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Abstract: Charge-shift (CS) bonding is a new bonding paradigm in the field of chemical bonds. Our
recent study has revealed that certain Cu/Ag/Au-bonds display both CS bonding andω-bonding
characters. In this investigation, we extend our study to halogen bonding. Our focus is on scrutinizing
the CS bonding in halogen-bonded BXY (B is a small Lewis base H2O or NH3; X and Y are halogen
atoms) complexes by using natural bond orbital (NBO) analysis, natural resonance theory (NRT),
and atoms in molecules (AIM) methods. The primary objective is to establish a connection between
halogen bonding (B–X) in BXY and CS bonding in free XY (di-halogens). The calculations indicate
that the studied BXY can be classified into two types. One type with a weak halogen bond shows
closed-shell interaction. The other type with a stronger B–X interaction exhibits both CS bonding
andω-bonding characters (as seen in NH3ClF, NH3BrF, and NH3IF). Another interesting finding is
a novel propensity that the CS bonding in free XY tends to carry over the halogen bonding in BXY,
and the same propensity is found in Cu/Ag/Auω-bonded species. The present study may offer an
approach to probe CS bonding in many more 3c/4eω-bonded molecules.

Keywords: CS bonding propensity;ω-bonding; halogen bonding; NBO/NRT; AIM

1. Introduction

The chemical bond serves as the foundation of chemistry. It provides a framework
for the classification and prediction of new compounds. In the field of chemical bonds,
charge-shift (CS) bonding has emerged as a new bonding paradigm. A task, therefore, lies
ahead to find the CS bonding in a wider variety of molecules.

Alongside traditional covalent and ionic bonds, the CS bond, as a new kind of electron-
pair bond, was first introduced by Shaik and Hiberty et al. [1] in 1992. Unlike covalent
or ionic bonds, CS bond energy arises partly from significant resonance energy. A classic
example is the F–F bond in F2. Within the framework of valence bond (VB) theory, this
bond can be described as a hybrid of two Lewis structures: F–F↔ F+ F−, whose resonance
energy is 62.2 kcal/mol and relative resonance energy (RRE) is up to 183.9% (total bond
energy of 33.8 kcal/mol) [2]. Moreover, CS bonding can also be characterized within the
atoms in molecules (AIM) [3] framework by using the combination of a significant total
electron density ρ(r) along with a positive (or small) Laplacian ∇2ρ(r) at the bond critical
points (BCPs) [4]. Notably, it has been reported that the characterization of CS bonding
remains consistent across different methods [5,6].

In the frameworks of VB and AIM theories, Shaik and coworkers have demonstrated
that certain single two-center bonds such as Au–Au [7], Au–F [8], Cl–F [9], and Cl–Cl [4]
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in diatomic molecules, as well as metal–metal bonds [10,11] in traditional metal com-
plexes, exhibit significant CS bonding characters. Apart from these species, CS bond-
ing is also notably prominent in hypervalent molecules, particularly in some electron-rich
three-center/four-electron (3c/4e) species, such as the XeF2 [12]. Similar results are observed
for other typical hypervalent molecules like SF4, PF5, and ClF3 [13]. Of course, CS bonding
can also be derived through other approaches. For instance, natural bond orbital (NBO) and
natural resonance theory (NRT) analyses, along with experimental vibrational frequency
shifts of the studied bond, revealed that the H–Xe bond in the HXeF molecule belongs to
the CS bonding family [14]. Another example is that the Cu/Ag/Au bonds (also known as
coinage-metal bonds) [15] in BMY (B = H2O, H2S, NH3, and PH3; M = Cu, Ag, and Au; and
Y = F, Cl, Br, and I) complexes have been established to show the characters of both CS
bonding and ω-bonding in our recent work [16] by using the NBO/NRT/AIM methods.
Additional examples of CS bonding could be found in recent publications [17–20]. Here,
it is necessary to introduce the ω-bonding model because the studied halogen bonding,
as shown in the following, exhibits both CS bonding and ω-bonding characters. The
ω-bonding is another quantum chemically derived model. Weinhold et al. [21] were the
first to propose this model and to rationalize the bonding in several 3c/4e hypervalent
molecules by considering the strong resonance of two natural Lewis structures. Taking F3

−

as one example, its bonding could be described as a resonance hybrid of two natural Lewis
structures, F–F F− ↔ F− F–F, originating in hyperconjugative interactions. The distinctive
characteristics ofω-bonding are equivalent or close weights of two resonance structures.
The great merit of theω-bonding model is to provide a resonance bonding picture. It can
allow a straightforward explanation and qualitative prediction of stability for 3c/4e hyper-
valent molecules. It is noteworthy that both CS bonding andω-bonding models can provide
a fundamental description of the resonance bonding for 3c/4e hypervalent molecules.

