaria tomentosa (UT), Pfaffia paniculate (PP), Sutherlandia frutescens (SF),
and Rhaponticum carthamoides (RC)). Considering biological activity, their antioxidant (DPPH, ABTS,
FRAP, and ferrous-ion-chelating ability assays), anti-acetylcholinesterase, anti-hyaluronidase, and
anti-tyrosinase activities were evaluated. The richest in polyphenols, flavonoids, and phenolic
acids was UR (327.78 mg GAE/g, 230.13 mg QE/g, and 81.03 mg CA/g, respectively). The highest
inhibitions of acetylcholinesterase, hyaluronidase, and tyrosinase were observed for TC, UR, and
PM, respectively. In the case of antioxidant properties, extract from PM appeared to most strongly
reduce DPPH, extract from UR inhibited ABTS, and extract from SF showed the best chelating
properties. It should be noted that a particularly interesting plant was Ulcaria rhynchophylla. The
results mean that there were compounds in UR with broad biological activities, and this species
should be explored in more detail. Additionally, our results justify the traditional use of these species
in the nutripharmacological or ethnopharmacological care systems of different regions.

Keywords: nutripharmacology; tyrosinase; hyaluronidase; acetylcholinesterase; adaptogens; DPPH;
ABTS; ferrozine; ion chelation; polyphenols; flavonoids

1. Introduction

Adaptogenic plants belong to a diversified group used to treat many diseases. In
1947, Nikolai Lazarev defined an adaptogen as a remedy that allows an organism to
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counteract unfavorable physical, chemical, and biological stress effects. In 1968, Dr. Israel
I. Brekhman and Dr. I. V. Dardymov defined an adaptogen as a medicine, which should
act with no toxicity for humans, should increase resistance to multiple stressors, and
should normalize the effects of stressors on physiology. Nevertheless, there is currently
no consistent definition of an adaptogen. According to traditional Chinese medicine,
adaptogens strengthen and stimulate a body’s immune and defense functions; in Ayurveda,
they cause rejuvenation. In Western medicine, they are used to regulate the hypothalamic–
pituitary–adrenal axis (HPA) and sympathetic nervous system [1,2].

Additionally, most adaptogens have antioxidant properties. The activity of a plant-
based adaptogen is related to its chemical compounds, which are very diversified. It
is said that there are a few groups of compounds responsible for the adaptogenic and
nutritional values of plant adaptogens, e.g., triterpenoid saponins (Panax ginseng ginseno-
sides; eleutherosides in Eleutherococcus senticosus); phytosterols and ecdysones (Rhaponticum
carthamoides); and lignans (Schisandra chinensis). Some adaptogenic plants are used in China
as food with great health benefits. In this place, it should be noticed that the roots of
Glycyrrhiza glabra L. are served in China after frying in bee honey to stimulate the immune
system. It is generally known that some compounds, like polyphenols, are suitable for the
human body [3–6].

One of the mechanisms of disease treatment is the inhibition of enzymes. Hyaluronidases
(HYALs) belong to the hydrolase responsible for hyaluronic acid (HA) degradation. They
are produced by bacteria and sperm, facilitating their entry into egg cells, as well as by
neutrophils. They are also present in animal venoms. Overproduction of melanin leads to
freckles, age spots, or discoloration after a sunburn. Tyrosinase (TYR) is involved in melanin
production, a natural pigment that is synthesized by most organisms. Acetylcholinesterase
(AChE) is an enzyme that breaks down one of the primary neurotransmitters, acetylcholine,
into choline and acetic acid residue. Inhibition of AChE activity increases cholinergic
relay, positively affecting loss symptoms concerning cognitive processes in patients with
dementia associated with Alzheimer’s and Parkinson’s [7–9].

There are over 8000 polyphenols, and their wide activities have been explored in
different models (in vitro and in vivo). Animal, human, and epidemiologic studies have
shown that various polyphenols have antioxidant and anti-inflammatory properties that can
have preventive and/or therapeutic effects for cardiovascular diseases, neurodegenerative
disorders, cancer, and obesity. There are many mechanisms related to the protective effect
of polyphenols against free radicals, i.e., by forming stabilized chemical complexes or by
producing hydrogen peroxide, which can help to regulate immune response actions [10–12].

Because polyphenols constitute a significant group of non-nutritional diet constituents,
their amounts in foods should be regulated, and recommendations for consumption should
be unified. Interest in plant-based adaptogens over the past few years has dramatically
increased, and for this reason, it is essential to perform comprehensive research on their
compounds and activities using one research model.