Overall, the field of this new bond is actively expanding, with continuous advance-
ments in probing techniques and the continual addition of new molecules to the CS
family. Given that halogen-bonded complex BXY (B is a small Lewis base; X and Y are
halogen atoms) and Cu/Ag/Au-bonded complex BMY have resemblances in geomet-
rical and electronic structures, we raise two questions: (1) Does the halogen bonding
(B–X) in BXY belong to the CS bonding family? (2) If the answer is “yes”, is there a
connection of CS bonding nature between the halogen bond in BXY and the X–Y bond in
free di-halogens (XY)? To address these questions, this study chooses halogen-bonded
BXY (B is H2O or NH3) complexes as the study systems. Some of them have been charac-
terized in spectroscopic experiments [22–26]. Then, the bonding mechanism, nature, and
propensity are analyzed by using the NBO/NRT/AIM methods based on the optimized
BXY structures.

Of course, the present work is restricted to halogen bonding. Nevertheless, as
we shall discuss in the following, the conclusions are related to both halogen bonding
and Cu/Ag/Au bonding. Our studies show that CS bonding occurs in both stronger
halogen and Cu/Ag/Au bonded complexes. Note that this result has a profound
impact on how we understand such CS bonding that was previously thought to be “non-
covalent interaction”. As we know, the term halogen bond is introduced for describing
the interaction involving halogens as acceptors of electron density. It is often loosely
classified as non-covalent interactions. However, Hobza et al. stated the following: “This
name (non-covalent interaction) is not perfect, as some strong interactions, for example,
dative and charge-transfer interactions, lie somewhere between the noncovalent and
covalent realms” [27]. Also note that the CS bond is a new type of electron-pair bond.
It is different from the classical covalent bond in its bonding mechanism and bond
strength. Our examined stronger halogen bonds and Cu/Ag/Au bonds are classified as
CS covalent interaction. Therefore, they are neither classical covalent bonds nor perfect
non-covalent interactions.
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2. Results and Discussion
2.1. Geometries and Dissociation Energies

The models of the optimized geometry are presented in Figure 1 for BXY complexes,
which agree with the experimental characterizations that the series of NH3XY have C3v
symmetry, while each of the H2OXY species has Cs symmetry, with N/O, X, and Y atoms
lying on an axis [23–26]. The calculated equilibrium B–X and X–Y bond lengths (r) at the
MP2/aug-cc-pVTZ (-PP) computational level are listed in Table 1. Here, the cases of X
being Au also are introduced to compare the halogen bonds with the coinage-metal bonds.
It can be seen that the lengths of the B–X bond containing identical Lewis base B and
atom X are in the order of F < Cl < Br < I. Taking the series of NH3IY for one illustrative
instance, the N–I bond lengths are 2.443, 2.540, 2.583, and 2.672 Å for NH3IF, NH3ICl,
NH3IBr, and NH3II, respectively. This indicates that the interaction between B and X
will weaken with the order of F, Cl, Br, and I. In addition, the equilibrium bond lengths
between the halogen atoms in BXY complexes are larger than those in the free di-halogens,
especially when the Lewis base NH3 is present. For example, the rI–F is 1.920, 1.941, and
1.976 Å for IF, H2OIF, and NH3IF, respectively. Table S1 in the Supporting Information
(SI) collects the calculated vibrational frequencies (ν) of B–X and X–Y bonds at the MP2
level, which gives the results corresponding to the changing trends of the bond lengths.
The intermolecular vibrational frequency νB–X of the B–X bond in BXY varies and becomes
significant with the order of F, Cl, Br, and I. For example, the νN–I is 272, 218, 202, and
173 cm−1 for NH3IF, NH3ICl, NH3IBr, and NH3II, respectively. The νX–Y are found red
shifts in complexes, when they are compared in XY and BXY, especially in NH3XY species.
For instance, the νI–F is 634, 604, and 558 cm−1 for IF, H2OIF, and NH3IF, respectively.
Figure S1 in the SI plots the correlations between rB–X and νB–X for NH3IY and NH3AuY
series. As expected, there is a clear negative correlation between rB–X and νB–X, according
to the familiar Pearson χ2 coefficients [28], whose values are 0.977 and 0.999 for rN–I-νN–I
and rN–Au-νN–Au correlations, respectively.
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Table 1. Calculated equilibrium bond lengths at the MP2/aug-cc-pVTZ (-PP) computational level.

XY

B NH3 H2O Free

rB–X (Å) rX–Y (Å) rB–X (Å) rX–Y (Å) rX–Y (Å)

FF 2.595 (2.71) [29] 1.416 (1.43) [30] 2.649 (2.70) [31] 1.407 1.401 (1.41) [30]
ClF 2.232 (2.37) [32] 1.714 (1.70) [30] 2.515 (2.54) [33] 1.656 1.638 (1.63) [30]
ClCl 2.592 (2.73) [34] 2.034 (2.00) [34] 2.771 (2.81) [35] 2.008 (2.01) [24] 1.999 (1.99) [30]
BrF 2.292 (2.34) [25] 1.829 (1.82) [25] 2.493 1.780 1.758 (1.76) [25]
BrCl 2.469 (2.63) [36] 2.203 (2.19) [36] 2.698 (2.74) [37] 2.155 (2.15) [24] 2.138 (2.14) [25]
BrBr 2.538 (2.72) [38] 2.332 (2.34) [38] 2.757 (2.80) [39] 2.292 (2.29) [24] 2.279 (2.28) [25]

IF 2.443 1.976 2.585 1.941 1.920
ICl 2.540 (2.54) [24] 2.390 (2.39) [24] 2.731 (2.78) [40] 2.343 (2.34) [24] 2.321 (2.32) [24]
IBr 2.583 (2.58) [24] 2.530 (2.53) [24] 2.781 (2.78) [24] 2.484 (2.48) [24] 2.465 (2.47) [24]
II 2.672 (2.67) [24] 2.717 (2.72) [24] 2.868 (2.87) [24] 2.678 (2.68) [24] 2.663 (2.66) [24]

AuF 1.995 1.909 2.038 1.893 1.902 (1.92) [41]
AuCl 2.029 2.199 2.079 2.178 2.174 (2.20) [41]
AuBr 2.040 2.310 2.094 2.289 2.284 (2.32) [41]
AuI 2.058 2.466 2.121 2.444 2.436 (2.47) [42]