We hypothesize that adaptogenic plants may be used not only in ethnomedicine but
also as ingredients in food with nutripharmacological activities. For this reason, we choose
as model plants ten adaptogenic plants native to three continents, i.e., South America, Asia,
and Africa. We explore Astragalus membranaceus root (AM), the herb Uncaria rhynchophylla
(UR), Polygonum multiflorum root (PM), Angelica sinensis root (AS), the herb Andrographis
paniculate (AP), Tinospora cordifolia (TC), Uncaria tomentosa bark (UT), Pfaffia paniculate root
(PP), Sutherlandia frutescens fruit (SF), and Rhaponticum carthamoides root (RC).

To confirm this hypothesis, a wide panel of analyses is conducted, including phyto-
chemical and nutripharmacological ones (antioxidant, anti-tyrosinase, anti-hyaluronidase,
and anti-acetylcholinesterase).
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2. Results and Discussion
2.1. Chemical Compositions and Yields of Extraction

Polyphenols (flavonoids, phenolic acids, chalcones, lignans, anthocyanins, and tan-
nins) are natural compounds that are widely spread in the plant world, exhibiting a variety
of biological activities. As shown in Table 1, the yields of extraction were different and
dependent on the type of raw material. The highest yield of extraction was obtained for
AS, with the lowest one for TC. However, there was no correlation between the yield
and the polyphenol content or activity. This may mean that there are compounds other
than polyphenols whose activities are associated with pharmacological effects. It has been
reported in the literature that the extraction of UR hooks resulted in a yield of 6.71%.

Table 1. Contents of phenolic compounds (1 mg/mL) and yields of extraction (%). Values are
expressed as mean ± SD (n = 3).

TPC
(mg GAE/g)

TFC
(mg QE/g)

TPAC
(mg CAE/g) Yield of Extraction

Mean SD Mean SD Mean SD Mass (g) (%)

Astragalus membranacus (AM) 87.90 6.47 20.90 0.67 1.11 0.00 2.50 25.0

Angelica sinensis (AS) 80.14 1.16 55.17 8.81 2.90 0.12 5.29 52.9

Uncaria tomentosa (UT) 308.87 9.84 74.44 1.55 70.35 7.87 1.10 11.0

Sutherlandia frutescens (SF) 168.23 7.11 79.37 20.44 5.76 0.29 3.30 33.0

Pfaffia paniculata (PP) 235.82 8.80 32.77 8.56 14.07 0.97 1.33 13.3

Andrographis paniculata (AP) 279.27 4.20 83.85 12.61 31.10 0.71 1.68 16.8

Rhaponticum carthamoides (RC) 210.92 8.15 43.53 4.95 13.84 1.65 1.24 12.4

Tinospora cordifolia (TC) 280.82 8.30 178.38 35.54 19.81 2.82 0.94 9.4

Uncaria rhynchophylla (UR) 327.78 26.27 230.13 40.86 81.03 11.41 1.21 12.1

Polygonum multiflorum (PM) 314.60 12.06 114.99 12.80 61.61 2.44 3.00 30.0

TPC = total phenol content, TFC = total flavonoid content, TPAC = total phenolic acid content. Results are
expressed as mean ± SD.

Also, the content of polyphenols varied in the range of 80.14± 1.2–327.78± 26.27 mg GAE/g,
the total flavonoid content was in the range of 20.9 ± 0.67–230.13 ± 40.86 mg QE/g, and
the total phenolic acid content was in the range of 1.1 ± 0.00–81.0 ± 11.4 mg CAE/g. The
highest TPC, TFC, and TPAC values were observed in UR.

The contents of polyphenols depend on different factors, and in some cases, it is not
possible to make comparisons because of the different conditions of analysis and extract
preparation. Additionally, the plants tested in this research are not fully explored in terms
of polyphenol content. There are reports in the literature on these compounds’ contents
in UR and AM, respectively. Different results were obtained by extracting UR hooks with
70% EtOH, followed by fractionation with hexane, ether, dichloromethane (DCM), ethyl
acetate (EtOAc), and aqueous solution. The TPC and TFC in the 70% EtOH extract were
241.9 mg GAE/g and 33.5 mg QE/g, respectively. The TPC was the highest in the EtOAC
fraction at 373.79 mg GAE/g, whereas the TFC was the highest in the ethanol extract
at 33.5 mg QE/g [13]. The differences in the results are due to the different methods of
chemical composition determination and extraction used in the studies.