The values in brackets are available experimental or calculated data. The values for the BAuY series from Ref. [16]
are introduced to compare the halogen bonds with the coinage-metal bonds. The calculated comparisons from
Ref. [24] at the MP2/aug-cc-pVTZ (-PP) level. The calculated comparisons from Ref. [25] at the CCSD(T)/aug-cc-
pVTZ (-PP) level.
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The calculated dissociation energies (E) of B–X and X–Y bonds for all studied species
at the MP2 level are summarized in Table S2 in the SI, showing the energies for both Lewis
base B removal (BXY→ B + XY, EB–X = E(B) + E(XY) − E(BXY)) and halogen atom Y removal
(BXY → BX + Y, EX–Y = E(BX) + E(Y) − E(BXY)) of BXY complexes, as well as the neutral
atomic dissociation (XY→ X + Y, EX–Y = E(X) + E(Y) − E(XY)) of free XY molecules. Note that
the MP2/aug-cc-pVTZ (-PP) computational level for homolytic bond cleavage enthalpies
of the molecules we tested is quite different from the higher CCSD (T) level. The following
Computational Details section involves the comparisons of many computational levels.
We found that the calculation results at the CCSD level are comparable to those at the
CCSD (T) level, and it can significantly reduce the calculation cost. Hence, the dissociation
energies we will discuss below are all calculated at the CCSD level. Nevertheless, all
subsequent analyses in this paper are still based on the optimized molecular structures at
the MP2 level because their performance in calculating geometry is more consistent with
the experimental results. The calculated equilibrium bond lengths, vibrational frequencies,
and dissociation energies at the CCSD/def2-TZVPPD computational level are presented
in Tables S3–S5, respectively. Figure 2a,b show the calculated equilibrium lengths and
dissociation energies of B–X and X–Y bonds, respectively. As we can see, the dissociation
energies of all halogen bonds, except for those in a few BXY complexes, are less than
10 kcal/mol. It is worth noting that the dissociation energy of the studied halogen bonds
does not have a good linear relationship with the bond length. For example, the EN–I
values are 15.51, 10.82, 9.46, and 7.15 kcal/mol, while the rN–I values are 2.512, 2.652, 2.704,
and 2.829 Å for NH3IF, NH3ICl, NH3IBr, and NH3II, respectively (χ2 = 0.973). What is
more, the dissociation energy of the bond between two halogen atoms even increases
with increasing bond length. For example, the I–F bond lengths of IF, H2OIF, and NH3IF
increase gradually, and the corresponding EI–F values are 60.56, 65.93, and 69.75 kcal/mol,
respectively. These unexpected phenomena suggest that the bond strength of some BXY
complexes may require the consideration of other contributions, such as the “charge-shift
resonance energy” resulting from covalent–ionic mixing.
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Figure 2. Calculated bond length (r) and dissociation energy (E) of B–X (a) and X–Y (b) bonds in
all studied species at the CCSD/def2-TZVPPD computational level. The blue, red, and black rims
represent that the Lewis base B is NH3, H2O, and absent (free XY), respectively. The symbols triangle,
square, pentagon, hexagon, and circle represent that the atom X is F, Cl, Br, I, and Au, respectively.
The green, cyan, orange, and purple centers represent that the atom Y is F, Cl, Br, and I, respectively.
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2.2. 3c/4e ω-Bonding in a Halogen-Bonded Complex

The NBO/NRT analysis is the most frequently used tool for analyzing 3c/4e ω-
bonding [21]. Based on NBO analysis, the best single natural Lewis structure (NLS) can be
immediately confirmed for one studied molecule, and the donor–acceptor orbital interac-
tions in it can be quantitatively estimated [43]. The NRT algorithms are built on NBO-based
donor–acceptor concepts to provide the numerical resonance weightings of contributing
resonance structures [44–46]. The coinage-metal bonded BAuY series have been identified
as the 3c/4eω-bonded molecules, according to the proposal by Weinhold et al. [21] such
as the linear B–Au–Y geometry, strong nB→σ*Au–Y and nY→σ*B–Au donor–acceptor inter-
actions, high populations of σ*B–Au and σ*Au–Y antibonds, and relatively close resonance
weightings. Therefore, we employ the NBO/NRT method to investigate if the studied
halogen-bonded BXY meet the criteria of 3c/4eω-bonding.

Table S6 in the SI summarizes the calculated second-order perturbation stabilization
energies (∆E(2)

D→A), estimating the nB→σ*X–Y and nY→σ*B–X donor–acceptor interactions
in BXY complexes. For nB→σ*X–Y interaction, the donor is the lone pair orbital (nB) of Lewis
base B, and the acceptor is the antibonding orbital (σ*X–Y) of X–Y moiety in B: X–Y structure.
In the complementary resonance structure B–X+:Y−, the nY→σ*B–X interaction involves the
lone pair nY and the antibonding orbital σ*B–X. The donor–acceptor interaction is usually
accompanied by a transfer of electron density. Table S7 in the SI presents the calculated
orbital occupancies (e) of the lone pair orbital and the antibonding orbital arising from
the nB→σ*X–Y or nY→σ*B–X interaction. On the basis of its significantly lower ∆E(2)

D→A
(Table S6) and lower orbital occupancy of σ*X–Y (Table S7), it can be predicted that the
resonance structure B: X–Y is absolutely dominant for most halogen-bonded complexes.
Nevertheless, there are still a few complexes whose resonance structure B–X+:Y− can not
be ignored, such as NH3ClF, NH3BrF, and NH3IF. Taking NH3IF species as an example, the
3D surface views and the orbital overlap contour diagrams of its nN→σ*I–F and nF→σ*N–I
donor-acceptor interactions are depicted in Figure 3 and Figure S2, respectively. The
second-order perturbation stabilization energy for nN→σ*I–F is 54.41 kcal/mol, and that
for nF→σ*N–I is 181.95 kcal/mol. Furthermore, the nN→σ*I–F interaction brings an electron
transfer of about 0.12e from the lone pair orbital nN to the antibonding orbital σ*I–F, while
the nF→σ*N–I interaction brings an electron transfer of about 0.27e from nF orbital to σ*N–I
antibonding orbital. The higher occupancy of the σ*N–I antibonding orbital indicates that
the resonance structure H3N–I+:F− is likely to be less stable than the resonance structure
H3N: I–F for the NH3IF complex. Therefore, the H3N: I–F structure is predicted to be the
best NLS, and it can form a strong resonance mixing with the H3N–I+:F− structure.
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Table 2 presents the calculated NRT weightings (w) for all studied BXY complexes,
from which the best NLS (corresponding to the maximum w) can be identified directly. As
expected, for the NH3IF complex the best NLS is indeed the resonance structure H3N: I–F,
not H3N–I+:F−. Actually, the wI of the B: X–Y structure is always greater than the wII of the
B–X+:Y− structure for each of the studied BXY here, and the sum of wI and wII is always
close to 100% (from 98.29% to 100.00%). What is more, when the Lewis base B is H2O in a
halogen-bonded complex, the resonance structure B: X–Y is obviously dominant and the
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complex BXY does not belong to the 3c/4e ω-bonding family. However, when it turns
to the NH3XY series, the wII of the structure B–X+:Y− are quite impressive for NH3ClF,
NH3BrF, and NH3IF complexes. For instance, their wII values are 22.81%, 28.80%, and even
32.27%, respectively. According to the proposal by Weinhold et al. [21], these three BXY
complexes can be classified as the 3c/4eω-bonding family. Each of them can be described
as a resonance hybrid of B: X–Y↔ B–X+:Y− with strong mixing.

Table 2. NRT weightings wI and wII of B: X–Y and B–X+:Y− for BXY.

XY

B NH3 H2O
wI wII wI wII

FF 98.88% 0.85% 99.85% 0.15%
ClF 75.74% 22.81% 94.48% 4.94%
ClCl 94.94% 3.99% 98.86% 0.88%
BrF 70.47% 28.80% 90.55% 8.67%
BrCl 87.69% 10.60% 97.23% 2.26%
BrBr 91.06% 7.26% 98.06% 1.51%

IF 67.37% 32.27% 86.53% 12.82%
ICl 82.30% 17.16% 94.74% 4.55%
IBr 85.87% 13.41% 96.16% 3.20%
II 90.57% 7.76% 97.67% 1.82%

AuF 49.59% 49.26% 65.68% 33.22%
AuCl 62.87% 36.27% 76.69% 22.00%
AuBr 66.17% 32.85% 79.05% 19.51%
AuI 69.96% 29.12% 82.29% 16.12%

The values for the BAuY series from Ref. [16] are introduced to compare the halogen bonds with the coinage-
metal bonds.

2.3. Charge-Shift Bonding in a Halogen-Bonded Complex

The AIM method is a powerful tool for studying covalent bonds, closed-shell inter-
actions, charge-shift bonds, etc. Initially, Bader and Essen [47] proposed that covalent
bonds can be identified by large total density ρ(r) and negative Laplacian∇2ρ(r) at the BCP,
while closed-shell interactions can be characterized by the combination of small ρ(r) and
positive ∇2ρ(r). However, a special case is the combination of large ρ(r) and positive (or
small) ∇2ρ(r), which is not originally addressed in the AIM theory. Shaik et al. [2,4,5] were
the first to propose this combination as an important AIM indicator of homonuclear CS
bonding, such as the O–O bond in H2O2, the F–F bond in F2, and the Cl–Cl bond in Cl2.
In their recent publications [6,18], such an AIM indicator also was effective for the newly
reported heteronuclear CS bonding, such as the N–B bond in H3N–BH3, the N–Cu bond
in H3N–Cu+, and the F–NO2 bond in the selected explosive molecule. Therefore, in our
recent study on the Cu/Ag/Au-bonded complexes [16], this AIM indicator was employed
to illustrate their CS bonding characters as well.