2.2. Antioxidant Properties
2.2.1. Determination of DPPH and ABTS Assays

Several methods allowed us to better define the mechanisms of action of antioxidants
in the extracts. To evaluate the antioxidant capacities of the extracts, several in vitro
methods were undertaken, namely, DPPH, ABTS, FRAP, and ferrous ion-chelating ability
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assays. The antioxidant activities of extracts were determined in three concentrations (10, 1,
and 0.1 mg/mL). The obtained results are summarized in Figures 1–4.
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For the ABTS assay, the extracts from UT, AP, UR, and PM at a 1 mg/mL concentration
had similar activity to BHA and Trolox. The results are reported in Figure 1. High activities
in scavenging DPPH• radicals were shown by the UT, AP, UR, and PM extracts, whose
activities were more elevated than BHA in each concentration. Regardless of the concentra-
tion used, the activity of Trolox was the highest. The results are reported in Figure 2. There
are reports in the literature on thousands of data regarding DPPH reduction; however,
these results vary because of the chemical compositions of extracts and the concentra-
tions used. For instance, Jain et al., prepared ethanolic extract from Tinospora cordifolia
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stem (TC) using Soxhlet extraction. The IC50 values for ABTS and DPPH were 106.86 and
85.48 µg/mL, respectively [14]. In the case of Uncaria rhynchophylla (UR), in a test with
ABTS and DPPH the IC50 values were equal to 23.52 and 8.70 µg/mL, respectively [15].
Not many adaptogenic plants have been explored in detail including a few organs from
one species. Very interesting results were provided by Rafat et al. [16], who analyzed the
free-radical-scavenging potential of AP. It appeared that the fruit extract strongly reduced
DPPH (88.13%), followed by the leaf extract (86.87%), and the stem extract (80.48%).

2.2.2. Ferric-Reducing Antioxidant Power (FRAP) Assay

As assessed with the FRAP method, the reducing potential varied largely among the
investigated extracts. The results are presented in Figure 3. UT showed the most potent
reducing properties at 10 mg/mL (32.58 mg Trolox/g DW). The values of TC (29.86 mg
Trolox/g DW), UR (30.95 mg Trolox/g DW), and PM (31.01 mg Trolox/g DW) were similar
to that of UT. PP, AP, and RC reduced iron ions at 23.76, 26.67, and 19.67 mg Trolox/g DW,
respectively. At a 1 mg/mL, UT, UR, and PM showed the highest reducing capacities (11.46,
11.49, and 12.09 mg Trolox/g DW, respectively). At a concentration of 0.1 mg/mL, the
range of reducing power was from 5.14 to 5.92 mg Trolox/g DW. Ethanolic extract prepared
from UT leaves showed moderate antioxidant activity (2.9 mM FeSO4/mg) [17]. The extract
made from TC stem showed strong protective properties against iron (III) ions (197.5 FSE/g
DW) [18]. The results show that water extracts (2.039 ± 0.06 mM FeSO4 eq./mg extracts)
and ethanol extracts (2.417 ± 0.11 mM FeSO4 eq./mg extracts) both had higher FRAP
antioxidant activities than those of BHT (1.284 ± 0.16 mM FeSO4 eq./mg extracts) [19].
The water extract of the stem of PM demonstrated intense antioxidant activity (498 µM Fe
(II)/g), as well as the stem of PM (343 µM Fe (II)/g) [20].

2.2.3. Ion Chelation Assay

Compounds present in the extracts showed high chelating abilities at a concentration
of 10 mg/mL (Figure 4). SF, PP, AP, RC, TC, and PM demonstrated substantial chelating
properties. At a 1 mg/mL concentration, chelating activity was most significant for SF,
with weaker properties shown by AM, RC, and TC. No chelation was observed for UT (at
1 mg/mL). The strong chelation activity of SF is confirmed by Tobwala with an extract
obtained with the hot water chelating of iron (II) ions at 40% (for EDTA, about 50%) [21].

2.3. Enzymatic Inhibition

Plants have been used as a source of medicine for centuries. The presence of a wide
variety of chemical structures allows for the discovery of many drugs. Important plant-
derived compounds include morphine, galantamine, atropine, vincristine, vinblastine,
paclitaxel, and ephedrine. Adaptogenic plants, due to their diverse compositions, are a
great source of new molecules, which may stimulate the activities of different enzymes.
This is especially desirable in the prevention or treatment of diseases that result from the
overactivity of some enzymes, i.e., acetylcholinesterase, tyrosinase, or hyaluronidase.

Alkaloid compounds are probably responsible for the activity of extracts against
acetylcholinesterase. The structures of these compounds allow interaction with the active
center. Flavonoids containing a γ-pyrronium grouping may be responsible for inhibiting
tyrosinase. Activity against hyaluronidase is shown by many plant compounds, such as
alkaloids, flavonoids, phenolic acids, saponins, and tannins.