The calculated total density ρ(r) and Laplacian ∇2ρ(r) at the BCPs of B–X and X–Y
bonds in all studied BXY complexes are presented in Figure 4a,b, respectively, with the
corresponding values listed in Table S8 in the SI. For comparison, the AIM descriptors of
BAuY are also presented. It is evident that the ρ(r) is significant and the ∇2ρ(r) is positive
at the BCPs of both B–Au and Au–Y bonds in the coinage-metal bonded BAuY. However,
for the B–X bonds in the halogen-bonded complexes, the values of ρ(r) are mostly low and
the ∇2ρ(r) are clearly positive (or small). Consequently, the majority of halogen bonds
here conform to the AIM indicator of closed-shell interaction. However, there are still
several BXY complexes, such as NH3ClF, NH3BrF, and NH3IF, whose halogen bonds are
the CS bonding based on the relatively large ρ(r) values (more than 0.05 a.u.) and positive
∇2ρ(r) values.
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XY), respectively. The symbols triangle, square, pentagon, hexagon, and circle represent that the atom
X is F, Cl, Br, I, and Au, respectively. The green, cyan, orange, and purple centers represent that the
atom Y is F, Cl, Br, and I, respectively.

In Figure 4b, we also present the calculated ρ(r) and ∇2ρ(r) values at the BCPs in
free di-halogens, with corresponding values listed in the last two columns of Table S8.
It is worth mentioning that Shaik et al. have previously reported that di-halogens (F2,
ClF, Cl2, BrF, BrCl, Br2, etc.) [2,48] belong to the CS bonding family. As illustrated in
Figure 4b, the combination of large ρ(r) and positive (or small)∇2ρ(r) effectively probes the
CS bonding in these free di-halogens, except for the ClF species, whose∇2ρ(r) is−0.185 a.u.
This particular case is like the HF molecule, in which the reported values of ρ(r) and
∇2ρ(r) at the BCP are 0.38 and −2.52, respectively [4]. However, other calculations have
demonstrated that both ClF and HF are indeed typical CS bonding molecules. In any case,
the bonding in ClF, BrF, and IF is CS bonding. The foregoing discussion is an effect to
show the CS bonding nature of X–Y in free di-halogens, namely ClF, BrF, and IF. Now we
begin a discussion of X–Y bonding in stronger halogen-bonded complexes. It can be seen
in Table S8 and Figure 4b that both ρ(r) and ∇2ρ(r) at the BCP of the X–Y bond in NH3ClF,
NH3BrF, and NH3IF meet the AIM criteria of CS bonds. Thus, the X–Y bond in NH3ClF,
NH3BrF, and NH3IF is also CS bonding. Such results imply that the X–Y bond of these
three complexes retains the free X–Y bonding nature upon complexation.

In addition to the combination of large ρ(r) and positive ∇2ρ(r), the delocalization
index (DI) serves as an alternative AIM indicator for CS bonding. CS bonding implies
significant delocalization arising from the lone pairs of the bonded atoms, leading to the DI
values expected to exceed its formal bond order. For example, the DI values of the charge-
shift bonds F–F (in F2) and B–N (in BH3NH3) are 1.24 and 0.38, respectively, in the report by
Silvi et al. [48] Recently, Galland et al. [19,20] employed the DI to explain the CS bonding
nature in At3C–At···Cl− and C6At6 species as well. Table 3 presents the calculated DI values
of B–X (DIB–X) and X–Y (DIX–Y) bonding interactions in all studied molecules. Notably, the
DIB–X value in halogen-bonded NH3XY is larger than that in the corresponding H2OXY,
and it is even greater than 0.5 in NH3ClF, NH3BrF, and NH3IF. These results suggest that
among all studied BXY complexes, the halogen bonds in these three complexes exhibit a
relatively prominent CS bonding nature. In contrast, the DIX–Y values are significant in all
studied BXY, with almost all of them exceeding 1.0. Furthermore, the DIX–Y value in each
of the studied BXY complexes is smaller than that in the corresponding free XY di-halogen,
especially in the series of NH3XY. Nevertheless, each of the studied X–Y bonds, whether it
is in BXY or free XY, displays a clear CS bonding character.
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Table 3. Calculated delocalization index of B–X (DIB–X) and X–Y (DIX–Y) bonding interactions in all
studied molecules at the B3LYP/aug-cc-pVTZ (-PP) computational level.