2.3.1. Acetylcholinesterase Inhibition Assay

The activities of methanolic extracts against AChE are shown in Figure 5. As shown,
all the extracts were rather weak as AChE inhibitors, and high doses were needed. The most
potent inhibitory activities at a concentration of 10 mg/mL were shown by TC and UR (72.80
and 51.80%, respectively). The other extracts showed weak AChE inhibition. None of the
extracts showed more potent activity against AChE than donepezil. There were not many
results regarding these species and their anti-AChE activities. The methanolic extract of UR
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leaves (1 mg/mL) inhibited the enzyme by 90%, which probably resulted from the presence
of geissoschizine methyl ether (IC50 = 3.7 µg/mL). However, this compound inhibited the
enzyme more weakly than physostigmine (IC50 = 0.013 µg/mL). Six alkaloids (vallesia-
chotamine, histamine, hirsute, isorhynchophylline, cisocorynoxeine, and corynoxeine) are
responsible for this effect to a lesser extent [22,23]. Another report provided by Chowd-
hury et al., claimed that an aqueous extract of U. tomentosa bark showed a maximum AChE
inhibition of 76.2% at 0.4 mg/mL of final concentration with an IC50 = 0.112 mg/mL [24].
In the research of Jiang et al., it appeared that geissoschizine methyl ether inhibited AChE
at the level of 50% in a dose of 23.4 µM [25]. In turn, an extract made from the stem
of TC inhibited AChE with an IC50 value of 38.36 µg/mL. Columbine, one of the active
compounds of TC, exhibited a weaker inhibition for the IC50 value of 1.29 mg/mL in a
comparison to the eserine (IC50 = 0.5318 mg/mL) used as a standard. In another study, the
tinosporidium (IC50 = 13.45 µg/mL) and 8-hydroxytinosporidium (IC50 = 46.71 µg/mL)
obtained from a methanolic extract were also identified as AChE inhibitors. In turn, ox-
oglaucine, lyriodenine, and N-formylanonine showed weak anti-AChE activity, with IC50
values of 0.8033, 0.8076, and 0.8190 mg/mL, respectively [26,27].
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Recently, a new compound was isolated from the stem of TC, and the molecule was
identified as rel (2S,3S,4R,16E)-2-[(2′R)-2′-hydroxynonadecanoylamino]-heneicosadec-16-
ene-1,3,4-triol and demonstrated quite good AChE inhibitory activity (IC50 = 0.055 mg/mL)
when compared to eserine (IC50 = 0.009 mg/mL) [28].

Santoro et al., reported the anti-AChE activity of an AM root ethanolic extract with
an IC50 = 11.7 µg/mL [29]. Despite the weak activity of the AM extract, there were
some reports about isolated compounds from it claiming anti-AChE potential: calycosin-
7-O-β-D-glucoside (44.22 µg/mL), pratensein7-O-β-D-glucoside (IC50 = 48.09 µg/mL),
formononetin-7-O-β-D-glucoside (IC50 = 49.69 µg/mL), calycosin (IC50 = 46.96 µg/mL),
genistein (IC50 = 45.13 µg/mL), and formononetin (IC50 = 44.83 µg/mL) [30]. Stępnik et al.,
reported the AChE inhibitory potential of astragalosides found in the roots of AM, with the
IC50 values for astragalosides II, III, and IV (5.9, 4.2, and 4.0 µM, respectively) [31].

Regarding AP extracts, Mukherjee et al., also reported a weak inhibition of acetyl-
cholinesterase with an IC50 value of 222.41 ± 19.87 µg/mL for a hydroalcoholic extract [32].
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2.3.2. Tyrosinase Inhibition Assay

The assay was carried out at three different extract concentrations: 10, 1, and 0.1 mg/mL.
The results showed a dose-dependent inhibition, with the highest inhibition for 10 mg/mL
(Figure 6). The most active extract was PM (72.25%), followed by AP and UR (above 40%).
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Several studies have demonstrated the multidirectional whitening effects of PM ex-
tracts. Inhibitory activity against tyrosinase was shown by (E)-2,3,5,4′-tetrahydroxystilbene-
2-O-β-D-glucoside (THSG) isolated from PM. THSG inhibited tyrosinase in a dose-dependent
manner, with an IC50 value of 100 µg/mL. In addition, THSG also strongly inhibited
melanin production in B16 melanoma cells induced by forskolin, which indicated the poten-
tial stimulation of melanogenesis [33]. Based on the results obtained by Hamid et al. [34],
it may be stated that AP extract inhibited tyrosinase more strongly than an isolated
compound, andrographolide (IC50 = 0.749 and 2.441 µg/mL, respectively). Kojic acid
(IC50 = 19.985 µg/mL) was used as the standard. Also, AM, due to the presence of flavonoids
(formononetin) and saponins, has multidirectional effects on the production of melanin.
Lee et al., isolated calycosin-7-O-β-D-glucopyranoside, which was responsible for anti-
tyrosinase activity (IC50 = 68.1 µM). As standards, kojic acid and arbutin were used
(IC50 = 79.5 and 125.1 µM, respectively) [35,36]. Dong et al. [37] determined the effect
of a 70% ethanolic extract of UR on tyrosinase activity and melanin synthesis. The extract
of 1 mg/mL (60% activity of tyrosinase) inhibited tyrosinase more strongly than kojic acid
(65% activity of tyrosinase), as well as significantly decreasing the cellular melanin content.
In this place, it should be mentioned that inhibition is strongly dependent on the chemical
groups bound to a ring. Despite many results related to this subject, in the majority it is
impossible to make comparisons because of a lack of information about the enzyme unit
activity or insufficient chemical analysis.