XY

B NH3 H2O Free

DIN–X DIX–Y DIO–X DIX–Y DIX–Y

FF 0.151 1.229 0.077 1.269 1.286
ClF 0.533 1.051 0.250 1.184 1.253
ClCl 0.283 1.340 0.144 1.414 1.446
BrF 0.563 0.976 0.316 1.087 1.175
BrCl 0.414 1.221 0.208 1.350 1.415
BrBr 0.368 1.265 0.186 1.371 1.419

IF 0.549 0.902 0.344 0.982 1.074
ICl 0.464 1.126 0.260 1.247 1.340
IBr 0.432 1.186 0.237 1.305 1.386
II 0.374 1.258 0.202 1.354 1.408

AuF 0.913 0.919 0.720 0.976 1.098
AuCl 0.849 1.244 0.652 1.318 1.464
AuBr 0.831 1.311 0.632 1.390 1.533
AuI 0.803 1.403 0.600 1.479 1.608

The values for the BAuY series from Ref. [16] are introduced to compare the halogen bonds with the coinage-
metal bonds.

In summary, based on the above AIM analyses, the studied BXY can be classified into
two types. One has a weak halogen bond that exhibits a closed-shell interaction similar to
the van der Waals forces, while the other displays the CS bonding nature with a stronger
B–X interaction. In addition, all studied free XY di-halogens also belong to the CS bonding
family. Consequently, we anticipate that the CS bonding nature established in all studied
BXY complexes may be closely related to the free XY di-halogens.

2.4. CS Bonding Propensity in a Halogen-Bonded Complex

The foregoing analysis has revealed that the majority of the studied halogen bonds
do not fall within the 3c/4eω-bonding family in the NBO/NRT framework and that they
do not exhibit the CS bonding nature based on the AIM descriptors. However, there are
a few cases, such as the 3c/4e ω-bonded NH3ClF, NH3BrF, and NH3IF. Their halogen
bonds do display the CS bonding characters. Additionally, it is essential to emphasize
that the free di-halogens ClF, BrF, and IF also exhibit the CS bonding nature. It raises
the following question: is there a connection of CS bonding between the halogen-bonded
complexes BXY and the free di-halogens XY? However, a direct connection between them is
not straightforward, because one refers to a two-center molecule and the other to a species
with three more centers. To address this question, we present two representative examples
in Figure 5. Now let us observe certain AIM characteristic aspects of the 3c/4eω-bonded
NH3IF complex. The AIM quantities indicate that the N–I and I–F bonds in NH3IF are
the same in the CS bonding nature. The complex NH3IF clearly distinguishes its bonding
from the NH3FF species. One of the reasons for this distinction is that the weak van der
Waals forces between molecules are generally not considered as leading to chemical-bond
formation. Similarly, for NH3ClF and NH3BrF complexes, we arrive at the same conclusion.
While our discussion has thus far focused on the halogen CS bonding in studied BXY
complexes, we continue to explore more examples, including the Cu/Ag/Au CS bonding.
Indeed, as emphasized in our latest publication [16] concerning the Cu/Ag/Au bonding in
BMY complexes, an intrinsic feature of B–M–Y is the appearance of the same CS bonding
nature in B–M and M–Y bonds. Here, note that the coinage metal halides (free MY) also
belong to the CS bonding family [8]. It becomes clear that the free MY tends to carry over
its CS bonding nature to the corresponding BMY upon complexation.
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All in all, for the studied 3c/4e ω-bonded BXY, a strong connection of the CS bonding
nature exists between the B–X bond in BXY complexes and the X–Y bond in free XY. If
the free XY has the CS bonding characters, the halogen bonding in 3c/4eω-bonded BXY
complexes trends to form CS bonding, just as the free MY shows its CS bonding propensity
in BMY complexes.

3. Computational Details

The geometry optimization of each studied molecule here was carried out with the
Gaussian 09 [49] program at the level of the second-order Møller–Plesset (MP2) [50] theory.
The systematically convergent triple-ζ basis sets (aug-cc-pVTZ-PP) [51], which include
small-core energy-consistent relativistic pseudopotentials (PP) to account for relativistic
effects, were used for the heavy I and Au atoms, while the augmented correlation-consistent
triple-ζ Dunning basis sets (aug-cc-pVTZ) [52] were adopted for the remaining atoms. The
vibrational frequencies and dissociation energies of B–X and X–Y bonds in all studied
molecules were calculated at the same level of theory and basis sets, and it is confirmed that
the optimized geometrical structures correspond to the true minimum character because no
imaginary frequencies were found in any case. In addition, the calculations of geometry op-
timization, vibrational frequency, and dissociation energy were also performed at the level
of coupled-cluster with single and double excitations (CCSD) [53] theory in combination
with def2-TZVPPD [54], which is a triple-ζ valence all-electron basis set augmented with
two sets of polarization and diffuse basis functions. Notably, the homolytic bond cleavage
enthalpies calculated at the CCSD level are more consistent with the higher CCSD(T) [55]
level. Table S9 shows the comparisons of the B3LYP [56,57], MP2, CCSD, and CCSD(T)
computational levels in combination with different basis sets for optimizing bond lengths
of the free XY molecules. According to the relative mean deviations (RMDs), which were
calculated with respect to the corresponding available experimental values, we find that the
optimized bond lengths obtained at the CCSD(T) level in combination with aug-cc-pVQZ
(-PP) [58–60] basis sets are the most accurate (RMD = 0.34%). Similarly, as shown in Table
S10, the vibrational frequencies of free X–Y bonds calculated at the CCSD(T)/aug-cc-pVQZ
(-PP) computational level are also the closest to the experimental values (RMD = 0.98%).
Although using such a high computational level can obtain relatively accurate data, it is too
expensive to deal with complex systems. We take the dissociation energies calculated at the
CCSD(T)/aug-cc-pVQZ (-PP) computational level as the benchmark to test the accuracy
at other different calculation levels in Table S11 and find that the results obtained at the
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CCSD/def2-TZVPPD computational level are accurate with an acceptable calculation cost.
Note that the geometry optimizations at the MP2 level are generally closer to the experimen-
tal results than those at the CCSD level. Then, all subsequent NBO/NRT/AIM analyses are
based on the optimized molecular structures at the MP2 level. The NBO/NRT [43–46] cal-
culations were carried out with the NBOPro 6.0 [61,62] program to investigate the bonding
of each optimized molecule, and the NBOView 2.0 module was employed to obtain the
NBO orbital graphics. The electron density in the quantum theory of atoms in molecules [3]
was conducted using the topology analysis module implemented in the Multiwfn 3.7 [63]
program. Being consistent with our recent work [16], the delocalization index (DI) was also
calculated at the B3LYP level.

4. Conclusions

This study investigated the CS bonding in halogen-bonded BXY complexes by using
NBO/NRT/AIM methods. By analyzing the calculated equilibrium lengths, vibrational
frequencies, and dissociation energies of the B–X and X–Y bonds, we observed that certain
complexes, such as NH3ClF, NH3BrF, and NH3IF, exhibit relatively stronger halogen bonds.
Through NBO/NRT analyses, each of the NH3ClF, NH3BrF, and NH3IF species can be
described as a resonance hybrid B: X–Y↔ B–X+:Y− with strong mixing, unequivocally
belonging to the 3c/4e ω-bonding family. The AIM analyses showed that the halogen
bonds in these 3c/4eω-bonded complexes exhibit CS bonding characters, whereas other
halogen-bonded complexes can be described as closed-shell interaction van der Waals
forces. Moreover, drawing upon further CS bonding examples from our recent study on
Cu/Ag/Au-bonded BMY complexes, we found a novel CS bonding propensity. It reveals
that the halogen/coinage-metal bonding in 3c/4eω-bonded BXY/MXY tends to display
the CS bonding characters if the free XY/MY also belongs to the CS bonding family. In
essence, the CS bonding nature present in the free XY/MY molecule carries over the 3c/4e
ω-bonded BXY/MXY.

Finally, we stress two requirements that the CS bonding propensity must meet. In
addition to demanding that the free X–Y/M–Y is CS bonding, it usually also requires that
the halogen/coinage-metal bonded BXY/BMY belongs to theω-bonded species. Therefore,
this CS bonding propensity is exclusively applicable to 3c/4eω-bonded molecules.

We anticipate that this CS bonding propensity could potentially serve as a valuable
tool for probing the CS bonding nature in numerous other 3c/4e ω-bonded molecules.
However, we acknowledge that further related studies are currently underway to confirm
whether this propensity can be considered a rule rather than an exception.
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