2.3.3. Hyaluronidase Inhibition Assay

The activities of 10 adaptogenic extracts against hyaluronidase were determined at
concentrations of 10, 1.0, and 0.1 mg/mL. As reported in Figure 7, all the extracts contained
phytochemicals with moderate activity, and high doses were needed to obtain significant
inhibition. Under consideration should be the extracts from PM (72.52%), UT (70.60%), and



Molecules 2023, 28, 6004 9 of 17

UR (65.66%), which at 1 mg/mL, showed the most potent activities when compared to the
dose. Of course, the extracts from UR (97.23%) and UT (96.06%) were found to have the
strongest inhibition of hyaluronidase; however, they needed to use a high concentration of
10 mg/mL. Our study showed for the first time the strong inhibitory activities of Uncaria
tomentosa, Uncaria rhynchophylla, and Polygonum multiflorum against bovine hyaluronidase.
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There are not many data regarding these species and their anti-HYAL activity. How-
ever, Kang et al., examined various plant species, including AM and PM, reporting that
only AM ethanolic root extract inhibited hyaluronidase at 76.2% [38]. In another study, AM
and PM water extracts and ethanol extracts inhibited hyaluronidase (7900 U/mL) at 11.6%
and 57.5% for AM and 18.7% and 50.4% for PM, respectively. The AM extract may not have
a high inhibiting potential of hyaluronidase; however, there are reports that have indicated
that AM leaf extracts may increase the content of hyaluronic acid in tissues, which can also
prevent spreading infections and inflammatory processes [39–41].

Our results show that the Andrographis paniculatae extract did not exhibit a higher in-
hibitory potential amongst other species. However, some results indicate that AP methano-
lic extracts (100–400 µg/mL) inhibited hyaluronidase to the extent of 17–52% [42]. Sivaku-
mar et al., proved that methanol leaf AP extract at a concentration of 250 µg/mL inhibited
hyaluronidase at 32 ± 6% [43].

2.4. Statistical Analysis and Correlation

The contents of TPC and TPAC showed statistically significant correlations with most
of the applied antioxidant tests for the majority of the extract concentrations used (Table 2).
The only exceptions were for the DPPH test with a 10 mg/mL extract concentration and
for the CA test with a 1 mg/mL extract concentration, where there were no statistically
significant correlations with any of the studied active compounds. In the case of antioxidant
activity, the TFC content correlated with the results of the FRAP assay for all the extract
concentrations, as well as with the ABTS and CA assays with the 10 mg/mL extract
concentrations. For enzymatic inhibition, statistically significant correlations with TPC,
TFC, and TPAC were obtained only for the AChE test at 1 mg/mL, with TPC and TFC for
the HYAL test at 0.1 mg/mL, and with TFC for the TYR test at 1 mg/mL.
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Table 2. Spearman correlations among chemical compositions, antioxidant activities, and enzymatic
inhibitions of the adaptogenic plants. Red values indicate statistical significance at p < 0.05.

Activity Extract Con-
centration TPC TFC TPAC

A
nt

io
xi

da
nt

ac
ti

vi
ty

ABTS

10 −0.66 −0.81 −0.61

1 0.93 0.62 0.96

0.1 0.94 0.62 0.92

DPPH

10 0.53 0.53 0.54

1 0.92 0.59 0.95

0.1 0.66 0.37 0.72

FRAP

10 0.94 0.65 0.95

1 0.98 0.75 0.95

0.1 0.95 0.68 0.94

CA
10 0.71 0.86 0.65

1 −0.33 0.05 −0.47

En
zy

m
at

ic
in

hi
bi

ti
on

AChE

10 0.56 0.31 0.54

1 0.87 0.70 0.88

0.1 0.53 0.44 0.47

HYAL

10 0.62 0.38 0.53

1 −0.25 0.04 −0.26

0.1 −0.64 −0.64 −0.54

TYR

10 0.02 −0.09 0.01

1 −0.48 −0.66 −0.40

0.1 −0.61 −0.42 −0.55

A hierarchical cluster analysis (Figure 8) was conducted based on the antioxidant
activities and enzymatic inhibitions of the adaptogenic species. The results suggested
the presence of three distinct groups among the analyzed taxa. Group I comprised three
species: AM, AS, and SF; group II consisted of four species: PP, AP, RC, and TC; and group
III included three species: UT, UR, and PM.

The same groups were also identified in the redundancy analysis (RDA) based on
the contents of active compounds and the investigated activities: antioxidant activity and
enzymatic inhibition (Figure 9). The eigenvalues for the first and second canonical axes
were 0.696 and 0.131, respectively. A Monte Carlo permutation test showed that the content
of the chemical composition was responsible for the variability in the antioxidant and
anti-enzymatic activities of the studied adaptogenic species, with a statistical significance
of p = 0.002 for the first axis and p = 0.002 for all the axes. The distribution of species along
the x-axis was determined by the contents of TPAC (correlation with x-axis: −0.9278) and
TPC (correlation with x-axis: −0.9224).

In the ordination space, species from group I were located between the vectors rep-
resented by CA and TYR, while species from group II were clustered near the HYAL
vector. The third group of species was associated with higher content of TPAC and stronger
inhibition of AChE, as well as increased antioxidant activity against DPPH and FRAP.
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Figure 8. Hierarchical cluster analysis of adaptogenic plant samples based on antioxidant activity
and enzymatic inhibition.
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3. Materials and Methods
3.1. Chemicals and Reagents

1,3,5-Tri(2-pyridyl)-2,4,6-triazine (TPTZ), 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-
azinobis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), 3-(2-Pyridyl)-5,6-diphenyl-1,2,4-
triazine-p,p′-disulfonic acid monosodium salt hydrate (ferrozine), Folin−Ciocalteu reagent
ascorbic acid, 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox), 2(3)-t-Butyl-
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4-hydroxyanisole, 2(3)-t-Butylhydroquinone monomethyl ether (BHA), escin, donepezil,
koji acid, iron(II) chloride tetrahydrate (FeCl2 × 4H2O, iron(III) chloride (FeCl3), potassium
persulfate, buffers for enzymatic analysis, L-tyrosine, L-DOPA, tyrosine from mushrooms,
acetylcholine (ACh), acetylcholinesterase, 5,5′-Dithiobis(2-nitrobenzoic acid) (DTNB),
hyaluronidase from bovine testes, hyaluronic acid (IV), and hexadecyltrimethylammo-
nium bromide (CTAB) were purchased from Sigma-Aldrich Corp (Saint Louis, MO, USA).
Solvents used for extraction were purchased from Avantor Performance Materials, Poland
S.A. (Gliwice, Poland).

3.2. Plant Material

Adaptogenic plants from South America, Asia, and Africa were studied. The plant ma-
terials were bought at a shop (MagicznyOgród, Muszyna, Poland). Each of the raw materi-
als was certified for quality. The plants came from the following countries:
China—Astragalus membranaceus Bunge root, Polygonum multiflorum (Thunb.) Moldenke
root, Angelica sinensis (Oliv.) Diels root, and Uncaria rhynchophylla (Miq.) Jacks. Herb;
India—Andrographis paniculate (Burm.f.) Nees herb and Tinospora cordifolia (Willd.) Hook. f.
and Thomson herb; Peru—Uncaria tomentosa (Willd. ex Schult.) DC. bark; Brazil—Pfaffia
paniculate (Mart.) Kuntze root; South Africa—Sutherlandia frutescens (L.) R.Br. fruit; and
Russia—Rhaponticum carthamoides (Willd.) Iljin root.

3.3. Extraction

An amount of 10 g of raw material was extracted with 50 mL of 75% MeOH and
sonicated for 30 min. The extraction was repeated thrice, and the filtrate was concentrated
with a vacuum evaporator at 30 ◦C. Next, the extracts were lyophilized and stored in
a fridge at −20 ◦C. The extraction yield was calculated based on the dry weight of the
extract (%).

3.4. Chemical Composition
3.4.1. Determination of Total Phenolic Content (TPC)

Total phenolic content was determined using the Folin–Ciocalteu method with slight
modification [44]. Briefly, 25 µL of extract (1 mg/mL in MeOH) was mixed with 25 µL of
Folin−Ciocalteu reagent (diluted in pure water, 1:3). Next, 200 µL of distilled water was
added, and the mixture was then incubated for 5 min. After that, 25 µL of sodium carbonate
(20%) solution was added and incubated in the dark at room temperature for an hour. The
absorbance was measured at 750 nm. The results for TPC are expressed in milligrams of
gallic acid (GA) equivalent (GAE) per gram of the sample (mg GAE/g sample).

3.4.2. Determination of Total Flavonoid Content (TFC)

Total flavonoid content was determined using a method based on the reaction between
AlCl3 and flavonoids [45]. Briefly, 25 µL of extract (1 mg/mL in MeOH) was mixed with
75 µL of EtOH. After that, 10 µL each of aluminum chloride (10%) and potassium acetate
(1 M) were added. An amount of 130 µL of distilled water was added. Next, the mixture
was incubated for 30 min. The absorbance was measured at 510 nm. The results for TFC
are expressed in milligrams of quercetin (Q) equivalent (QE) per gram of the sample (mg
QE/g sample).

3.4.3. Determination of Total Phenolic Acid Content (TPAC)

Total phenolic acid content was determined according to the method described in
Polish Pharmacopeia VI [46]. In short, 25 µL of extract (1 mg/mL in MeOH) was mixed
with 150 µL of distilled water. Next, 25 µL of HCl (0.5 M) and 25 µL of Arnov’s reagent
(10.0 g of sodium molybdate and 10.0 g of sodium nitrite in 100 mL distilled water) were
added. After that, 25 µL of NaOH (1 M) was mixed, and the mixture was immediately
measured at 492 nm. The results for TPC are expressed in milligrams of caffeic acid (CA)
equivalent (CAE) per gram of the sample (mg CAE/g sample).
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3.5. Antioxidant Properties
3.5.1. ABTS Free-Radical-Scavenging Activity

ABTS free radical scavenging was conducted following the method of Wu et al. [47].
Briefly, working ABTS+ solution was prepared by mixing 10 mL of ABTS (7 mM in H2O)
and 10 mL of potassium persulfate (2.45 mM in H2O), which was further incubated in the
dark for 12 h. Next, the ABTS+ solution was diluted with water to obtain an absorbance of
0.700 ± 0.03 at 405 nm. After that, 10 µL of extract (1 mg/mL/0.1 mg/mL/0.01 mg/mL)
was mixed with 190 µL of ABTS+ solution and incubated for 30 min. After incubation,
the absorbance was measured at 405 nm. As controls, Trolox and BHA were used. The
antioxidant activity was calculated using the following equation:

%INH =

(
AS −AC

AC

)
∗ 100%

AS—the absorbance for sample + ABTS;
AC—the absorbance without sample + ABTS.

3.5.2. DPPH Free-Radical-Scavenging Activity

DPPH free-radical-scavenging was conducted following the method of Naseer et al. [48].
In short, working DPPH+ solution was prepared by dissolving 24 mg of DPPH in 100 mL of
distilled water. Next, the DPPH+ solution was diluted with methanol to obtain an absorbance
of 0.900 ± 0.03 at 515 nm. After that, 10 µL of extract (1 mg/mL/0.1 mg/mL/0.01 mg/mL)
was mixed with 190 µL of DPPH+ solution and incubated for 60 min. After incubation,
the absorbance was measured at 515 nm. As controls, Trolox and BHA were used. The
antioxidant activity was calculated using the following equation:

%INH =

(
AS −AC

AC

)
∗ 100%

AS—the absorbance for sample + DPPH;
AC—the absorbance without sample + DPPH.

3.5.3. Ferric-Ion-Reducing Antioxidant Power (FRAP) Assay

FRAP assays of different adaptogenic plant extracts were conducted following the
method of Sharifi-Rad et al. [49]. Briefly, 10 µL of extract (final concentrations in well: 0.34,
0.034, and 0.0034 mg/mL) was mixed with 290 µL of a working solution consisting of
15 mL of acetate buffer, 1.5 mL of TPTZ solution, and 1.5 mL of FeCl3 × 4H2O. The mixture
was incubated for 30 min. After that, the absorbance was measured at 593 nm. As controls,
Trolox and BHA were used. The results for FRAP are expressed in milligrams of Trolox per
gram of the sample (mg Trolox/g sample).

3.5.4. Iron (II) Ion Chelation Assay

Ion chelation assays were conducted using the method described by Li et al. [50].
Briefly, 100 µL of extract (final concentrations in well: 3.84 and 0.384 mg/mL) and 150 µL
of MeOH were mixed with 5 µL of FeCl2 (2 mM). In the next step, 5 µL of ferrozine (5 mM)
was added. After incubation, the absorbance was measured at 510 nm. As a positive
control, ethylenediaminetetraacetic acid (EDTA) was used. The chelation was calculated
using the following equation:

%chel. =

(
1− AS

AC

)
∗ 100%

AS—the absorbance for sample + ferrozine + FeCl2;
AC—the absorbance without sample + ferrozine + FeCl2.
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3.6. Anti-Enzymatic Panel
3.6.1. Hyaluronidase Inhibition Assay

Hyaluronidase inhibitor assays were performed in 96-well plates according to a mod-
ified method described by Di Ferrante [51] and Studzińska-Sroka [52]. The activities of
the compounds/extracts were determined via the precipitation of undigested hyaluronic
acid with cetyltrimethylammonium bromide (CTAB). Amounts of 10 µL of sample (final
concentrations in well: 0.34, 0.034, and 0.0034 mg/mL), 15 µL of acetate buffer (pH = 5.35),
25 µL of incubation buffer (pH = 5.35; 0.1 mg/mL BSA and 4.5 mg/mL NaCl), and 25 µL
of enzyme (30 U/mL, incubation buffer) were mixed. After 10 min of incubation at 37 ◦C,
25 µL (0.3 mg/mL in acetate buffer; pH = 5.35) of hyaluronic acid solution was added.
Afterward, plates were incubated for 45 min at 37 ◦C. After incubation, undigested HA was
precipitated by adding 200 µL of 2.5% CTAB. The plates were kept at 25 ◦C for 10 min. The
intensity of complex formation was measured at 600 nm. To determine the presence of inhi-
bition, the absorbance of solutions without an inhibitor (AC) or enzyme (AT) was measured.
All samples were tested in triplicate. Escin was used as a standard. The hyaluronidase
inhibition was calculated using the following equation:

%INH =

(
AS −AC

AT −AC

)
∗ 100%

AS—absorbance of HA + sample + enzyme;
AC—absorbance of HA + enzyme;
AT—absorbance of HA + sample.

3.6.2. Tyrosinase Inhibition Assay

Tyrosinase inhibitor assays were performed in 96-well plates according to a modi-
fied method described by Sigma-Aldrich [53]. Tyrosinase is the enzyme responsible for
converting L-tyrosinase to L-DOPA and L-DOPA to DOPA-quinone, accompanied by the
browning of the solution. Briefly, 10 µL of sample (final concentrations in well: 0.5, 0.05,
and 0.005 mg/mL), 140 µL of phosphoric buffer (pH = 6.8), and 25 µL of enzyme (125 U/mL
in phosphoric buffer; pH = 6.8) were mixed and incubated for 10 min at room temperature.
In addition, a control without inhibitor was prepared (Ac). After incubation, to each well
25 µL of L-tyrosine (0.3 mg/mL) was added, and the absorbance was measured at 510 nm
(kinetic model, every 5 min). Next, two time points (t1 and t2) were selected in the linear
range of the graph. All samples were tested in triplicate. Kojic acid was used as a standard.
The tyrosinase inhibition was calculated using the following equation:

%INH =

(
∆AS − ∆AS

∆AC

)
∗ 100%

AS—the difference in absorbance between times t2 and t1 for sample;
AC—the difference in absorbance between times t2 and t1 for positive control.

3.6.3. Acetylcholinesterase Inhibition Assay

Acetylcholinesterase inhibitor assays were performed in 96-well plates according to the
Ellman method [54]. Amounts of 45 µL of enzyme (0.4 U/mL, phosphoric buffer; pH = 7.5)
and 5 µL of sample (final concentrations in well: 0.25, 0.025, and 0.0025 mg/mL) were
mixed and incubated for 15 min at room temperature. After incubation, 150 µL of solution
(154 µL of buffer, 1 µL of substrate, and 0.5 µL of DNTB) was added, and absorbance was
measured at two points, t0 and t10, at the wavelength of 405 nm. All samples were tested
in triplicate. Donepezil was used as a standard. The positive control (AC) was without an
inhibitor. The acetylcholinesterase inhibition was calculated using the following equation:

%INH =

(
1− ∆AS

∆AC

)
∗ 100%
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AS—absorbance of acetylcholine + enzyme + sample and the difference in absorbance
between times t2 and t1 for sample;

AC—absorbance of acetylcholine + enzyme and the difference in absorbance between
times t2 and t1 for positive control.

3.7. Statistical Analysis

The results are presented as means and standard deviations (SDs). One-way analysis
of variance (ANOVA) and Dunnett’s test were used to assess the statistical significance
of the means, with p < 0.05 considered significant. The statistical analysis was conducted
using the Statistica 12 software package. Given the nature of the data, nonparametric tests
were employed to perform the statistical analysis. For the active compounds, the content of
a nonparametric analysis of variance (Kruskal–Wallis test) was performed. To assess the
strength and direction of associations among active compounds, antioxidant properties,
and enzymatic inhibitions, correlation analyses were carried out utilizing Spearman’s
rank correlation coefficient. To elucidate the relationships among the active compounds,
antioxidant properties, and enzymatic inhibitions of the 10 adaptogenic species, a hierar-
chical cluster analysis and a redundancy analysis (RDA) were performed. The redundancy
analysis (RDA) was performed using CANOCO5 software.

4. Conclusions

Adaptogenic plants, due to their well-known safety profiles and diverse chemical
compositions, are a valuable source of new pharmacophores in drug design. Uncaria
tomentosa represented high activity in all the tests, which to the best of our knowledge, was
determined for the first time. This species should be taken into consideration in further
research regarding active compound isolation.
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